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The equations

The limiting behavior as ε→ 0 of solutions to the reaction-diffusion equations
of the type

∂u

∂t
−∆uε =−ε−2∇Vu(uε)

is a source of active research in the last decades. The function uε takes values
in Rk and V denotes a potential V :Rk →R. Of interest are also the stationary
solutions we will discuss later on

−∆uε =−ε−2∇Vu(uε).
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The equation is the L2 gradient-flow of the energy E defined by

Eε(u)=
∫
Ω
eε(u)=

∫
R
ε
|∇u|2
2

+ V (u)

ε
, for u :R 7→Rk .

Ω⊂RN being the domain. The properties of the flow (RDG) strongly depend

on the potential V . Throughout we assume that

V is smooth from Rk to R,

V tends to infinity at infinity, so that it is bounded below

V ≥ 0.

An intuitive guess is that the flow drives to mimimizers of the potential :

if V is strictly convex, the solution should tend to the unique minimizer of
the potential V .

Here we consider the case where there are several mimimizers for the
potential V  Transitions between minimizers
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Multiple-well potentials

We assume in this talk that V is has a finite number of and at least two
distinct minimizers.
A classical example in the scalar case (Allen-Cahn) k = 1

V (u)= (1−u2)2

4
, (AC)

whose minimizers are +1 and −1.
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The picture for systems
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Assumptions on V

(H1) infV = 0 and the set of minimizers Σ≡ {y ∈Rk ,V (y)= 0}

is a finite set, with at least two distinct elements, that is

Σ= {σ1, ...,σq},q ≥ 2, σi ∈Rk ,∀i = 1, ...,q.

(H∞) There exists constant α0 > 0 and R0 > 0 such that

y ·∇V (y)≥α0|y |2, if |y | >R0.
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The scalar case

Important efforts have ben devoted so far to the study of solutions of the
Allen-Cahn equations, i.e. for the special choice of potential

V (u)= (1−u2)2

4
, (2)

whose infimum equals 0 and whose minimizers are +1 and −1, so that
Σ= {+1,−1}. It is an elementary model for phase transitions for materials with
two equally preferred states, the minimizers +1 and −1 of V .
The mathematical theory for this question is now well advanced and may be
considered as quite satisfactory.
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Results for the scalar case

They provide a sound foundation to the intuitive idea that the domain Ω
decomposes into regions where the solution takes values close to +1 or close to
−1, separated by interfaces of width of order ε.

The interfaces converge to codimension 1 hypersurfaces.

They are generalized minimal surfaces in the stationary case, or moved by
mean curvature for the parabolic case.

Arguments rely on integral methods and energy estimates

In the parabolic case Ilmanen proved convergence past possible
singularities, to motion by mean curvature in the weak sense of Brakke, a
notion phrased in the language of geometric measure theory.

In the elliptic case convergence to minimal surfaces was established by
Modica and Mortola for minimizers, Hutchinson and Tonegawa established
related results for non-minimizing solutions.

The fact that the solutions are scalar is crucial in the proofs.
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motion by mean curvature
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Monotonicity Formula and Clearing-out

Concentration on N −1 dimensional sets is deduced from two ingredients

Monotonicity formulas

Clearing-out Lemmas

The following inequality (used in Ginzburg-Landau theory)

d

dr

(
1

rN−2 Eε
(
uε,BN (x0,r)

))
≥ 0, for any x0 ∈Ω,

is valid for arbitrary vectorial potentials. It is however not sufficient to
establish concentration on N −1- dimensional sets where one wishes to have

d

dr

(
1

rN−1 Eε
(
uε,BN (x0,r)

))
≥ 0, for any x0 ∈Ω, (3)

Such a formula was derived in the Allen-Cahn scalar case thanks to the
maximum principle.
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The discrepancy

The proof of the N −1 monotonicity in the scalar case relies the positivity of
the discrepancy term

ξε(uε)= 1
ε
V (uε)−ε |∇u|

2

2
.

Notice that for N = 1 for −ε2 d
2u
dx

=−∇uV (u) one has

d

dx

(
1
ε
V (u)−ε |

.
u|2
2

)
= 0,

In higher dimensions, the positivity of ξε for scalar solutions was observed first
by Payne, Sperb, L. Modica,.. for entire solutions. He proved the remarkable
inequality (for ε= 1)

−|∇u|2∆ξ≥ 2
1
2
|∇ξ|2+2V (u)∇u ·∇ξε.
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Clearing-out lemmas

Clearing-out Lemmas have more or less the following flavour : There exists
some constant η0 > 0 such that

1
rN−1 Eε

(
uε,BN (x0,r)

)
≤ η0 =⇒ uε(x)'σ on BN

(
x0,

r

2

)
.

where σ ∈Σ, the set of minimizers of the potential.
Such a statement is rather easy to prove when monotonicity is established.
Indeed, by monotonicity

1
εN

∫
BN(ε)

V (uε)≤ η0.

and then the (easy) bound |∇uε| ≤Cε−1 allows to conclude.
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Tools in the scalar Allen-Cahn case

To summarize the methods used in the scale Allen-Cahn case one has

sign of discrepancy =⇒ monotonicity =⇒ clearing−out

whereas{
clearing out+monotonicity =⇒ concentration on N −1 dimensional sets

monotonicity =⇒ (Preiss) rectifiability of concentration set

and
sign of discrepancy + stress−energy tensor

⇓
stationary sets or motion by mean−curvature

Conclusion: Sign of discrepancy is crucial !
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Back to the vectorial case

Main observation
In the vectorial case, positivity of the discrepancy as well as the monotonicity
formula are known to fail for some solutions, e. g. for the Ginzburg-Landau
system. Whether they might still hold under additional conditions on the
potential or the solution itself is open.

⇓
New ideas are required !

I will next present a result where some parts of the program have been carried
out in the absence of monotonicity as well as sign of discrepancy. It concerns

the two-dimensional case, i. e we work on a domain Ω⊂R2

The elliptic system
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The assumptions

Assume we are given a constant M0 > 0 and a family (uε)0<ε≤1 of solutions to
the equation

−∆uε =∇Vu(uε) on Ω.

satisfying the natural energy bound

Eε(vε)≤ M0, ∀ε> 0. (4)

Remark : This bound is natural because the energy of one-dimensional
transition, i. e. solutions

− ··
u = ε−2∇vu(u)

is finite, bounded independently of ε.
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Energy of an interface


∫
R
| ·u|2 'C2

∫
[−Cε,Cε]

ε−2 'Cε−1

∫
R
V (u)|2 'C

∫
[−Cε,Cε]

'Cε
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Limiting measures

We introduce the family (νε)0<ε≤1 of measures defined on Ω

νε ≡ eε(uε)dx on Ω. (5)

In view of the energy bound, the total mass of the measures is bounded by
M0, that is νε(Ω)≤ M0. By compactness,there exists a decreasing subsequence
(εn)n∈N tending to 0 and a limiting measure ν? on Ω such that

νεn *ν? in the sense of measures on Ω as n→+∞. (6)

Our main result is the following.
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Theorem

There exist a subset S? in Ω, and a subsequence of (εn)n∈N still denoted
(εn)n∈N such that the following properties hold:

i) S? is a closed 1-dimensional rectifiable, with locally finite many connected
components and such that H 1(S)≤ CH M0, where CH is a constant
depending only on the potential V .

ii) Set U? =Ω\S?, and (Ui?)i∈I be the connected components of U?. For
each i ∈ I there exists an element σi ∈Σ such that

uε→σi uniformly on every compact subset of Ui?.
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Comments on the results

At this stage, I have not been able to prove stationary, nor positivity of
discrepancy.

The set S? in the above theorem represents the concentration set for the
energy

The argument for the proof of rectifiability of the singular set S? is quite
specific , namely compact set of hausdordd dimension 1 are rectifiable.

Most of the statement relies on the two cleraing-out properties which
follow :
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Clearing-out properties for the measure ν?

The first one is a classical clearing-out result for the measure ν?.

Theorem

Let x0 ∈Ω and r > 0 be given such that D2(x0,r)⊂Ω. There exists a constant
η0 > 0 such that, if we have

ν?
(
D2(x0,r)

)
r

< η0, then it holds ν?

(
D2(x0,

r

2
)

)
= 0. (7)

we set

θ?(x0)= liminf
r→0

ν?
(
D2(x0,r)

)
r

and define S? as
S? = {x ∈Ω,θ?(x0)≥ η0.}. (8)

The fact that S? is closed of finite one-dimensional Hausdorff measure is a
direct consequence of the clearing-out property for the measure ν?.
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The connectedness properties of S? require a different type of clearing-out
result. Let U ⊂Ω be open. For δ> 0, we consider the sets{

Uδ = {
x ∈Ω,dist(x ,U )≤ δ

}
and

Vδ =Uδ \U = {
x ∈Ω,0≤ dist(x ,U )≤ δ

}
.

(9)

Theorem

Let U ⊂Ω be a open subset of Ω, let δ> 0 be given. If we have

ν?(Vδ)= 0, then it holds ν?
(
U

)
= 0. (10)

In other terms, if the measure ν? vanishes in some neighborhood of the set U ,
then it vanishes on U .

allows us to establish the connectedness properties of S?.

yields rectifiability invoking standard results on continua of bounded
one-dimensional Hausdorff measure.
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Elements in the proof : 1) scale invariance

Proofs are derived from corresponding PDE results at the ε level for uε.

For r > 0 and ε> 0, set ε= ε

r
. For uε :D2(x0,r)→Rk , consider vε :D

2 →Rk

defned by
vε(x)= uε(rx +x0)),∀x ∈D2.

If uε is a solution to the PDE, when vε is a solution to the PDE with
parameter ε. The scaling for the energy areeε(vε)(x)= reε(u)(rx +x0), ∀x ∈D2

Eε
(
uε,D2(r)

)
= rEε

(
vε,D2(1)

)
and Vε

(
uε,D2(r)

)
= rVε

(
vε,D2(1)

)
with

Eε (u,G)≡
∫
G
eε(u)dx and Vε (u,G)≡

∫
G

V (u)

ε
dx .

The parameter ε as well as the energy Eε behave as lengths

ε−1Eε is scale invariant, according to the previous scale changes.
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Clearing-out for the PDE

Choose µ0 > 0 so that Bk (σi ,2µ0)∩Bk (σj ,2µ0)=; for all i 6= j in {1, · · · ,q}
and such that and

1
2
λ−i Id ≤∇2V (y)≤ 2λ+i Id for all i ∈ {1, · · · ,q} and y ∈B(σi ,2µ0). (11)

Theorem

Let 0< ε≤ 1 and uε be solution of the (PDE)ε on D2. There exists η0 > 0 s.t.
if

Eε(uε,D2)≤ η0,

then there exists some σ ∈Σ such that

|uε(x)−σ| ≤ µ0
2

, for every x ∈D2(
3
4
),

We have the energy estimate, with Cnrg > 0 depending only on V

Eε

(
uε,D2

(
5
8

))
≤ Cnrg εEε(uε,D2).
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The previous result relies on:

Proposition

Let 0< ε≤ 1 and uε be a solution of (PDE)ε on D2. There exists a constant
Cdec > 0 such that

∫
D2( 9

16 )
eε(uε)dx ≤ Cdec

[(∫
D2

eε(uε)dx

) 3
2 +ε

∫
D2

eε(uε)dx

]
. (12)

This proposition is perhaps the main new ingredient: When both Eε(uε) and ε

are small, it provides a fast decay of the energy on smaller balls. Iterating this
decay estimate, we are led to the proof of the Clearing-out Theorem.
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One-dimensional estimates

In dimension 1 energy bounds directly lead to uniform bound. Set
S1(r)= {x ∈R2, |x | = r } and consider u :S1(r)→Rk .

Lemma

Let 0< ε≤ 1 and 0< r < 1 be given. There exists a constant Cunf > 0 such that,
for any given u :S1(r)→Rk , there exists an element σ ∈Σ such that

|u(`)−σ| ≤ Cunf

√∫
S1(r)

eε(u)d`, for all ` ∈S1.

Comment On the disk D2, the result shows that if a map has small Eε energy,
then oscillations around an element of Σ are small for many circles S1(r).
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Elements in the proof: Standard elliptic estimates:

uniform bounds |∇uε| ≤ Kdr
ε and |uε| ≤M. In particular

eε(uε)≤CT
V (uε)

ε
on Θε = uε

−1
(
q∪
i=1

Bk (σi ,
µ0
4
)

)
Pohozaev type bounds: (specific to dimension 2) for δ> 0 small, U open
subset

1
ε

∫
U δ

2

V (uε)dx ≤C(U ,δ)
∫
Vδ

eε(uε)dx , where

{
Uδ = {

x ∈Ω,dist(x ,U )≤ δ
}

and

Vδ =Uδ \U = {
x ∈Ω,0≤ dist(x ,U )≤ δ

}
.
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Remark

A related relation is: For any radius 0< r ≤ 1

1
ε2

∫
D2(r)

V (uε)= r

4

∫
∂D2(r)

(∣∣∣∣∂u∂τ
∣∣∣∣2− ∣∣∣∣∂uε∂r

∣∣∣∣2+ 2
ε2

V (u)

)
dτ.

This identity leads to the monotonicity formula

d

dr

 Eε
(
uε,D2(r)

)
r

= 1
r2

∫
D2(r)

ξε(uε)dx + 1
r

∫
S1(r)

|∂uε
∂r

|2d`.
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Energy on level sets

let uε :D2 →Rk be solution to the (PDE)ε. Assume we are given %ε ∈ [12 , 3
4 ],

0< κ< µ0
2
, σmain ∈Σ such that

|uε−σmain| < κ on ∂D2(%ε). (13)

Consider Υε(%ε,κ) defined by

Υε(%ε,κ)=
{
x ∈D2(%ε) such that |uε(x)−σi | < κ, for some i = 1 . . .q

}
The set Υε(%ε,κ) is a truncation of the domain with points with values far
from Σ removed. The solution uε on Υε(%,κ) is close, at least when the energy
is small, to one of the points σi : Near this point the potential is close to a
quadratic potential. We have

Proposition

We have, for CΥ > 0, under above assumptions∫
Υε(%ε,κε)

eε(uε)(x)dx ≤ CΥ

[
κ

∫
D2(%ε)

V (uε)

ε
dx +ε

∫
∂D2(%ε)

eε(uε)d`

]
.
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The next step is to specify the result of the previous proposition for special
choices of κ and %ε. More precisely, we choose

%ε = rε and κε = 2Cbd

√
Eε(uε), Cbd > 0 a constant,

where 3
4 ≤ rε ≤ 1 is obtained by the following mean value argument:

Lemma

Let 0≤ r0 < r1 ≤ 1 and u :D2 →Rk be given. There exists a radius rε ∈ [r0,r1]
s.t. ∫

S1(rε)
eε(u)d`≤ 1

r1− r0
Eε(u,D2(r1)).

This specification yields

∫
Υε(rε,κε)

eε(uε)(x)dx ≤ 2CΥ

[
Cbd

√
Eε(uε)

∫
D2(%ε)

V (uε)

ε
dx +ε

∫
∂D2(%ε)

eε(uε)d`

]
.
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Proposition

There exists a constant CV > 0 such that

1
ε

∫
D2( 58 )

V (uε)dx ≤CV

[(∫
D2

eε(uε)(x)dx

) 3
2 +ε

∫
D2

eε(uε)(x)dx

]
.

We may assume the energy is small and consider the restriction of uε to the set
Ω=D2(rε). The coarea formula and a mean-value argument yield some

sε ∈ [Cbd

√
Eε(u),2Cbd

√
Eε(u)] such that the curve Cε ≡w−1(sε)∩D2(rε),

where w = |uε−σ|, verifies

L (Cε)≤L
(
w−1(sε)

)
≤CL

√
Eε(u). (14)
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By a mean value argument, we may then choose a new radius %ε ∈ [58 ,rε] such
that 

|u−σ| ≤Cbd

√
Eε(u) on S1(%ε)∫

S1(%ε)
eε(uε)d`≤ 1

16

∫
Gε

eε(uε)dx .
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Invoking the potential estimate we are led to

1
ε

∫
D2(%ε)

V (uε)≤ %ε

8

∫
Υε(%ε,κε)

eε(uε)dx ≤ 1
2

∫
Υε(%ε,κε)

eε(uε)dx . (15)

which combined with previous estimates yield the conclusion.
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Thank you for your attention!
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