The equations
Multiple wells with equal depth
A brief history of the scalar case
Statements in the vectorial case
Elements in the proof

Concentration sets for multiple equal depth wells potentials in the 2D elliptic case

Fabrice Bethuel

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie – Paris 6

Recent Trends in Nonlinear Evolution Equation, Marseille. April 2016

The equations

The limiting behavior as $\varepsilon \to 0$ of solutions to the reaction-diffusion equations of the type

$$\frac{\partial u}{\partial t} - \Delta u_{\varepsilon} = -\varepsilon^{-2} \nabla V_u(u_{\varepsilon})$$

is a source of *active research* in the last decades. The function u_{ε} takes values in \mathbb{R}^k and V denotes a potential $V: \mathbb{R}^k \to \mathbb{R}$. Of interest are also the stationary solutions we will discuss later on

$$-\Delta u_{\varepsilon} = -\varepsilon^{-2} \nabla V_u(u_{\varepsilon}).$$

The equation is the L^2 gradient-flow of the energy $\mathscr E$ defined by

$$\mathrm{E}_{\varepsilon}(u) = \int_{\Omega} e_{\varepsilon}(u) = \int_{\mathbb{R}} \varepsilon \frac{|\nabla u|^2}{2} + \frac{V(u)}{\varepsilon}, \text{ for } u : \mathbb{R} \mapsto \mathbb{R}^k.$$

 $\Omega \subset \mathbb{R}^N$ being the domain. The properties of the flow (RDG) strongly depend on the potential V. Throughout we assume that

- V is smooth from \mathbb{R}^k to \mathbb{R} ,
- V tends to infinity at infinity, so that it is bounded below

$$V \ge 0$$
.

An intuitive guess is that the flow drives to mimimizers of the potential:

- if V is strictly convex, the solution should tend to the unique minimizer of the potential V.
- Here we consider the case where there are several mimimizers for the potential V → Transitions between minimizers

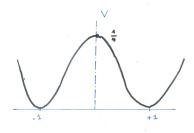
Multiple-well potentials

We assume in this talk that V is has a finite number of and at least two distinct minimizers.

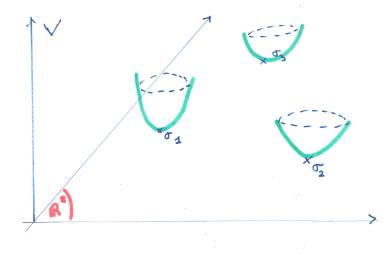
A classical example in the scalar case (Allen-Cahn) k = 1

$$V(u) = \frac{(1 - u^2)^2}{4},\tag{AC}$$

whose minimizers are +1 and -1.



The picture for systems



Assumptions on V

(H₁) inf
$$V = 0$$
 and the set of minimizers $\Sigma = \{y \in \mathbb{R}^k, V(y) = 0\}$

is a finite set, with at least two distinct elements, that is

$$\Sigma = {\sigma_1, ..., \sigma_q}, q \ge 2, \ \sigma_i \in \mathbb{R}^k, \forall i = 1, ..., q.$$

 (H_{∞}) There exists constant $\alpha_0 > 0$ and $R_0 > 0$ such that

$$y \cdot \nabla V(y) \ge \alpha_0 |y|^2$$
, if $|y| > R_0$.

The scalar case

Important efforts have ben devoted so far to the study of solutions of the *Allen-Cahn* equations, i.e. for the special choice of potential

$$V(u) = \frac{(1 - u^2)^2}{4},\tag{2}$$

whose infimum equals 0 and whose minimizers are +1 and -1, so that $\Sigma = \{+1, -1\}$. It is an elementary model for phase transitions for materials with two equally preferred states, the minimizers +1 and -1 of V.

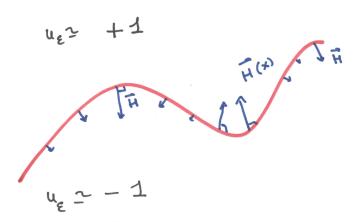
The mathematical theory for this question is now well advanced and may be considered as **quite satisfactory**.

Results for the scalar case

They provide a sound foundation to the intuitive idea that the domain Ω decomposes into regions where the solution takes values close to +1 or close to -1, separated by interfaces of width of order ε .

- The interfaces converge to codimension 1 hypersurfaces.
- They are generalized minimal surfaces in the stationary case, or moved by mean curvature for the parabolic case.
- Arguments rely on integral methods and energy estimates
- In the parabolic case Ilmanen proved convergence past possible singularities, to motion by mean curvature in the weak sense of Brakke, a notion phrased in the language of geometric measure theory.
- In the elliptic case convergence to minimal surfaces was established by Modica and Mortola for minimizers, Hutchinson and Tonegawa established related results for non-minimizing solutions.
- The fact that the solutions are **scalar** is crucial in the proofs.

motion by mean curvature



Monotonicity Formula and Clearing-out

Concentration on N-1 dimensional sets is deduced from two ingredients

- Monotonicity formulas
- Clearing-out Lemmas

The following inequality (used in Ginzburg-Landau theory)

$$\frac{d}{dr}\left(\frac{1}{r^{N-2}}\operatorname{E}_{\varepsilon}\left(u_{\varepsilon},\mathbb{B}^{N}(x_{0},r)\right)\right)\geq0,\text{ for any }x_{0}\in\Omega,$$

is valid for arbitrary vectorial potentials. It is however not sufficient to establish concentration on N-1- dimensional sets where one wishes to have

$$\frac{d}{dr} \left(\frac{1}{r^{N-1}} \mathbf{E}_{\varepsilon} \left(u_{\varepsilon}, \mathbb{B}^{N} (x_{0}, r) \right) \right) \ge 0, \text{ for any } x_{0} \in \Omega,$$
 (3)

Such a formula was derived in the Allen-Cahn scalar case thanks to the maximum principle.

The discrepancy

The proof of the N-1 monotonicity in the scalar case relies the positivity of the discrepancy term

$$\xi_{\varepsilon}(u_{\varepsilon}) = \frac{1}{\varepsilon}V(u_{\varepsilon}) - \varepsilon \frac{|\nabla u|^2}{2}.$$

Notice that for N = 1 for $-\varepsilon^2 \frac{d^2 u}{dx} = -\nabla_u V(u)$ one has

$$\frac{d}{dx}\left(\frac{1}{\varepsilon}V(u)-\varepsilon\frac{|\dot{u}|^2}{2}\right)=0,$$

In higher dimensions, the positivity of $\xi_{\mathcal{E}}$ for scalar solutions was observed first by Payne, Sperb, L. Modica,... for entire solutions. He proved the remarkable inequality (for $\varepsilon = 1$)

$$-|\nabla u|^2\Delta\xi\geq 2\frac{1}{2}|\nabla\xi|^2+2V(u)\nabla u\cdot\nabla\xi_\varepsilon.$$

Clearing-out lemmas

Clearing-out Lemmas have more or less the following flavour : There exists some constant $\eta_0>0$ such that

$$\frac{1}{r^{N-1}}\mathrm{E}_{\varepsilon}\left(u_{\varepsilon},\mathbb{B}^{N}\left(x_{0},r\right)\right)\leq\eta_{0}\implies u_{\varepsilon}(x)\simeq\sigma\text{ on }\mathbb{B}^{N}\left(x_{0},\frac{r}{2}\right).$$

where $\sigma \in \Sigma$, the set of minimizers of the potential.

Such a statement is rather easy to prove when monotonicity is established. Indeed. by monotonicity

$$\frac{1}{\varepsilon^N}\int_{\mathbb{B}^N(\varepsilon)}V(u_\varepsilon)\leq\eta_0.$$

and then the (easy) bound $|\nabla u_{\varepsilon}| \leq C\varepsilon^{-1}$ allows to conclude.

Tools in the scalar Allen-Cahn case

To summarize the methods used in the scale Allen-Cahn case one has

```
sign of discrepancy \implies monotonicity \implies clearing – out
```

```
whereas
```

```
clearing out + monotonicity \implies concentration on N-1 dimensional sets monotonicity \implies (Preiss) rectifiability of concentration set
```

and

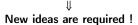
stationary sets or motion by mean - curvature

Conclusion: Sign of discrepancy is crucial!

Back to the vectorial case

Main observation

In the vectorial case, positivity of the discrepancy as well as the monotonicity formula are known to fail for some solutions, e. g. for the Ginzburg-Landau system. Whether they might still hold under additional conditions on the potential or the solution itself is open.



I will next present a result where some parts of the program have been carried out in the absence of monotonicity as well as sign of discrepancy. It concerns

- the two-dimensional case, i. e we work on a domain $\Omega \subset \mathbb{R}^2$
- The elliptic system

The assumptions

Assume we are given a constant $M_0 > 0$ and a family $(u_{\varepsilon})_{0 < \varepsilon \leq 1}$ of solutions to the equation

$$-\Delta u_{\varepsilon} = \nabla V_{u}(u_{\varepsilon})$$
 on Ω .

satisfying the natural energy bound

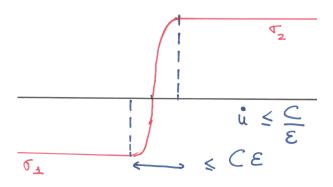
$$E_{\varepsilon}(v_{\varepsilon}) \leq M_0, \ \forall \varepsilon > 0.$$
 (4)

Remark: This bound is natural because the energy of one-dimensional transition, i. e. solutions

$$-\ddot{u} = \varepsilon^{-2} \nabla v_u(u)$$

is finite, bounded independently of ε .

Energy of an interface



$$\begin{cases} \int_{\mathbb{R}} |\dot{u}|^2 \simeq C^2 \int_{[-C\varepsilon, C\varepsilon]} \varepsilon^{-2} \simeq C\varepsilon^{-1} \\ \int_{\mathbb{R}} V(u)|^2 \simeq C \int_{[-C\varepsilon, C\varepsilon]} \simeq C\varepsilon \end{cases}$$

Limiting measures

We introduce the family $(v_{\varepsilon})_{0<\varepsilon<1}$ of measures defined on Ω

$$v_{\varepsilon} \equiv e_{\varepsilon}(u_{\varepsilon}) \, \mathrm{d}x \text{ on } \Omega. \tag{5}$$

In view of the energy bound, the total mass of the measures is bounded by M_0 , that is $\nu_{\varepsilon}(\Omega) \leq M_0$. By compactness,there exists a decreasing subsequence $(\varepsilon_n)_{n\in\mathbb{N}}$ tending to 0 and a limiting measure ν_{\star} on Ω such that

$$v_{\varepsilon_n} \to v_{\star}$$
 in the sense of measures on Ω as $n \to +\infty$. (6)

Our main result is the following.

Theorem

There exist a subset \mathfrak{S}_{\star} in Ω , and a subsequence of $(\varepsilon_n)_{n\in\mathbb{N}}$ still denoted $(\varepsilon_n)_{n\in\mathbb{N}}$ such that the following properties hold:

- i) \mathfrak{S}_{\star} is a closed 1-dimensional rectifiable, with locally finite many connected components and such that $\mathscr{H}^1(\mathfrak{S}) \leq C_H M_0$, where C_H is a constant depending only on the potential V.
- ii) Set $\mathfrak{U}_{\star} = \Omega \setminus \mathfrak{S}_{\star}$, and $(\mathfrak{U}_{\star}^{i})_{i \in I}$ be the connected components of \mathfrak{U}_{\star} . For each $i \in I$ there exists an element $\sigma_{i} \in \Sigma$ such that

 $u_{\varepsilon} \to \sigma_i$ uniformly on every compact subset of \mathfrak{U}^i_{\star} .

Comments on the results

- At this stage, I have not been able to prove stationary, nor positivity of discrepancy.
- ullet The set \mathfrak{S}_{\star} in the above theorem represents the concentration set for the energy
- The argument for the proof of rectifiability of the singular set \mathfrak{S}_{\star} is quite specific , namely compact set of hausdordd dimension 1 are rectifiable.
- Most of the statement relies on the two cleraing-out properties which follow:

Clearing-out properties for the measure ν_{\star}

The first one is a classical clearing-out result for the measure ν_{\star} .

Theorem

Let $x_0 \in \Omega$ and r > 0 be given such that $\mathbb{D}^2(x_0, r) \subset \Omega$. There exists a constant $\eta_0 > 0$ such that, if we have

$$\frac{v_{\star}\left(\mathbb{D}^{2}(x_{0},r)\right)}{r} < \eta_{0}, \text{ then it holds } v_{\star}\left(\overline{\mathbb{D}^{2}(x_{0},\frac{r}{2})}\right) = 0.$$
 (7)

we set

$$\theta_{\star}(x_0) = \liminf_{r \to 0} \frac{v_{\star}(\mathbb{D}^2(x_0, r))}{r}$$

and define \mathfrak{S}_{\star} as

$$\mathfrak{S}_{\star} = \{ x \in \Omega, \theta_{\star}(x_0) \ge \eta_0. \}. \tag{8}$$

The fact that \mathfrak{S}_{\star} is closed of finite one-dimensional Hausdorff measure is a direct consequence of the clearing-out property for the measure ν_{\star} .

The connectedness properties of \mathfrak{S}_{\star} require a different type of clearing-out result. Let $\mathscr{U} \subset \Omega$ be open. For $\delta > 0$, we consider the sets

$$\begin{cases} \mathcal{U}_{\delta} = \{ x \in \Omega, \operatorname{dist}(x, \mathcal{U}) \le \delta \} \text{ and} \\ \mathcal{V}_{\delta} = \mathcal{U}_{\delta} \setminus \mathcal{U} = \{ x \in \Omega, 0 \le \operatorname{dist}(x, \mathcal{U}) \le \delta \}. \end{cases}$$
(9)

$\mathsf{Theorem}$

Let $\mathcal{U} \subset \Omega$ be a open subset of Ω , let $\delta > 0$ be given. If we have

$$v_{\star}(V_{\delta}) = 0$$
, then it holds $v_{\star}(\overline{\mathcal{U}}) = 0$. (10)

In other terms, if the measure v_{\star} vanishes in some neighborhood of the set \mathscr{U} , then it vanishes on $\overline{\mathscr{U}}$.

- allows us to establish the connectedness properties of \mathfrak{S}_{\star} .
- yields rectifiability invoking standard results on continua of bounded one-dimensional Hausdorff measure.

Elements in the proof: 1) scale invariance

Proofs are derived from corresponding PDE results at the ε level for u_{ε} .

For
$$r > 0$$
 and $\varepsilon > 0$, set $\varepsilon = \frac{\varepsilon}{r}$. For $u_{\varepsilon} : \mathbb{D}^2(x_0, r) \to \mathbb{R}^k$, consider $v_{\varepsilon} : \mathbb{D}^2 \to \mathbb{R}^k$ defined by

$$v_{\varepsilon}(x) = u_{\varepsilon}(rx + x_0), \forall x \in \mathbb{D}^2.$$

If u_{ε} is a solution to the PDE, when v_{ε} is a solution to the PDE with parameter ε . The scaling for the energy are

$$\begin{cases} e_{\varepsilon}(v_{\varepsilon})(x) = re_{\varepsilon}(u)(rx + x_{0}), \forall x \in \mathbb{D}^{2} \\ E_{\varepsilon}(u_{\varepsilon}, \mathbb{D}^{2}(r)) = rE_{\varepsilon}(v_{\varepsilon}, \mathbb{D}^{2}(1)) \text{ and } \mathbb{V}_{\varepsilon}(u_{\varepsilon}, \mathbb{D}^{2}(r)) = r\mathbb{V}_{\varepsilon}(v_{\varepsilon}, \mathbb{D}^{2}(1)) \text{ with} \end{cases}$$

$$E_{\varepsilon}(u, G) \equiv \int_{G} e_{\varepsilon}(u) dx \text{ and } \mathbb{V}_{\varepsilon}(u, G) \equiv \int_{G} \frac{V(u)}{\varepsilon} dx.$$

- The parameter ε as well as the energy E_{ε} behave as lengths
- $\varepsilon^{-1}E_{\varepsilon}$ is scale invariant, according to the previous scale changes.

Clearing-out for the PDE

Choose $\mu_0 > 0$ so that $B^k(\sigma_i, 2\mu_0) \cap \mathbb{B}^k(\sigma_j, 2\mu_0) = \emptyset$ for all $i \neq j$ in $\{1, \dots, q\}$ and such that and

$$\frac{1}{2}\lambda_i^- \operatorname{Id} \leq \nabla^2 V(y) \leq 2\lambda_i^+ \operatorname{Id} \quad \text{for all } i \in \{1, \cdots, q\} \text{ and } y \in B(\sigma_i, 2\mu_0). \tag{11}$$

Theorem

Let $0 < \varepsilon \le 1$ and u_{ε} be solution of the $(PDE)_{\varepsilon}$ on \mathbb{D}^2 . There exists $\eta_0 > 0$ s.t. if

$$E_{\varepsilon}(u_{\varepsilon},\mathbb{D}^2) \leq \eta_0,$$

then there exists some $\sigma \in \Sigma$ such that

$$|u_{\varepsilon}(x) - \sigma| \le \frac{\mu_0}{2}$$
, for every $x \in \mathbb{D}^2(\frac{3}{4})$,

We have the energy estimate, with $C_{nrg} > 0$ depending only on V

$$E_{\varepsilon}\left(u_{\varepsilon}, \mathbb{D}^{2}\left(\frac{5}{8}\right)\right) \leq C_{\operatorname{nrg}} \varepsilon E_{\varepsilon}\left(u_{\varepsilon}, \mathbb{D}^{2}\right).$$

The previous result relies on:

Proposition

Let $0<\epsilon\le 1$ and u_ϵ be a solution of $(PDE)_\epsilon$ on \mathbb{D}^2 . There exists a constant $C_{dec}>0$ such that

$$\int_{\mathbb{D}^{2}\left(\frac{9}{16}\right)} e_{\varepsilon}(u_{\varepsilon}) dx \le C_{\text{dec}} \left[\left(\int_{\mathbb{D}^{2}} e_{\varepsilon}(u_{\varepsilon}) dx \right)^{\frac{3}{2}} + \varepsilon \int_{\mathbb{D}^{2}} e_{\varepsilon}(u_{\varepsilon}) dx \right]. \tag{12}$$

This proposition is perhaps the main new ingredient: When both $E_{\varepsilon}(u_{\varepsilon})$ and ε are small, it provides a fast decay of the energy on smaller balls. Iterating this decay estimate, we are led to the proof of the Clearing-out Theorem.

One-dimensional estimates

In dimension 1 energy bounds directly lead to uniform bound. Set $\mathbb{S}^1(r) = \{x \in \mathbb{R}^2, |x| = r\}$ and consider $u : \mathbb{S}^1(r) \to \mathbb{R}^k$.

Lemma

Let $0 < \varepsilon \le 1$ and 0 < r < 1 be given. There exists a constant $C_{unf} > 0$ such that, for any given $u : \mathbb{S}^1(r) \to \mathbb{R}^k$, there exists an element $\sigma \in \Sigma$ such that

$$|u(\ell)-\sigma| \leq C_{\mathrm{unf}} \sqrt{\int_{\mathbb{S}^1(r)} \mathsf{e}_{\varepsilon}(u) \mathrm{d}\ell}, \quad \text{for all } \ell \in \mathbb{S}^1.$$

Comment On the disk \mathbb{D}^2 , the result shows that if a map has small E_{ε} energy, then oscillations around an element of Σ are small for many circles $\mathbb{S}^1(r)$.

Elements in the proof: Standard elliptic estimates:

• uniform bounds $|\nabla u_{\varepsilon}| \leq \frac{K_{\mathrm{dr}}}{\varepsilon}$ and $|u_{\varepsilon}| \leq M$. In particular

$$e_{\varepsilon}\big(u_{\varepsilon}\big) \leq C_{\mathrm{T}} \frac{V\big(u_{\varepsilon}\big)}{\varepsilon} \ \text{ on } \Theta_{\varepsilon} = u_{\varepsilon}^{-1} \left(\mathop{\cup}_{i=1}^{q} \mathbb{B}^{k} \big(\sigma_{i}, \frac{\mu_{0}}{4}\big) \right)$$

• Pohozaev type bounds: (specific to dimension 2) for $\delta > 0$ small, $\mathscr U$ open subset

$$\frac{1}{\varepsilon} \int_{\mathcal{U}_{\frac{\delta}{2}}} V(u_{\varepsilon}) dx \le C(\mathcal{U}, \delta) \int_{\mathcal{V}_{\delta}} e_{\varepsilon}(u_{\varepsilon}) dx, \text{ where}$$

$$\begin{cases} \mathcal{U}_{\delta} = \{x \in \Omega, \operatorname{dist}(x, \mathcal{U}) \le \delta\} \text{ and} \\ \mathcal{V}_{\delta} = \mathcal{U}_{\delta} \setminus \mathcal{U} = \{x \in \Omega, 0 \le \operatorname{dist}(x, \mathcal{U}) \le \delta\}. \end{cases}$$

Remark

A related relation is: For any radius $0 < r \le 1$

$$\frac{1}{\varepsilon^2}\int_{\mathbb{D}^2(r)}V(u_{\varepsilon})=\frac{r}{4}\int_{\partial D^2(r)}\left(\left|\frac{\partial u}{\partial \tau}\right|^2-\left|\frac{\partial u_{\varepsilon}}{\partial r}\right|^2+\frac{2}{\varepsilon^2}V(u)\right)\mathrm{d}\tau.$$

This identity leads to the monotonicity formula

$$\frac{d}{dr}\left(\frac{\mathrm{E}_{\varepsilon}\left(u_{\varepsilon},\mathbb{D}^{2}(r)\right)}{r}\right) = \frac{1}{r^{2}}\int_{\mathbb{D}^{2}(r)}\xi_{\varepsilon}(u_{\varepsilon})\mathrm{d}x + \frac{1}{r}\int_{S^{1}(r)}\left|\frac{\partial u_{\varepsilon}}{\partial r}\right|^{2}\mathrm{d}\ell.$$

Energy on level sets

let $u_{\varepsilon}: \mathbb{D}^2 \to \mathbb{R}^k$ be solution to the $(PDE)_{\varepsilon}$. Assume we are given $\varrho_{\varepsilon} \in [\frac{1}{2}, \frac{3}{4}]$, $0 < \kappa < \frac{\mu_0}{2}$, $\sigma_{\text{main}} \in \Sigma$ such that

$$|u_{\varepsilon} - \sigma_{\min}| < \kappa \text{ on } \partial \mathbb{D}^2(\varrho_{\varepsilon}).$$
 (13)

Consider $\Upsilon_{\varepsilon}(\varrho_{\varepsilon}, \kappa)$ defined by

$$\Upsilon_{\varepsilon}(\varrho_{\varepsilon}, \kappa) = \left\{ x \in \mathbb{D}^{2}(\varrho_{\varepsilon}) \text{ such that } |u_{\varepsilon}(x) - \sigma_{i}| < \kappa, \text{ for some } i = 1...q \right\}$$

The set $\Upsilon_{\mathcal{E}}(\varrho_{\mathcal{E}}, \kappa)$ is a truncation of the domain with points with values far from Σ removed. The solution $u_{\mathcal{E}}$ on $\Upsilon_{\mathcal{E}}(\varrho, \kappa)$ is close, at least when the energy is small, to one of the points σ_i : Near this point the potential is close to a quadratic potential. We have

Proposition

We have, for $C_{\Upsilon} > 0$, under above assumptions

$$\int_{\Upsilon_{\varepsilon}\left(\varrho_{\varepsilon},\kappa_{\varepsilon}\right)}e_{\varepsilon}\left(u_{\varepsilon}\right)(x)\mathrm{d}x\leq C_{\Upsilon}\left[\kappa\int_{\mathbb{D}^{2}\left(\varrho_{\varepsilon}\right)}\frac{V(u_{\varepsilon})}{\varepsilon}\mathrm{d}x+\varepsilon\int_{\partial\mathbb{D}^{2}\left(\varrho_{\varepsilon}\right)}e_{\varepsilon}(u_{\varepsilon})\mathrm{d}\ell\right].$$

The next step is to specify the result of the previous proposition for special choices of κ and ϱ_{ε} . More precisely, we choose

$$\varrho_{\varepsilon} = \mathfrak{r}_{\varepsilon} \text{ and } \kappa_{\varepsilon} = 2C_{\text{bd}}\sqrt{E_{\varepsilon}(u_{\varepsilon})}, C_{\text{bd}} > 0 \text{ a constant,}$$

where $\frac{3}{4} \le \mathfrak{r}_{\varepsilon} \le 1$ is obtained by the following mean value argument:

Lemma

Let $0 \le r_0 < r_1 \le 1$ and $u : \mathbb{D}^2 \to \mathbb{R}^k$ be given. There exists a radius $\mathfrak{r}_{\varepsilon} \in [r_0, r_1]$ s.t.

$$\int_{\mathbb{S}^1(\mathfrak{r}_{\varepsilon})} e_{\varepsilon}(u) \mathrm{d}\ell \leq \frac{1}{r_1 - r_0} \, \mathrm{E}_{\varepsilon}(u, \mathbb{D}^2(r_1)).$$

This specification yields

$$\int_{Y_{\varepsilon}\left(\mathfrak{r}_{\varepsilon},\kappa_{\varepsilon}\right)}e_{\varepsilon}\left(u_{\varepsilon}\right)(x)\mathrm{d}x\leq2C_{Y}\left[\left.C_{\mathrm{bd}}\sqrt{\mathrm{E}_{\varepsilon}\left(u_{\varepsilon}\right)}\int_{\mathbb{D}^{2}\left(\varrho_{\varepsilon}\right)}\frac{V\left(u_{\varepsilon}\right)}{\varepsilon}\mathrm{d}x+\varepsilon\int_{\partial\mathbb{D}^{2}\left(\varrho_{\varepsilon}\right)}e_{\varepsilon}\left(u_{\varepsilon}\right)\mathrm{d}\ell\right].$$

Proposition

There exists a constant $C_V > 0$ such that

$$\frac{1}{\varepsilon} \int_{\mathbb{D}^2\left(\frac{5}{8}\right)} V(u_{\varepsilon}) \mathrm{d}x \leq C_{\mathrm{V}} \left[\left(\int_{\mathbb{D}^2} e_{\varepsilon}(u_{\varepsilon})(x) \mathrm{d}x \right)^{\frac{3}{2}} + \varepsilon \int_{\mathbb{D}^2} e_{\varepsilon}(u_{\varepsilon})(x) \mathrm{d}x \right].$$

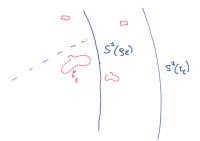
We may assume the energy is small and consider the restriction of $u_{\mathcal{E}}$ to the set $\Omega = \mathbb{D}^2(\mathfrak{r}_{\mathcal{E}})$. The coarea formula and a mean-value argument yield some $s_{\mathcal{E}} \in [C_{\mathrm{bd}} \sqrt{E_{\mathcal{E}}(u)}, 2C_{\mathrm{bd}} \sqrt{E_{\mathcal{E}}(u)}]$ such that the curve $\mathscr{C}_{\mathcal{E}} \equiv w^{-1}(s_{\mathcal{E}}) \cap \mathbb{D}^2(\mathfrak{r}_{\mathcal{E}})$,

$$s_{\varepsilon} \in [C_{bd} \bigvee E_{\varepsilon}(u), 2C_{bd} \bigvee E_{\varepsilon}(u)]$$
 such that the curve $\mathscr{C}_{\varepsilon} \equiv w$ where $w = |u_{\varepsilon} - \sigma|$, verifies

$$\mathcal{L}(\mathscr{C}_{\varepsilon}) \le \mathcal{L}\left(w^{-1}(s_{\varepsilon})\right) \le C_L \sqrt{\mathrm{E}_{\varepsilon}(u)}. \tag{14}$$

By a mean value argument, we may then choose a new radius $\varrho_{\varepsilon} \in \left[\frac{5}{8}, \mathfrak{r}_{\varepsilon}\right]$ such that

$$\begin{cases} |u-\sigma| \leq C_{\mathrm{bd}} \sqrt{\mathrm{E}_{\varepsilon}(u)} \text{ on } \mathbb{S}^1(\varrho_{\varepsilon}) \\ \int_{\mathbb{S}^1(\varrho_{\varepsilon})} e_{\varepsilon}(u_{\varepsilon}) \mathrm{d}\ell \leq \frac{1}{16} \int_{G_{\varepsilon}} e_{\varepsilon}(u_{\varepsilon}) \mathrm{d}x. \end{cases}$$



Invoking the potential estimate we are led to

$$\frac{1}{\varepsilon} \int_{\mathbb{D}^{2}(\varrho_{\varepsilon})} V(u_{\varepsilon}) \leq \frac{\varrho_{\varepsilon}}{8} \int_{\Upsilon_{\varepsilon}(\varrho_{\varepsilon}, \kappa_{\varepsilon})} e_{\varepsilon}(u_{\varepsilon}) dx \leq \frac{1}{2} \int_{\Upsilon_{\varepsilon}(\varrho_{\varepsilon}, \kappa_{\varepsilon})} e_{\varepsilon}(u_{\varepsilon}) dx. \tag{15}$$

which combined with previous estimates yield the conclusion.

The equations
Multiple wells with equal depth
A brief history of the scalar case
Statements in the vectorial case
Elements in the proof

Thank you for your attention!