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Plan of the talk

1. Introduction of mosquito-borne diseases (MBDs)

2. Dynamical modeling and Triggering mechanisms of an
outbreak

3. Temperature and transmission dynamics, recurrence

4. Fast-slow dynamics of mosquito-borne diseases



1. Mosquitoes and mosquito-borne
diseases

1.1 Malaria, dengue fever, West Nile virus (WNV),
Chikungunya, ......, Zika virus

I Mosquito-borne pathogens

I Vector population: species of mosquitoes

I Host population: human, birds, animals, ...

I Environmental factors: weather and landscape



1.2 West Nile virus in USA/Canada

I Originated in Uganda in 1937

I Emerged in New York in 1999

I Arrived in Ontario/Canada in 2000

I Keep spreading ........USA/Canada



West Nile virus in Canada



1.3. Mosquito surveillance program and data in Ontario



Trapping and data

Carbon dioxide-baited light traps to attract/collect adult
mosquitoes; Identified and WNV tested.



Mosquito surveillance data

I 42 identified mosquito species in Peel Region Culex
pipiens/restuans adult mosquito, primary WNV vector in
Canada

I Surveillance period: middle of June to the end of September
(Week 25-39)





1.4 Prevention and Control:

Forecasting and Decision making:

I Mosquito abundance and distribution

I West Nile virus risk, Minimum Infection Rate (MIR)

I Hot spot detection

I Short and long term



1.5 Weekly forecasting of mosquito-abundance in GTA since
2011

http://www.lamps.yorku.ca/



1.6 Weekly forecasting of WNV risk in GTA



2. Dynamical modeling and triggering
mechanisms of an outbreak

2.1 Life cycle of culex mosquitoes



Epidemic models for vector-borne diseases

I Vector population (mosquitoes):
susceptible Sv , exposed Ev and infected Iv ,

I Host population (birds or humans):
susceptible Sh, exposed Eh infected Ih and recovered Rh

State variables Vector Host

Susceptible Sv Sh
Exposed Ev Eh

Infectious Iv Ih
Recovered Rh

Total Nv Nh

Table : State variables modeling the transmission dynamics of VBDs



Modeling studies of the transmission dynamics of WNv
I Wonham, de Camino-Beck Lewis (2004). An epidemiological model for WNV:

Invasion analysis and control applications.

I Bowman, Gumel, van den Driessche, Wu and Zhu (2005). Model for assessing
control strategies for WNV. vir

I Cruz-Pacheco, Esteva, Montao-Hirose, Vargas et al. (2005) Modelling the
dynamics of WNV.

I Lewis, Renclawowicz, van den Driessche (2006). Traveling waves and spread
rates for WNV

I Liu, Shuai, Wu and Zhu (2006). Modeling spatial spread of WNV: directional
dispersal of birds.

I Fan, van den Driessche, Wu and Zhu (2010). Maturation delay of mosquitoes
and transmission of WNV

I Abdelrazec, Lenhart and Zhu (2013). Transmission of WNV with Corvids and
Non-Corvids.

I Abdelrazec, Lenhart and Zhu (2015): Transmission of WNV and seasonality.

I Abdelrazec, Belair, Shan and Zhu (2015): Control of dengue considering impact
of public health resource.

I Fan and Zhu (2016). Temperature and transmission dynamics for WNV

I Lin and Zhu (2016). Spatial spreading model and dynamics of WNV with free
boundary.



2.2 Compartmental models for transmission of WNV
Abdelrazec, Suzanne and Zhu (2014). Transmission dynamics of West Nile virus in

mosquitoes and corvids and non-corvids. Journal of Mathematical Biology.



Modeling of mosquito population
Consider two stages of mosquito development model:

I Aquatic stage (larval L)

I Adult mosquitoes (M)

Then 
dL

dt
= γm(M)− (mL + dL)L,

dM

dt
= mLL− dmM.

(1)

Egg laying function γm(M):

I recruitment rate γm(M) = constant

I linear reproduction γm(M) = rmM.
Assume that all parameters satisfy rmmL = dm(mL + dL).





dMs

dt
= (rmMs + (1− q)rmMi )

(
1− Nm

Km

)
− dmMs − βmbm B1i+B2i

Nb+A Ms ,

dMi

dt
= qrmMi

(
1− Nm

Km

)
− dmMi + βmbm

B1i+B2i

Nb+A Ms ,

dB1s

dt
= γb1 − dbB1s − βbbm B1s

Nb+AMi ,

dB1i

dt
= −(db + µ1 + ν1)B1i + βbbm

B1s

Nb+AMi ,

dB1r

dt
= −dbB1r + ν1B1i ,

dB2s

dt
= γb2 − dbB2s − βbbm B2s

Nb+AMi ,

dB2i

dt
= −(db + µ2 + ν2)B2i + βbbm

B2s

Nb+AMi ,

dB2r

dt
= −dbB2r + ν2B2i ,

(2)



Total number of mosquitoes Nm satisfies

dNm

dt
= rmNm

(
1− Nm

Km

)
− dmNm. (3)

For any given positive initial condition, the total number of
mosquitoes approaches a steady equilibrium M̃ = (1− dm

rm
)Km if

dm < rm.
For the two species of birds, their totals satisfy

dNbj

dt
= γbj − dbNbj − µiBji , j = 1, 2, (4)

respectively. If there is no virus involved (Bji = 0), the total
populations of corvids and non-corvids will approach a constant
respectively.



2.3 Dynamics of the model
Equilibria and Reproduction Number
The full model has two disease free equilibrium (DFE) points:
E0 = (0, 0, B̃1, 0, 0, B̃2, 0, 0) and E1 = (M̃, 0, B̃1, 0, 0, B̃2, 0, 0).
DFE E0 is a hyperbolic saddle.
The local stability of E1 is governed by the basic reproduction
number R0.
Next generation matrix method leads to

R0 =
q

2
+

1

2

√
q2 + 4<2. (5)

where

< =

√√√√βmβbb2m
M̃

dmB̃2

(
B̃1

δ1
+

B̃2

δ2

)
. (6)



Backward bifurcation and subthreshold condition for R0:

R1
0 =

q +

√
q2 + ((1−q)dm+k)2

kdm

(
4k(1−q)dm

((1−q)dm+k)2
−
(
1− (1−q)dm−k

(1−q)dm+k
βbbm
db

M̃
B̃

)2)
2

. (7)

Thus, the backward bifurcation scenario involves the existence of a
subcritical transcritical bifurcation at R0 = 1 and of a saddle-node
bifurcation at R0 = R1

0 < 1.



Backward bifurcation and subthreshold condition for R0:

R1
0 =

q +

√
q2 + ((1−q)dm+k)2

kdm

(
4k(1−q)dm

((1−q)dm+k)2
−
(
1− (1−q)dm−k

(1−q)dm+k
βbbm
db

M̃
B̃

)2)
2

. (8)

Thus, the backward bifurcation scenario involves the existence of a
subcritical transcritical bifurcation at R0 = 1 and of a saddle-node
bifurcation at R0 = R1

0 < 1.



Theorem
For the full model with positive parameters. If

A <

(
µ1 − (ν1 + db(1 +

βmbm

(1− q)dm
))

)
B̃1

δ1
+

(
µ2 − (ν2 + db(1 +

βmbm

(1− q)dm
))

)
B̃2

δ2
,

(9)

then the model undergoes a backward bifurcation when R0 = 1.

The bifurcation diagrams at R0 = 1.



2.4 Conclusion remarks

I In order to induce an outbreak,

I R0 > 1: enough number of mosquitoes over the amplification
host (birds);

I When R0 < 1: Backward bifurcation: enough
vector-mosquitoes, enough number of host birds with higher
mortality rate (American crows: corvids).

I Ross 1911 (A simple model): To control malaria, control and
reduce the vector mosquitoes.

Risk assessment of public health units: MIR
Minimum Infection Rate:

MIR =
Number of positive pools

number of tested mosquitoes
× 1000.



2.5 A simulation model considering stage and age with daily
temperature and precipitation



3. Modeling the impact of
temperature on the transmission of
WNV
Life cycle of mosquito species (culex mosquitoes)

Assuming that the daily temperature of the season remains a
constant, then the maturation (development) delay of the
mosquitoes:

τ =
Total accummulative degree day temperature required

daily average temperature



3.1 Model for WNV with delay for mosquitoes
Fan, van den Driessche, Wu and Zhu (2010) The impact of maturation delay of
mosquitoes on the transmission of West Nile virus.

Fan, Shan and Zhu (2015): Oscillation and driving mechanism in a model of West

Nile virus with time delay.



dMs(t)

dt
= rmMs(t − τ)e−djτe−αNM (t−τ) − βmκ

Ms(t)Bi (t)

Nb(t)
+(1− q)rmMi (t − τ)e−djτe−αNM (t−τ) − dmMs(t),

dMi (t)

dt
= qrmMi (t − τ)e−djτe−αNm(t−τ) − dmMi (t)

+βm
Ms(t)κBi (t)

Nb(t)
,

dBs(t)

dt
= rb − κβbMi (t)Bs (t)

Nb(t)
− dbBs(t),

dBi (t)

dt
= κβbMi (t)Bs (t)

Nb(t)
− (µ+ ν + db)Bi (t),

dBr (t)

dt
= (µ+ ν)Bi (t)− dbBr (t),



Total mosquitoes Nm = Ms + Mi

dNm(t)

dt
= rmNm(t − τ)e−djτe−αNm(t−τ) − dmNm(t).

Then the full model becomes

dNm(t)

dt
= rmNm(t − τ)e−djτe−αNm(t−τ) − dmNm(t),

dMi (t)

dt
= qrmMi (t − τ)e−djτe−αNm(t−τ) − dmMi (t)

+βm
(Nm−Mi (t))κBi (t)

Nb(t)
,

dBs(t)

dt
= rb − κβbMi (t)Bs (t)

Nb(t)
− dbBs(t),

dBi (t)

dt
= κβbMi (t)Bs (t)

Nb(t)
− (µ+ ν + db)Bi (t),

dNb(t)

dt
= rb − µBi (t)− dbNb(t).

(10)



Consider the equation for total number of vector mosquitoes

dNm(t)

dt
= rmNm(t − τ)e−djτe−αNm(t−τ) − dmNm(t). (11)

I Without survival term e−djτ :
(Smith 1995, Hu and Yuan 2003, and Chen 2003, Wei and Li
2005)

I With survival term, Hopf bifurcation occurs (Cooke et al.
1999)



If define
τ1 =

(
ln (rm/dm)− 2

)
/dj .

Unique positive equilibrium N∗m which is locally stable for τ < τ1.
The characteristic equation at N∗m

F1(λ) = −dm − λ+ dm(1− αN∗m)e−(λ+dj )τ

Define

ω(τ) = dm

√(
ln (rm/dm)− djτ

)(
ln (rm/dm)− djτ − 2

)
,

θ(τ) = arccos
(
(1 + djτ − ln (rm/dm))−1

)
.



Lemma
Consider equation (11). Assume rm > e2dm so that τ1 > 0. If
function θ(τ) and τω(τ) has an intersection at τ∗ ∈ (0, τ1], and
(τω(τ∗))′ 6= θ′(τ∗), equation F1(λ) = 0 has a pair of simple pure
imaginary roots λ = ±iω(τ∗) crossing the imaginary axis.
Equation (11) has a Hopf bifurcation at τ = τ∗ and a small
amplitude periodic solution bifurcated from equilibrium N∗m.

If F1(λ) = 0 has a pair of pure imaginary roots crossing, the
system (10) can have a Hopf bifurcation.



Intersections of θ(τ) and τω(τ) indicate where Hopf bifurcations
occur. A stable periodic solution for the mosquito population.



3.2 Oscillation of the full model due to delay
For the positive equilibrium, the characteristic equation,

F1(λ)F2(λ) = 0 (12)

where

F2(λ) = (db + λ)
[
λ3 + (A + D)λ2 + (F + AD − B)λ

+AF − BC − qdme
−λτ (λ2 + Dλ+ F )

] (13)

and

A = dm +
βmκBi2

Nb2
,

B =
κ2βmβbBs2(N∗

m −Mi2)

N2
b2

,

C = rb/Nb2,

D = µ+ ν + db + rb/Bs2,

F =
µ+ ν + db

Bs2Nb2db
(r2b − µ(µ+ ν + db)B

2
i2),

(14)



Lemma
Assume that q = 0. All roots of F2(λ) = 0 have negative real
parts.

Theorem
Assume that 0 < q << 1, equation F2(λ) = 0 admits no pure
imaginary root.



3.3 Simulations
Parameters
For mosquitoes: rm = 30, dm = 0.13, dj = 0.281, and
α = 0.0001.
For such choice of parameters, we plot θ(τ) and τω(τ) as delay
varies.
The figure shows that there exist two intersections at τ ≈ 5.32 and
τ ≈ 7.89 days. By Theorem 2, we obtain that the mosquito
population undergoes a Hopf bifurcation at τ ≈ 5.32 and τ ≈ 7.89
days. For any τ in between, numerical simulations show that there
exists a stable periodic solution (see Fig. for τ = 6 days) with an
approximate period 20 days



The full model with periodic solutions forced by mosquito
population.
Take µ = 0.27, ν = 0.11, rb = 200, db = 0.01 for birds and

βm = 0.16, βb = 0.88, κ = 0.6, q = 0.007, τ = 6 days. But F2(λ) = 0
has no pure imaginary roots.



Conclusion: The incidence interaction between vector-hosts
does not generate oscillations for the endemic, BUT the oscillation
is driven by the mosquitoes (environment).
Abdelrazec, Lenhart and Zhu (2015): Dynamics and Optimal
Control of a West Nile Virus Model with Seasonality.



3.4 Driven mechanisms for the recurrence in
MBDs/VBDs
How about we change the demographics for mosquitoes? [Jiang,
Li, Zhu 2015]



dMs

dt
= rm

(
Ms(t − τ) + (1− q)Mi (t − τ)

)(
1− Nm

Km

)
−b1βm

MsBi

Nb
− dmMs ,

dMi

dt
= qrmMi (t − τ)

(
1− Nm

Km

)
+ b1βm

MsBi

Nb
− dmMi ,

dBs

dt
= rb − b1βb

MiBs

Nb
− dbBs ,

dBi

dt
= b1βb

MiBs

Nb
− (db + di + ν)Bi ,

dBr

dt
= νBi − dbBr .

(15)



3.5 A simulation model considering stage and age with daily
temperature and precipitation Wang, Ogden and Zhu (2011). The impact

of weather conditions on Culex pipiens and Culex restuans (Diptera: Culicidae)

abundance: A case study in Peel region. Journal of Medical Entomology.



4. Fast-slow dynamics of
mosquito-borne diseases
4.1 Model for Dengue with limited health resources The driven
mechanisms for the oscillation in mosquito-bonne diseases (WNV,
dengue, malaria): always due to vector-mosquitoes?
Abdelrazec, Belair, Shan, Zhu (2015): Modeling the Spread and
Control of Dengue with Limited Public Health Resources.

Hospital bed-population ratio (HBPR)
Number of in-patient beds available per 10,000 people in the
population served by the hospital.





For the recover rate µ, consider
I µ(b, I ) > 0 and µ(b, 0) = µ1 > 0. and µ1 is the maximum

recovered rate.
I ∂µ(b,I )

∂I < 0, lim
I→∞

µ(b, I ) = µ0 and lim
I→0

µ(b, I ) = µ1. Here µ0

is the minimum recovered rate due to the limited clinical
resources.

I ∂µ(b,I )
∂b > 0, lim

b→∞
µ(b, I ) = µ1 and lim

b→0
µ(b, I ) = µ0.

We will take

µ = µ(b, I ) = µ0 + (µ1 − µ0)
b

I + b
,



DF model with nonlinear recovery rate

dS

dt
= dhN − dhS − βh

SMi

N
,

dI

dt
= βh

SMi

N
− dhI − µ(b, I )I ,

dR

dt
= µ(b, I )I − dhR,

dLs
dt

= r(Ms + (1− q)Mi )− (ml + dl)Ls ,

dLi
dt

= rqMi − (ml + dl)Li ,

dMs

dt
= mlLs − dmMs − βm

IMs

N
,

dMi

dt
= mlLi + βm

IMs

N
− dmMi ,



A simplified model for DF
Assuming the vector-mosquito population remains a constant:

dS

dt
= dhN − dhS − βh

SMi

N
,

dI

dt
= βh

SMi

N
− dhI − µ(b, I )I ,

dLi
dt

= rqMi − (ml + dl)Li ,

dMi

dt
= mlLi + βm

I (M −Mi )

N
− dmMi ,

where N, L,M are constants and R = N − S − I .



4.2 Some interesting observation

Huzak and Zhu: Fast-slow dynamics and bifurcation in
mosquito-borne diseases.



Thank you
for your attention!


