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» This theory, when applied to any specific Siiectoxink: dot>ILUIMNRNCE

biological system, often provides the sharpest

condition for extinction/persistence, which coincides with the threshold phenomena
observed in epidemiology;

» We use a delay differential system with periodic coefficients arising

from bird immigration and avian influenza spread to demonstrate the effectiveness

of Hale-Waltman’s theory.

» We also discuss remaining challenges relevant to more delicate issues of persistent

infection, specially the issue of predictability of inter-epidemic duration.




PERSISTENCE IN INFINITE-DIMENSIONAL SYSTEMS*
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Abstract. The concept of persistence reflects the survival of all components of a model ecosystem. Most
of the results to date are restricted to ordinary differential equations or to dynamics on locally compact
spaces. The concept is investigated here in the setting of a C"-semigroup which is asymptotically smooth.
Since the equations of population dynamics often involve delays or diffusion this scems the appropriate
setting. Conditions are placed on the flow on the boundary which, given the presence of a global attractor
provided by the assumption of dissipativeness and asymptotic smoothness, are necessary and suflicient for
persistence.

The concept of persistence reflects the survival of all components of
a model ecosystem. Most of the results to date are restricted to ODEs
or to dynamics on locally compact spaces. The concept is investigated
here in the setting of a SC*0S-semigroup which is asymptotically
smooth. Since the equations of population dynamics often involve
delays or diffusion this seems the appropriate setting. Conditions are
placed on the flow on the boundary which, given the presence of a
global attractor provided by the assumption of dissipativeness and
asymptotic smoothness, are necessary and sufficient for persistence.



see, for example, Samanta |26] for a nonautonomous epidemic model. Let a metric
space Y be the closure of an open set Y, so that Y = Y2 U 9Y", where 9Y"? is the
boundary of Y?. Let T'(t) be a C”-semigroup on Y satisfying

(5.2) Tt):Y'=Y? T(t):0Y° = aY".

Assume that the restricted semiflow has the global attractor As, and assume that

Ap = U w(z),

zEAp

where w(zx) is the w-limit set of . Then we have the following result from Hale and
Waltman [15].
THEOREM 5.1 (Hale and Waltman). Suppose that T'(t) satisfies (5.2) and that
(i) there is a tg > 0 such that T'(t) is compact for t > ty;
(i) T'(t) is point dissipative in'Y ;
(iii) Ap is isolated and has an acyclic covering M .

Then T (t) is uniformly persistent (i.e., there exists n > 0 such that, for any y € Y°,
liminf; . d(T(t)y,8Y") > n) if and only if, for each M; € M,

(5.3) W(M;)NY" = &.



Persistent Irregular Spatiotemporal Patterns of
Vector-borne Disease Spread

Avian influenza as an example (other applications include Lyme disease,
West Nile virus, dengue and possibly Zika);

e |nterplay between modeling informed insights of ecological and
epidemiological processes and application driven mathematics;

e Simple models can capture essential biological details; and simple
biological consideration may lead to complicated models;

e Modeling benefits from surveillance(satellite tracking and GIS
technologies); and modeling may contributing to surveillance design;

e Issues: seasonality (Fourier analysis), spatial dispersal (patch models
or PDEs), development and transition time (delays);

e Multi scales in changing environment/climate: from global scale of
migration to the in-host level of cross-immunity;



The Ecology and Epidemiology of H5N1

Influenza viruses are isolated from a wide range of hosts.
Types (A, B, C) are based on antigenic differences of gene

products.

Avian influenza was identified first in Italy (E. Perroncito,
1878) (caused by type A strain).

Avian influenza viruses are (based on pathogenicity)

categorized into two distinct groups: Highly Pathogenic Avian
Influenza (HPAI) and LPAL.

H5N1 strains was primarily isolated from a poultry farm of
Scotland, UK during 1959. Rapid assortment ability boosted
the continuous evolution, leading to spread to different
continents since 1996-Asian outbreak.

The HPAI H5N1 strain poses high risk for wild and
domesticated animals, and could pose a threat to humans
(WHO,CIDRP 2009).



Global spread and disease epideiology: transmission cycle
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The spread of H5N1 combines interactions between local and
long-range dynamics. The local dynamics involve interactions/
cross-contamination of domesticated birds, local poultry industry,
and temporary migratory birds. The nonlocal dynamics involve

the long-range transportation of industrial material and poultry,
and the long-range bird migrations.



Migratory Route and H5N1 Global Spread

Gilobal HFAI H5N 1 outbreaks from 7004 to 2008

(b) Migration Route



Spatiotemporal Patterns of Migratory Birds

East Aflantic flyway

e Bird migration: a major biological phenomenon with billions of birds
extending over distances from the Arctic to Antarctic using 8 broad
overlaing corridors during annual cycles.

e A typical migration cycle involves different phases of biological
activities and seasonality: wintering, spring migration, breeding,
maturation and autumn migration.

e Migration routes are "interrupted” by stopovers, which provide the
resting locations between the fights for refueling and for recovering
from climatic and physiologic stress.



Surveillance Data of Migratory Birds: Satellites Tracking

Using satellites tracking, the U.S.
Geological Survey recorded the mi-
gration path of a dozen Bar-headed
geese.

® The migratory routes
follow elongated closed
curved routes.

® The birds breed in the
summer in the northern
part of their path (e.g.,
Mongolia).

® |n the fall, they initiate
their southward migration
route, until reaching their
wintering grounds (e.g.,
India).

® |n the spring, they initiate
a northward migration
returning to their breeding
location.

® Despite variable
trajectories, the major
stopover locations are
common to most tracked
flocks.




Model for Spatiotemporal Distributions of Migratory Birds

Assume that migration occurs along a one dimensional continuum, which
could be a curve. Let S;(t) be the number of birds in patch i.

CSi(0) = b(Su(t),1) + azadaa(t — 1)Sa(t — 1)
— dy(£)S3(t) — a(1) 1 (o)
| SO = oot nic)Siale = io1) = dia(95(0)
+ aipidini(t = 71)Sia(t = 1) = dhima(£)Si(1) — u(£)Si(2),
Si(t) = n-tnbrorn(t = 7n-1)Spoa(t — 7o)
\ — dnnea(£)Sa(t) = (1) Sa(0).

Nonnegativeness, boundedness and point dissipativeness and existence
of global attractor all straightforward.



Challenge for Studying the Global Dynamics: Seasonality

e The model generates an order-preserving periodic process.
This process however is NOT strongly order-preserving.

S/(t) = aj—1,idi—1,i(t — 7i—1)Si—1(t — 7i—1) — dii+1(t)Si(t)
+ @jy1,idiy1,i(t — 73)Sipa(t — 73) — dii—1(2)Si(t) — pi(t)Si(t)

Seasonal migrations
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Seasonal Migration Null Space

Need to remove the subspace

M:={p€Y;0i(0)=0,1<i<n;
d,',,'_|_1( ,')(b,'(@,) =0 forl<i<n-—1.06;¢ [ Tis O];
(0i)oi(0i) =0 for2 <i < n, b0 € [-7i-1,0]}.

e This, determined by the migration patterns, is a closed
subspace of Y.

e Nontrivial initial data from M will give rise to a solution
identically to zero for all future time.

e A natural phase spaceis Y /M.

e The model gives a periodic process in this quotient space.



Threshold Dynamics Theorem

Theorem: Suppose that Ab(S51,t) < b(AS1,t) when A € (0,1)
and S1 > 0. Then either

(i) every solution tends to zero as t — oo, or

(ii) the system has a T-periodic solution which is strictly positive
(componentwise) at all times, and this solution attracts all
solutions with initial data not in the subspace M;

(iii) conclusion (i) (resp. (ii)) holds if the spectral radius of DF(0)
is strictly less (resp. larger ) than 1, where F is the Poincare
operator which maps the initial datum to the state at time T.



Validation: Long-term Pattern
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Figure: Simulation with satellite track data of the U.S. Geological Survey
on Bar-headed geese.

Important: gives the Initial Condition of bird species population
of the considered H5N1 Outbreak.



Disease Epidemiology: Dynamics and Spread

To model the interaction of migratory birds and domestic poultry
we must stratify the migratory birds by their disease status, and

need to add domestic poultry.

| birth
Migratory birds 4 — 12
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rdeath

Figure: A schematic illustration of the local transmission cycle



Integration: global seasonal migration and local

transmission via a meta-population
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The Meta-Population Model

Migratory bird dynamics

Sa = Bm(t,Sp) + o5 dySp(t —75) — B Spln
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Poultry population dynamics:
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Disease Extinction and Persistence of the Full Model

Global Threshold Theorem: A threshold, given in terms of the
spectral radius r(T;) of the time T-solution operator of the
linearized periodic system of delay differential equations at a
disease free equilibrium, can be theoretically derived, a close form
in terms of the model parameters being possible.

e The nontrivial disease free equilibrium is global asymptotically
stable once the threshold is below 1;

e |f the threshold is larger than 1, then the disease is uniformly
strongly persistent in the sense that there exists some

constant 7 > 0, which is independent of the initial conditions,
such that, for each c = b,o.w.r,

liminf I5(t) > n, liminf [5(t) > 7.

[—o0 [— o0 P



see, for example, Samanta |26| for a nonautonomous epidemic model. Let a metric
space Y be the closure of an open set Y, so that Y = Y° U dY?, where 9Y " is the
boundary of Y°. Let T'(t) be a C’-semigroup on Y satisfying

(5.2) Tt :Y'SYY T(@#):0Y° = ay"°.

Assume that the restricted semiflow has the global attractor Ag, and assume that

Ay = U w(z),

zEAp

where w(z) is the w-limit set of 2. Then we have the following result from Hale and

Waltman [15].
THEOREM 5.1 (Hale and Waltman). Suppose that T'(t) satisfies (5.2) and that

(1) there is a tg > 0 such that T'(t) is compact for t > ty;
(i) T'(t) is point dissipative in 'Y ;
(iii) Ap is isolated and has an acyclic covering M .

Then T (t) is uniformly persistent (i.e., there exists n > 0 such that, for any y € Y°,
liminf; . d(T(t)y,8Y") > n) if and only if, for each M; € M,

(5.3) W(M;)NY" = .



Persistent non-periodic oscillation
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Figure: Number of (left) susceptible and (right) infected migratory birds
over 100 years in the absence of poultry showing disease persistence and
appearance of non-periodic oscillation of the number of migratory birds.

How to determine inter-epidemic intervals from the historical
surveillance data?
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Lyme tick/disease in North American

Lyme disease spread involves complex interaction of a spirochete,
multiple vertebrate hosts, and a vector with a two-year life cycle
strongly influenced by the season rhythm;

» The black-legged tick, Ixodes scapularis Say, is the primary
vector of Borrelia burgdorferi, the bacterial agent of Lyme
disease, in eastern and mid-western United States;

» Northward invasive spread of the tick vectors from United
States endemic foci to non-endemic Canadian habitats is
currently a public health concern.




Life Cycle of Ixodes Species

Figure: Tick life cycle, X. Wu,
unpublished.
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Figure: Stage-structured tick
population dynamics diagram, X.
Wu et al., JTB, 2013: EHP, 2014

Periodic ODEs or DDEs, parameters from many years of surveillance, lab
test and field data, recent development on calculating the Floquet

multipliers of periodic systems.



Lyme tick risk index Ry and range expansion speed

» Left: The Rop map for I. scapularis, X. Wu et al., JTB, 2013;
Wu, Magpantay, Wu, Zou, MMAS 2015;

» Right: Maps of values of Rg: (1971-2000: upper panel),
2011-2040 (middle panel), 2041-2070 (bottom panel), Ogden

et al., EHP, 2014.
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Figure: uv'(t) = ru(t)[1 — u(t)/K]
and uy = Duy + ru(1l — u/K):
Wavefronts (v = ¢(x — ct))
representing biological invasion
and range expansion with
constant diffusion, convection,
reproduction and death. Traveling
wave from the capacity K to zero

General Setting for Epidemic Waves with a Changing
Environment
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Figure: Disease outbreak: sudden
and exponential growth and
sudden and exponential death
using the SIR model:

S' = —wSI, I" = wSIl —~l.
Outbreak occurs when

Ro := wS(0)/~v > 1, or

w > ~v/5(0).



Fang, Lou and Wu, 2016.
Our Framework

St = DS +B(N)N — pu(N)S—wSI + I,
li = Dlo—p(N)I4+wSI —~l.

When B(N) = b and ;(N) = d + %, we have the Fisher-KPP
equation:

N
; (b—d)K]'

This has the traveling wavefront with the minimal wave speed

cr = 24/ D(b — d)(Minimal ECOLOGICAL invasion speed).

N¢ = DNy + (b — d)N[1

Replacing N(t,x) and S by n(x — cit) and n(x — cit) — [ in
[-equation (and rescaling), we obtain

Ve = Vxx + V[a(x — ct) — v],
where « is decreasing function with a(4+o0) < 0, and

a = a(—oo0) > 0 if and only if w > wy := ﬁ.



St = DS +B(N)N — pu(N)S—wSI + ~1,

Iy = Dlge—p(N)+wSI —~l.
Theroem: Assume that Sp, lp € C(R,R™) with Iy # 0 have
compact supports. Let S(t,x),/(t,x) be the solution with
5(0,x) = So(x) and 1(0,x) = lp(x). Then
(1) If w e (0,w1], then lim;_ o I(t,x) = 0 uniformly in x € R.

(2) If w € (w1,wr), then for any c € (0, ¢,,) there exist top > 0 and
U,U e C(R,R*) with U # 0 such that

U(x —ct) < I(t,x) < U(x — ¢,t), Vt>ty,xeR.

(3) If w € [wa,00), then for any c € (0, cy;) there exist to > 0 and
U, U € C(R,RT) with U # 0 such that

U(x —ct) < I(t,x) < U(x — cjyt), Vt>to,x €R.

Epidemiology: Disease propagate with the speed ¢; and not
necessarily as a wave solution

0, w € (O,wll
Cf = C:), w € (wl,wz]

Cry w € (w2, 00].



