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Key elements of queuneing systems:

User /Customer: refers to anything that arrives at a facility and re-
quires service, e.g.. people, machines, trucks, emails, packets, frames.

Server: refers to any resource that provides the requested service, e.g..
repairpersons, machines, runways at airport, host, switch, router, disk
drive, algorithm.

System Customers Server
Reception desk People Receptionist
Hospital Patients Nurses

Airport Airplanes Runway
Production line Cases Case-packer
Road network Cars Traffic light
Grocery Shoppers Checkout station
Computer Jobs CPU, disk, CD
Network Packets Router




Queueing up for enzymatic processing: correlated
signaling through coupled degradation. Molecular

Systems Biology 7, 2011

Natalie A Cookson, William H Mather, Tal Danino, Octavio Mondrago n-
Palomino, Ruth J Williams, Lev S Tsimring Jeff Hasty
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Genetic networks and queueing

Arnon Arazia, Eshel Ben-Jacobb, Uri Yechialia, Bridging genetic
networks and queueing theory. Physica A 332 (2004) 585 - 616

The regulatory circuit of the lac
operon

Circles: represents a biological
elements (“‘queues”)

Arrows: possible transitions of
“customers” between “queues”

+ sign: increase in the “queue length”.
— sign: decrease in the “queue length”.




For the sake of definiteness:
Consider a computer network with one user and one server

The user sends data to the server for procession

A waiting line (queue) is formed by the incoming data

X (t) — rate of data coming to the server
¢ > 0 — capacity of the server

Suppose the unit of data, which leaves the server at time ¢,
arrived at the waiting line at time t — 7(¢)

At time t — 7(t) there was a queue with length y(t — 7(¢))
The waiting time: v(t) = (1/¢)y(t — 7(t))
The procession time 1s 1

7(t) =14+ v(t) and 7(t) =1+ (1 /c)y(t — 7(1))

L



qg > 0 — upper bound for the lenght of the queue

Equation for the length of the queue:

(X (1) —e. if 0 < y(t) < q.
y'(t) = QX () —d*, ify(t) =0.

X (1) =], ify(t) =q

v = max{0,u}, v~ = min{0, u}

Protocol: defines how the data are exchanged in the network
U(x) utility of rate x

p(x) price for the x-th unit of rate

Maximize V(x) = U(z) — [y p(y) dy Maximum at x,

ry € (0, ¢) — equilibrium rate
x(t) = X(t) — x4

f(x) = —kaU’(x) and g(x) = kaxp(x)



The protocol equation:
21 = —f((t) — gt — 1 — v(1))) (1.1)

or

2'(t) = —f(x(t)) — h(r(t))

An implicit algebraic relation between v and y:

v(t) = (1/c)y(t — 1 —v(t)). (1.2)
Equation for the length of the queue:

(2(t) —d. it 0 < y(t) <q,
y(t) =< [x(t) —d]T, if y(t) =0, (1.3)
[x(t) —d]™, ify(t) =q,

where d = ¢ — x4



The general model

directed graph): nodes and links
A network (directed graph): nodes A and links £
M is the set of users

User i sends data along the path  R; = {n;o0.ni1..... ik, }
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Ti1..... 15, transter delays
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Several users can send data to the same server
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A given unit of data served at time t arrived at the server

S+ v, (t) time earlier

Y

\

queue |y | process
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S, > 0 procession time (same for all users at a given node/server)

. : 1
vn(t) > 0 waiting time v (t) = (‘_y(t —vp(t) = Sp)
“TL

yn(+) length of queue at server n
Assume v, (t) > 0

The data arriving at server n form a queue at time t — S,, — v, ()

FIFO: first in. first out



The rate u; of data sent by user 7 slows down by the rule

u;(t — vy (t) — S
"U,-Z',(If) = c, JU'E( v ?1-( ) n) f
ijl wi(t —vn(t) — Sy) ” queue |v,"| process
J >
The capacity ¢, is shared among the users {1,2,...,.J}

proportionally to their rates.

The leneth 1,, of the queue changes as
o} e NI o

( Z (

Un(s) = < [Z (
3o

) — Cn. if 0 < yn(s) < qn.
q) - j-n.]_i_-. 1f yn(s) —
q) -]_-. 1f 3!"11('5') — n




Protocol equation
i(t) = ki ((x3), . 7i(t))

7;(t): data finished the whole process at time ¢t was sent
at time t — 7;(1)




The protocol equation:
21 = —f((t) — gt — 1 — v(1))) (1.1)

or

2'(t) = —f(x(t)) — h(r(t))

An implicit algebraic relation between v and y:

v(t) = (1/c)y(t — 1 —v(t)). (1.2)
Equation for the length of the queue:

(2(t) —d. it 0 < y(t) <q,
y(t) =< [x(t) —d]T, if y(t) =0, (1.3)
[x(t) —d]™, ify(t) =q,

where d = ¢ — x4



' (t) = —f(x(t)) —glx(t—1—1v(t))) (1.1)

v(t) = (1/c)y(t —1 —v(t)). (1.2)
(2(t) — d. it 0 <y(t) <q.
y'(t) = < [x(t) —d]T, if y(t) =0, (1.3)
[x(t) —d]™. if y(t) = q.

Hypotheses:
(H1) a,b,c,d, q positive reals, d < b and a + d < ¢;

(H2) f:[-a,b] = R and g : [—a,b] = R are C''-smooth, zf(z) > 0
and xg(x) > 0 for = € [—a,b] \ {0}:

(H3) ¢'(0) > f'(0):
(H4) g([—a.0]) C (=F(b). —f(—a)).



r=14+q/c
O = O(|=r, 0. R), [|6]] = max_r<aco|6(s)], & € C

R = Hlaxi-._,ye[—a,b] (If(I)I + Ig(y)l)

Cr = {@ e C'([—r, 0], [—a,b]) : sup (1) — ¢(5)] < R}

—r—<s<t<0 t—s

C'r 1s a compact subset of C
It w: (tg.t1) — R continuous, t —r,t € (ty,t1), then

up € C. up(s) =u(t+s), (—r<s<0)

Phase space of system (1.1),(1.2),(1.3):
X =Crx|0,q/c]CcC xR



Initial value problem and solutions for (1.1),(1.2),(1.3):
For (¢.0) € X, w € (0, 00|, the pair of functions
r:|l-rw)—Randrv:|0,w) - R
is called a solution of (1.1),(1.2),(1.3) with initial condition
ro=¢, v0)=9
if
(i) x and v are continuous, x is differentiable on (0, w):

(i) x([—r,w)) C [—a,b], v([0,w)) C [0,q/c]:
(iii) equation (1.1) holds for all £ € (0,w):

(iv) there exists an absolutely continuous function y : [—1 — . w) —
10, ¢] such that equation (1.3) holds almost everywhere in [—1 —
0, w);

(v) equation (1.2) holds for all t € [0, w).



How to solve (1.1),(1.2),(1.3)?
(¢,0) € X given
Step 1: v(0) =0 = y(—1—0) = cv(0) = ¢

Step 2: Solve the problem

o(t) —d, it 0 <y(t) <q.
J(t) = (o) —d*, ify(t) =0,
[o(t) —d]~, ify(t) =q
y(=1-0) =

on the interval [—1 — 4,0]
Step 3: 3 a unique v : [0, 1] — [0, — 1] so that
1
v(t)=—y(t—1—uv(t)), t e [0,1]
%

and t—t—1—uv(t) strictly increases



Step 4: Solve

2'(t) = —flx(t) —glz(t — 1 —v(1)))
= —f(z(t) —glot —1—wv(t)))
= —f(x(t)) — k(t), te0.1]

x(0) = ¢(0)

This gives a solution on [0, 1].

Repeat the process to get solution on [1,2], [2, 3], ...



Theorem 1. If hypotheses (H1)-(Hj) hold then for each (¢.0) € X
there exists a unique pair of functions

1?0 [—r,00) = R and v?° : [0,00) = R

such that x and v is a solution of (1.1),(1.2),(1.3) satisfying the initial

condition
b5

200 =0, v"°(0) =04.
The mapping
®:[0.00) x X x (0,00) 3 (. 0.8,) — (7, 079(t)) € X

defines a Lipschitz continuous semiflow on X.



Slowly oscillating periodic solutions

J. Mallet-Paret and R. Nussbaum, Arch. Rational Mech. Anal.
120 (1992), 99-146.

O. Arno, K. P. Hadeler, and M. L. Hbid, J. Differential
Equations 144 (1998), 263-301.

P. Magal, O. Arino, J. Differential Equations 165 (2000), 61—
95.

H.-O. Walther, J. Differential Equations 244 (2008), 1910—
1945.



x SOP (slowly oscillatory periodic) if there exist gy < g1 < g2 so that
g >q+1 ¢ >qg+1 2(9) =2(q) =x(q2) =0, () < on (qo,q1),
x(t) >0 on (g1,q92), and

x(t+ g2 —qo) = x(1).

X, = {(@O) cCprx[0,r—=1]:06(0)=0, 0< o(s) <b, —1r <s<0,

0
/1 O(s)ds > @(5)}

a: 0,7 —1] = R convex, a(0) =0

U, =1(0,0) € X, : d(sg) > 0 for some sg € [—1,0]}



(¢,0) € U,, the corresponding solution is (x¢, v(t))

Define
Co =supf{t: x(s) =0, for 0 < s <t}

Let
¢p = inf{t > (o : =(t) =0}
and ¢ = oo if x(t) < 0 for all ¢ > (.
If ;. is finite, define
Crol = inf{t > (g ox(t) = 0}
and (11 = oo if x has no zeros on ((;, 00)).

Define the Poincaré return map

P:X,—Cpx|[0,r—1]

as follows:



P(G:) (5) — (U. O)- lf (.u‘rjl[—l—(szﬂ] = (0 or CQ — 0o
: (V.v(C2))  if (¢,6) € Un and (2(6,6,A) < 00

where ¥(t) = x((a +t), t € [—r,0], in case (2 — (1 > r, and

D(t) = v(G2+1), fortelG— (0]
o for £ € [—7.¢1 — (2

in case (o — (1 < 7.

If (

p,0) € U, and P(¢,0) = (¢,0), then the corresponding solution
_ 00
r=x%

extends to an SOP solution of period (2(¢,0).



The continuity of P : X, — Cr x [0,7 — 1]
(0,0) and (¢, 0,)7, In Xy with (¢, 0) — (0, 0)

Case 1: (¢,0) € U, and (2(¢.0) < o
The continuity of the semiflow ® 1mplies
C1(Pk, 0k) = C1(0,0), Ca(dp, 0p) — C2(0,9)
and
P(¢p, 0r) = P(0,9)
Case 2: (¢,0) € U, and (2(¢.0) = oo
Then (o (g, 0p) — o0

Lemma. Y e>03T >0 Q) >T=||P(t.y)|| <e.

Hence P(dp, 0r) — (0,0) = P(¢p.0)



Case 3: (¢,0) € X, \ U,
Then 0 =0 and x(t) =0 for t € [—1,00).
Lemma and continuity of ® imply P(¢g, 0x) — (0,0) = P(¢, d).

Nontrivial that P maps X, into X,.

Conditions on a: (0,7 — 1] — [0, 00):
a(0) =0
(t) >0, o/ (t) >0 fort € (0,r —1)

For given lg > 0, 11 > 0 and r9 € (0,7 — 1)

afr —1) < lo, 1a”(t) > ot —ro) for t € [ro,r — 1]

a(t) = koexp (—kwk’gﬁ) for suitable &; > 0.



Fixed point index

An algebraic count of the number of fixed points of P in X,
Properties: additivity, homotopy, normalization

indx (P, X,) =1= there is a fixed pont

indx (P, X,) =1 from the normalization property

There is a fixed point. (0,0) is a fixed point.

We want nontrivial fixed points.

Assume that there is an open nbhd of (0. 0) such that
indx(P.U) =0
By the addidivity of the index indy(P,X,\U) =1

and there is a fixed point in X, \ U.



Construction of U with indx (P, U) = (

It suffices to show that (0,0) is ejective:
(0.0) € U\ {(0,0)} = T an integer k > 1 with P*((¢.0)) ¢ U

Homotopy to the constant delay case and to an equation with monotone
f and g.

() = —sf(x(t)—(1=s)f(x(t)) —sg(z(t-1=sv(t))—(1=s)g(x(t—1—sv(t)))

s € [0, 1] homotopy parameter

Lemma. 3 p > 0 independently of s € [0, 1] so that there is NO (¢, 0) €
Ua N B, with

P(¢.0) = (#,9).



The homotopy property implies

indx (P, B,) = indx (P, B),)

Ejectivity of the fixed point (0,0) of the Poincare map P follows
by the Poincare-Bendixson type result of Mallet-Paret and Sell (1996 ).

indx (FPy, B,) = 0 by the ejectivity of (0,0) and

by a result of Nussbaum (1975)

Theorem 2. If hypotheses (H1)-(Hj) hold, and the zero solution of
o' (£) = — £ (O)u(t) — g/ (O)u(t — 1)

is unstable, then system (1.1).(1.2).(1.3) has a slowly oscillatory peri-
odic solution.
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