Perturbative techniques of the dynamics in the C^1 -topology

Sylvain Crovisier and Nicolas Gourmelon

Dynamics of Evolution Equations Luminy, March 21-25th, 2016

A phase space: a compact connected manifold M, An evolution law: a diffeomorphism f or a flow (φ)

A phase space: a compact connected manifold M, An evolution law: a diffeomorphism f or a flow (φ)

Goal: Describe the orbits $\{f^n(x), n \in \mathbb{Z}\}$ (or $\{\varphi_t(x), t \in \mathbb{R}\}$).

A phase space: a compact connected manifold M, An evolution law: a diffeomorphism f or a flow (φ)

Goal: Describe the orbits $\{f^n(x), n \in \mathbb{Z}\}$ (or $\{\varphi_t(x), t \in \mathbb{R}\}$).

Subclasses:

- conservative systems (preserving a reference volume),
- geometric systems (geodesic flow on $M = T^1 N$)
- billards,

- hamiltonian systems.

A phase space: a compact connected manifold M, An evolution law: a diffeomorphism f or a flow (φ)

Goal: Describe the orbits $\{f^n(x), n \in \mathbb{Z}\}$ (or $\{\varphi_t(x), t \in \mathbb{R}\}$).

Subclasses:

- conservative systems (preserving a reference volume),
- geometric systems (geodesic flow on $M = T^1 N$)
- billards,

- hamiltonian systems.

▶ We will mainly discuss the case of diffeomorphisms.

Study the stability / robustness:

How does the dynamics change under perturbations?

Study the stability / robustness:

How does the dynamics change under perturbations?

Some dynamics seem difficult to be described: *Are these pathological systems exceptional?*

Study the stability / robustness:

How does the dynamics change under perturbations?

Some dynamics seem difficult to be described: *Are these pathological systems exceptional?*

Study the typical (or generic) properties: Can one describe the dynamics for a large subset of systems? (on a dense, dense G_{δ} or dense open set,...)

Study the stability / robustness:

How does the dynamics change under perturbations?

Some dynamics seem difficult to be described: *Are these pathological systems exceptional?*

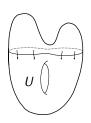
Study the typical (or generic) properties: Can one describe the dynamics for a large subset of systems? (on a dense, dense G_{δ} or dense open set,...)

Example. (Peixoto) In dimension 1, there exists a dense open set of diffeomorphisms whose dynamics is Morse-Smale, i.e. supported on finitely many periodic orbits.

Qualitative dynamics

Topological properties:

- Transitivity: does there exists a dense orbit?
- Attractors: find open sets U such that $f(\overline{U}) \subset U$.



- Periodic set: describe the closure of

$$Per(f) = \{x, \exists n \ge 1, f^n(x) = x\}.$$

Qualitative dynamics

Topological properties:

- Transitivity: does there exists a dense orbit?
- Attractors: find open sets U such that $f(\overline{U}) \subset U$.



- Periodic set: describe the closure of

$$Per(f) = \{x, \exists n \ge 1, f^n(x) = x\}.$$

▶ This lecture addresses the perturbations of the orbit structure.

Qualitative dynamics

Topological properties:

- Transitivity : does there exists a dense orbit?
- Attractors: find open sets U such that $f(\overline{U})\subset U$.



- Periodic set: describe the closure of

$$Per(f) = \{x, \exists n \ge 1, f^n(x) = x\}.$$

- ▶ This lecture addresses the perturbations of the orbit structure.
- ➤ The second lecture will consider more quantitative properties: Per(f) and the linear dynamics above this set will be a skeleton for study further dynamical properties.

Problem. Consider a point x which is *forward recurrent* (the accumulation set of $\{f^n(x), n \ge 0\}$ contains x.)

Does there exists g close to f such that x is periodic?

Problem. Consider a point x which is forward recurrent (the accumulation set of $\{f^n(x), n \ge 0\}$ contains x.)

Does there exists g close to f such that x is periodic?

One has to specify the class of systems, (e.g. $\mathsf{Diff}^k(M)$ for some $k \geq 1$).

Problem. Consider a point x which is forward recurrent (the accumulation set of $\{f^n(x), n \ge 0\}$ contains x.)

Does there exists g close to f such that x is periodic?

One has to specify the class of systems, (e.g. $\mathsf{Diff}^k(M)$ for some $k \geq 1$).

Corollary. If the answer is 'yes', there is a dense G_{δ} set $\mathcal{G} \subset \mathsf{Diff}^k(M)$ such that for $f \in \mathcal{G}$, Per(f) is dense in the set of recurrent points.

Problem. Consider a point x which is forward recurrent (the accumulation set of $\{f^n(x), n \ge 0\}$ contains x.)

Does there exists g close to f such that x is periodic?

One has to specify the class of systems, (e.g. $\mathsf{Diff}^k(M)$ for some $k \geq 1$).

Corollary. If the answer is 'yes', there is a dense G_{δ} set $\mathcal{G} \subset \mathsf{Diff}^k(M)$ such that for $f \in \mathcal{G}$, $\mathsf{Per}(f)$ is dense in the set of recurrent points.

Proof. – One can "stabilizes" the periodic points $\Rightarrow Perf(f)$ can not shrink by perturbation (semi-continuity).

- Baire argument: $f \mapsto Per(f)$ is continuous on a dense G_{δ} set.
- If Per(f) is smaller than the set of recurrent points (when $f \in \mathcal{G}$), the closing property allows to increase Per(f) (contradicts the continuity).

Theorem. (Pugh) Consider a point x which is forward recurrent for f. There exists a diffeomorphism g C^1 -close to f such that x is periodic.

Theorem. (Pugh) Consider a point x which is forward recurrent for f. There exists a diffeomorphism g C^1 -close to f such that x is periodic.

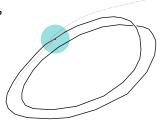
How to close orbits?

Theorem. (Pugh) Consider a point x which is forward recurrent for f. There exists a diffeomorphism g C^1 -close to f such that x is periodic.

How to close orbits?

Theorem. (Pugh) Consider a point x which is forward recurrent for f. There exists a diffeomorphism g C^1 -close to f such that x is periodic.

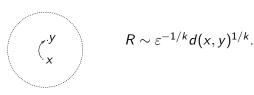
How to close orbits?



An elementary perturbation lemma

Elementary perturbation. For any x, y close and $\varepsilon > 0$, there exists a diffeomorphism φ such that $\varphi(x) = y$ and which:

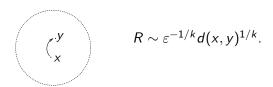
- is ε -close to the identity for the C^k -topology,
- coincides with the identity outside a ball with radius



An elementary perturbation lemma

Elementary perturbation. For any x, y close and $\varepsilon > 0$, there exists a diffeomorphism φ such that $\varphi(x) = y$ and which:

- is ε -close to the identity for the C^k -topology,
- coincides with the identity outside a ball with radius



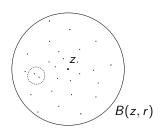
- ▶ The perturbation is localized at a point.
- ▶ The support is 'huge' for high topologies.
- ▶ For k = 1, the ratio R/d(x, y) is fixed when $\varepsilon > 0$ is fixed.

The C^1 -closing lemma: the case $\varepsilon > 4/3$

Selection lemma. For any forward recurrent point z, and r > 0, there exist two iterates $p, q = f^n(p)$ in the forward orbit of p such that the ball

$$\widehat{B} := B\left(\frac{p+q}{2}, \frac{3}{2}\frac{d(p,q)}{2}\right)$$

is contained in B(z, r) and is disjoint from $f(p), \ldots, f^{n-1}(p)$.



The C^1 -closing lemma: the case $\varepsilon > 4/3$

Selection lemma. For any forward recurrent point z, and r > 0, there exist two iterates p, $q = f^n(p)$ in the forward orbit of p such that the ball

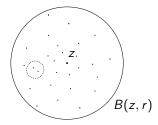
$$\widehat{B} := B\left(\frac{p+q}{2}, \frac{3}{2}\frac{d(p,q)}{2}\right)$$

is contained in B(z, r) and is disjoint from $f(p), \ldots, f^{n-1}(p)$.

▶ Closing by perturbation of size $\sim 4/3$.

There exists g such that:

- -g coincides with f outside \widehat{B}
- $-d(g,f)_{C^1}\sim 4/3$
- $-g(f^{-1}(q))=p.$
 - \Rightarrow p is periodic for g.



The C^1 -closing lemma: the case $\varepsilon > 4/3$

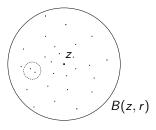
Selection lemma. For any forward recurrent point z, and r > 0, there exist two iterates p, $q = f^n(p)$ in the forward orbit of p such that the ball

$$\widehat{B} := B\left(\frac{p+q}{2}, \frac{3}{2}\frac{d(p,q)}{2}\right)$$

is contained in B(z,r) and is disjoint from $f(p), \ldots, f^{n-1}(p)$.

"Proof".

- Consider all the returns in B(z, r) p_1, \ldots, p_s until a large time.
- Choose p_i, p_j minimizing $\frac{d(p_i, p_j)}{d(\frac{p_j + p_j}{2}, \partial B(z, r))}$.



The C^1 -closing lemma: the general case

Perturbation lemma.

For any f,

consider p,q and the ball $\widehat{B}:=\left\{x, \quad d\left(x,\frac{p+q}{2}\right)<\frac{3}{4}d(p,q)\right\}$. Then, there exists g such that -g (x)=f (y), $-d_{C^1}(f,g)<4/3,$ -f and g coincide outside \widehat{B} .

The C^1 -closing lemma: the general case

Perturbation lemma. (Pugh)

For any f and $\varepsilon > 0$, there are $N \ge 0$ and a new metric \tilde{d} such that "elementary perturbations in time N exist":

Consider
$$p,q$$
 and the ball $\widehat{B}:=\left\{x,\quad \widetilde{d}\left(x,\frac{p+q}{2}\right)<\frac{3}{4}\widetilde{d}(p,q)\right\}$.

If \widehat{B} is disjoint from N first iterates, there exists g such that

$$-g^{N}(x)=f^{N}(y),$$

$$-d_{C^1}(f,g)<\varepsilon$$
,

-
$$f$$
 and g coincide outside $\widehat{B} \cup \cdots \cup f^{N-1}(\widehat{B})$.

The C^1 -closing lemma: the general case

Perturbation lemma. (Pugh)

For any f and $\varepsilon > 0$, there are $N \ge 0$ and a new metric \tilde{d} such that "elementary perturbations in time N exist":

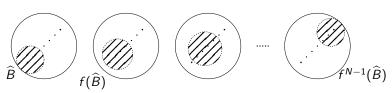
Consider p,q and the ball $\widehat{B}:=\left\{x,\quad \widetilde{d}\left(x,\frac{p+q}{2}\right)<\frac{3}{4}\widetilde{d}(p,q)\right\}$.

If \widehat{B} is disjoint from N first iterates, there exists g such that

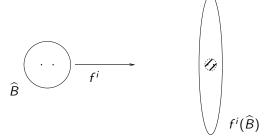
$$-g^{N}(x)=f^{N}(y),$$

$$-d_{C^1}(f,g)<\varepsilon$$
,

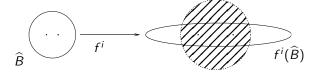
- f and g coincide outside $\widehat{B} \cup \cdots \cup f^{N-1}(\widehat{B})$.



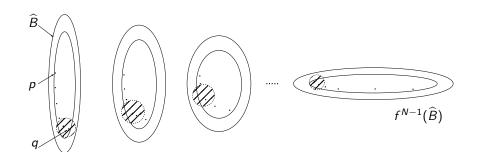
Non-conformality



Non-conformality



Non-conformality



 \widehat{B} for the new metric \widetilde{d} .

Decomposition of the dynamics

Pseudo-orbits

Definitions. $(x_n)_{n\in\mathbb{Z}}$ is a ε -pseudo-orbit if $\forall n\in\mathbb{Z}$, $d(x_n, f(x_n)<\varepsilon$.

x is *chain-recurrent* if it belongs to a periodic ε -pseudo-orbit for any ε > 0.

 $x \sim y$ if x, y belong to a same periodic ε -pseudo-orbit for any $\varepsilon > 0$.

▶ An equivalence relation which defines the *chain-recurrence classes*.

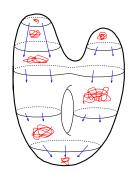
Pseudo-orbits

Definitions. $(x_n)_{n\in\mathbb{Z}}$ is a ε -pseudo-orbit if $\forall n\in\mathbb{Z}$, $d(x_n,f(x_n)<\varepsilon$. x is *chain-recurrent* if it belongs to a periodic ε -pseudo-orbit for any $\varepsilon>0$.

► An equivalence relation which defines the *chain-recurrence classes*.

 $x \sim y$ if x, y belong to a same periodic ε -pseudo-orbit for any $\varepsilon > 0$.

Other characterization. (Conley) The chain-recurrence classes are the largest invariant compact sets that cannot be split by attractors.



Pseudo-orbits

Definitions. $(x_n)_{n\in\mathbb{Z}}$ is a ε -pseudo-orbit if $\forall n\in\mathbb{Z}$, $d(x_n, f(x_n)<\varepsilon$.

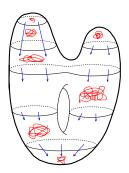
x is *chain-recurrent* if it belongs to a periodic ε -pseudo-orbit for any ε > 0.

 $\mathbf{x} \sim \mathbf{y}$ if x, y belong to a same periodic ε -pseudo-orbit for any $\varepsilon > 0$.

▶ An equivalence relation which defines the *chain-recurrence classes*.

Questions.

- How many classes?
- Which are the isolated classes?
- What is the dynamics inside each class?

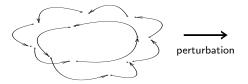


Theorem. (Bonatti-C.) f with non-degenerated periodic points. x chain-recurrent \Rightarrow there is g C^1 -close to f such that x is periodic. $x \sim y \Rightarrow$ there is g C^1 -close to f and $n \ge 1$ such that $y = f^n(x)$.

(One jump only = Hayashi connecting lemma.)

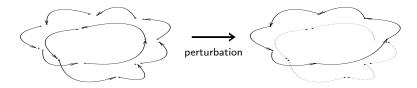
Theorem. (Bonatti-C.) f with non-degenerated periodic points. x chain-recurrent \Rightarrow there is g C^1 -close to f such that x is periodic. $x \sim y \Rightarrow$ there is g C^1 -close to f and $n \ge 1$ such that $y = f^n(x)$.

(One jump only = Hayashi connecting lemma.)



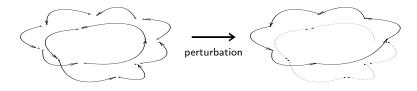
Theorem. (Bonatti-C.) f with non-degenerated periodic points. x chain-recurrent \Rightarrow there is g C^1 -close to f such that x is periodic. $x \sim y \Rightarrow$ there is g C^1 -close to f and $n \ge 1$ such that $y = f^n(x)$.

(One jump only = Hayashi connecting lemma.)



Theorem. (Bonatti-C.) f with non-degenerated periodic points. x chain-recurrent \Rightarrow there is g C^1 -close to f such that x is periodic. $x \sim y \Rightarrow$ there is g C^1 -close to f and $n \ge 1$ such that $y = f^n(x)$.

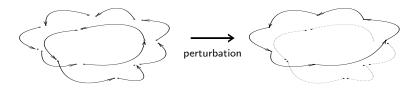
(One jump only = Hayashi connecting lemma.)



Consequence 1. For f generic in the space of C^1 -diffeomorphisms, the closure of Per(f) coincides with the chain-recurrent set.

Theorem. (Bonatti-C.) f with non-degenerated periodic points. x chain-recurrent \Rightarrow there is g C^1 -close to f such that x is periodic. $x \sim y \Rightarrow$ there is g C^1 -close to f and $n \ge 1$ such that $y = f^n(x)$.

(One jump only = Hayashi connecting lemma.)



Consequence 1. For f generic in the space of C^1 -diffeomorphisms, the closure of Per(f) coincides with the chain-recurrent set.

Consequence 2. In the space of **conservative** C^1 -diffeomorphisms, the generic f is transitive.

Definition. A periodic orbit $O = \{p, f(p), \dots, f^{\ell}(p) = p\}$ is hyperbolic if the eigenvalues of Df^{ℓ} have moduli different from 1.

- ▶ This property is generic.
- ▶ There exists stable and unstable manifolds $W^s(O)$, $W^u(O)$.

Definition. A periodic orbit $O = \{p, f(p), \dots, f^{\ell}(p) = p\}$ is hyperbolic if the eigenvalues of Df^{ℓ} have moduli different from 1.

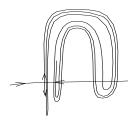
- ▶ This property is generic.
- ▶ There exists stable and unstable manifolds $W^s(O)$, $W^u(O)$.

Definition. A periodic orbit $O = \{p, f(p), \dots, f^{\ell}(p) = p\}$ is hyperbolic if the eigenvalues of Df^{ℓ} have moduli different from 1.

- ▶ This property is generic.
- ▶ There exists stable and unstable manifolds $W^s(O)$, $W^u(O)$.

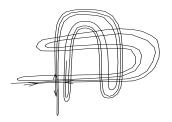
Definition. A periodic orbit $O = \{p, f(p), \dots, f^{\ell}(p) = p\}$ is hyperbolic if the eigenvalues of Df^{ℓ} have moduli different from 1.

- ▶ This property is generic.
- ▶ There exists stable and unstable manifolds $W^s(O)$, $W^u(O)$.



Definition. A periodic orbit $O = \{p, f(p), \dots, f^{\ell}(p) = p\}$ is hyperbolic if the eigenvalues of Df^{ℓ} have moduli different from 1.

- ▶ This property is generic.
- ▶ There exists stable and unstable manifolds $W^s(O)$, $W^u(O)$.



Homoclinic classes

Definition. Two hyperbolic periodic orbits O, O' are homoclinically related if $W^u(O) \cap W^s(O') \neq \emptyset$ and $W^u(O') \cap W^s(O) \neq \emptyset$.

Definition. The homoclinic class of *O*:

$$H(O) := closure(\bigcup \{O' \text{ homoclinically related to } O\})$$

= $closure(W^s(O) \cap W^u(O)).$

- ▶ The dynamics on H(O) is transitive.
- ➤ The homoclinic orbits allow to "mix" the periodic behavior.

The dynamics on the periodic set

Theorem.(B.-C.) For $f \in \text{Diff}^1(M)$ generic, and O periodic orbit, the chain-recurrence class and the homoclinic class of O coincide.

The dynamics on the periodic set

Theorem.(B.-C.) For $f \in \text{Diff}^1(M)$ generic, and O periodic orbit, the chain-recurrence class and the homoclinic class of O coincide.

Theorem.(C.) For $f \in \text{Diff}^1(M)$ generic, any chain-recurrence class is limit of a sequence of homoclinic classes (in Hausdorff topology).

The dynamics on the periodic set

Theorem.(B.-C.) For $f \in \text{Diff}^1(M)$ generic, and O periodic orbit, the chain-recurrence class and the homoclinic class of O coincide.

Theorem.(C.) For $f \in \text{Diff}^1(M)$ generic, any chain-recurrence class is limit of a sequence of homoclinic classes (in Hausdorff topology).

➤ The union of the homoclinic classes is a "skeleton" for the global dynamics.

Perturbation inside homoclinic classes

Franks lemma. Fix $\varepsilon > 0$, any f, and $O = \{p, \dots, f^{\ell}(p) = p\}$. For any sequence of linear maps (A_i) with $||A_i - Df(f^i(p))|| < \varepsilon$, there exists g that is 2ε -close to f in $Diff^1(M)$ such that

$$g^i(p) = f^i(p)$$
 and $Dg(g^i(p)) = A_i$.

▶ Reduction to linear algebra (see the second lecture)

Beyond the C^1 -diffeomorphisms

Other classes of systems

Our perturbative approach was based on:

- the elementary perturbation lemma,
- the Franks lemma.

Other classes of systems

Our perturbative approach was based on:

- the elementary perturbation lemma,
- the Franks lemma.

Huge difficulties to generalize:

- in higher regularity,
- when an additional structure is preserved.

The geodesic flow

N: a Riemannian manifold.

 $M = T^1 N$ supports the geodesic flow.

$$C^k$$
-perturbation of \longleftrightarrow C^{k+1} -perturbation of the flow on T^1N the metric on N

Difficulty: a local perturbation of the metric does not induces a local perturbation of the geodesic flow!

State of the art in C^1 -topology:

- Franks lemma is known (Contreras, Vissher, Lazrag-Rifford-Ruggiero),
- the closing lemma is unknown.

Reeb flows: manifolds with a contact form have a natural vector field.

Example. N Riemannian $\Rightarrow T^1N$ is contact; geodesic flow = Reeb flow.

Reeb flows: manifolds with a contact form have a natural vector field.

Example. N Riemannian $\Rightarrow T^1N$ is contact; geodesic flow = Reeb flow.

Theorem. (Irie 2015) M: a contact 3-manifold. U: an open set. There exists a C^{∞} -perturbation of the contact form such that the new Reeb flow admits a periodic point in U.

Reeb flows: manifolds with a contact form have a natural vector field.

Example. N Riemannian $\Rightarrow T^1N$ is contact; geodesic flow = Reeb flow.

Theorem. (Irie 2015) M: a contact 3-manifold. U: an open set. There exists a C^{∞} -perturbation of the contact form such that the new Reeb flow admits a periodic point in U.

Corollary. N: a surface.

For the C^{∞} -generic Riemannian metric, the geodesic flow admits a set of periodic orbits which is dense in N.

Reeb flows: manifolds with a contact form have a natural vector field.

Example. N Riemannian $\Rightarrow T^1N$ is contact; geodesic flow = Reeb flow.

Theorem. (Irie 2015) M: a contact 3-manifold. U: an open set. There exists a C^{∞} -perturbation of the contact form such that the new Reeb flow admits a periodic point in U.

Corollary. N: a surface.

For the C^{∞} -generic Riemannian metric, the geodesic flow admits a set of periodic orbits which is dense in N.

- ▶ Still unknown in the phase space T^1N ...
- ▶ Uses spectral invariant for the Embedded Contact Homology.
- ▶ No control on the support of the periodic orbits!

References

- M.C. Arnaud. Le "closing lemma" en topologie C¹. Mémoire SMF **74**.
- C. Bonatti. Towards a global view of dynamical systems, for the C^1 -topology. *Ergodic Theory & Dynam. Systems* **31**.
- C. Bonatti, L. Diaz, M. Viana. Dynamics Beyond Uniform Hyperbolicity. Springer (2004).
- S. Crovisier. Perturbations of C^1 -diffeomorphisms and dynamics of generic conservative diffeomorphisms of surface. *Panorama et Synthèses* 21.
- S. Crovisier. Perturbation de la dynamique de difféomorphismes en petite régularité *Astérisque* **354**.
- S. Crovisier. Dynamics of C^1 -diffeomorphisms: global description and prospects for classification. ArXiv:1405.0305
- N. Gourmelon. Steps towards a classification of C^r -generic dynamics close to homoclinic points. ArXiv:1410.1758

A panorama of the space of C^1 -diffeomorphisms

A bifurcating approach

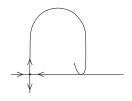
Hyperbolic systems: stability, good description.

Hyperbolic systems: stability, good description.

Obstruction 1

Lack of bundle splitting:

homoclinic tangency

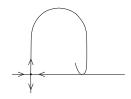


Hyperbolic systems: stability, good description.

Obstruction 1

Lack of bundle splitting:

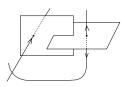
homoclinic tangency



Obstruction 2

Lack of contraction/expansion:

heterodimensional cycle

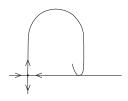


Hyperbolic systems: stability, good description.

Obstruction 1

Lack of bundle splitting:

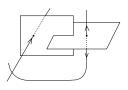
homoclinic tangency



Obstruction 2

Lack of contraction/expansion:

heterodimensional cycle

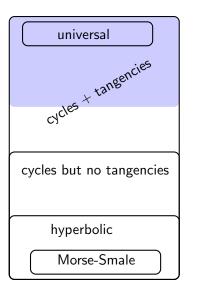


Hyperbolicity conjecture. (Palis)

Any diffeomorphism can be approximated by a diffeomorphism which

- either has a heterodimensional cycle or a homoclinic tangency,
- or is hyperbolic.

Conjectured panorama of $diff^1(M)$



infinitely many classes

finitely many classes