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Differentiable dynamics in finite dimension

A phase space: a compact connected manifold M,
An evolution law: a diffeomorphism f or a flow (ϕ)

Goal: Describe the orbits {f n(x), n ∈ Z} (or {ϕt(x), t ∈ R}).

Subclasses:
- conservative systems (preserving a reference volume),

- geometric systems (geodesic flow on M = T 1N),

- billards,

- hamiltonian systems.

IWe will mainly discuss the case of diffeomorphisms.
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Perturbative approach

Study the stability / robustness:
How does the dynamics change under perturbations?

Some dynamics seem difficult to be described:
Are these pathological systems exceptional?

Study the typical (or generic) properties:
Can one describe the dynamics for a large subset of systems?
(on a dense, dense Gδ or dense open set,...)

Example. (Peixoto) In dimension 1, there exists a dense open set
of diffeomorphisms whose dynamics is Morse-Smale, i.e. supported
on finitely many periodic orbits.
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Qualitative dynamics

Topological properties:

– Transitivity : does there exists a dense orbit?

– Attractors: find open sets U such that f (U) ⊂ U.

U

– Periodic set: describe the closure of

Per(f )={x , ∃n≥1, f n(x)=x}.

I This lecture addresses the perturbations of the orbit structure.

I The second lecture will consider more quantitative properties:
Per(f ) and the linear dynamics above this set will be a skeleton for

study further dynamical properties.
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The closing problem

Problem. Consider a point x which is forward recurrent (the accu-
mulation set of {f n(x), n ≥ 0} contains x .)

Does there exists g close to f such that x is periodic?

One has to specify the class of systems, (e.g. Diffk(M) for some k ≥ 1).

Corollary. If the answer is ‘yes’, there is a dense Gδ set G⊂Diffk(M)
such that for f ∈G, Per(f ) is dense in the set of recurrent points.

Proof. – One can “stabilizes” the periodic points
⇒ Perf (f ) can not shrink by perturbation (semi-continuity).

– Baire argument: f 7→ Per(f ) is continuous on a dense Gδ set.

– If Per(f ) is smaller than the set of recurrent points (when f ∈ G), the

closing property allows to increase Per(f ) (contradicts the continuity).



The closing problem

Problem. Consider a point x which is forward recurrent (the accu-
mulation set of {f n(x), n ≥ 0} contains x .)

Does there exists g close to f such that x is periodic?

One has to specify the class of systems, (e.g. Diffk(M) for some k ≥ 1).

Corollary. If the answer is ‘yes’, there is a dense Gδ set G⊂Diffk(M)
such that for f ∈G, Per(f ) is dense in the set of recurrent points.

Proof. – One can “stabilizes” the periodic points
⇒ Perf (f ) can not shrink by perturbation (semi-continuity).

– Baire argument: f 7→ Per(f ) is continuous on a dense Gδ set.

– If Per(f ) is smaller than the set of recurrent points (when f ∈ G), the

closing property allows to increase Per(f ) (contradicts the continuity).



The closing problem

Problem. Consider a point x which is forward recurrent (the accu-
mulation set of {f n(x), n ≥ 0} contains x .)

Does there exists g close to f such that x is periodic?

One has to specify the class of systems, (e.g. Diffk(M) for some k ≥ 1).

Corollary. If the answer is ‘yes’, there is a dense Gδ set G⊂Diffk(M)
such that for f ∈G, Per(f ) is dense in the set of recurrent points.

Proof. – One can “stabilizes” the periodic points
⇒ Perf (f ) can not shrink by perturbation (semi-continuity).

– Baire argument: f 7→ Per(f ) is continuous on a dense Gδ set.

– If Per(f ) is smaller than the set of recurrent points (when f ∈ G), the

closing property allows to increase Per(f ) (contradicts the continuity).



The closing problem

Problem. Consider a point x which is forward recurrent (the accu-
mulation set of {f n(x), n ≥ 0} contains x .)

Does there exists g close to f such that x is periodic?

One has to specify the class of systems, (e.g. Diffk(M) for some k ≥ 1).

Corollary. If the answer is ‘yes’, there is a dense Gδ set G⊂Diffk(M)
such that for f ∈G, Per(f ) is dense in the set of recurrent points.

Proof. – One can “stabilizes” the periodic points
⇒ Perf (f ) can not shrink by perturbation (semi-continuity).

– Baire argument: f 7→ Per(f ) is continuous on a dense Gδ set.

– If Per(f ) is smaller than the set of recurrent points (when f ∈ G), the

closing property allows to increase Per(f ) (contradicts the continuity).



The C 1-closing lemma

Theorem. (Pugh) Consider a point x which is forward recurrent for f .
There exists a diffeomorphism g C 1-close to f such that x is periodic.
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An elementary perturbation lemma

Elementary perturbation. For any x , y close and ε > 0,
there exists a diffeomorphism ϕ such that ϕ(x) = y and which:

– is ε-close to the identity for the C k -topology,

– coincides with the identity outside a ball with radius

R ∼ ε−1/kd(x , y)1/k .

x

y

I The perturbation is localized at a point.

I The support is ‘huge’ for high topologies.

I For k = 1, the ratio R/d(x , y) is fixed when ε > 0 is fixed.
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The C 1-closing lemma: the case ε > 4/3

Selection lemma. For any forward recurrent point z, and r > 0,
there exist two iterates p, q = f n(p) in the forward orbit of p such
that the ball

B̂ := B

(
p + q

2
,

3

2

d(p, q)

2

)
is contained in B(z , r) and is disjoint from f (p), . . . , f n−1(p).

z

B(z , r)
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I Closing by perturbation of size ∼ 4/3.

There exists g such that:

– g coincides with f outside B̂

– d(g , f )C 1 ∼ 4/3

– g(f −1(q)) = p.

⇒ p is periodic for g .
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Selection lemma. For any forward recurrent point z, and r > 0,
there exist two iterates p, q = f n(p) in the forward orbit of p such
that the ball

B̂ := B

(
p + q

2
,

3

2

d(p, q)

2

)
is contained in B(z , r) and is disjoint from f (p), . . . , f n−1(p).

“Proof”.

– Consider all the returns in B(z , r)
p1, . . . , ps until a large time.

– Choose pi , pj minimizing
d(pi ,pj )

d
(

pi+pj
2

,∂B(z,r)
) .
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The C 1-closing lemma: the general case

Perturbation lemma.
For any f , and ε > 0, there are N≥0 and a new metric d̃ such that
“elementary perturbations in time N exist”:

consider p, q and the ball B̂ :=
{

x , d
(
x , p+q

2

)
< 3

4d(p, q)
}

.
Then, there exists g such that

– gN(x) = f N(y),
– dC1(f , g) < 4/3,
– f and g coincide outside B̂.
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For any f and ε > 0, there are N≥0 and a new metric d̃ such that
“elementary perturbations in time N exist”:

Consider p, q and the ball B̂ :=
{

x , d̃
(
x , p+q

2

)
< 3

4 d̃(p, q)
}

.

If B̂ is disjoint from N first iterates, there exists g such that
– gN(x) = f N(y),
– dC1(f , g) < ε,
– f and g coincide outside B̂ ∪ · · · ∪ f N−1(B̂).
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Non-conformality

B̂
f i

f i (B̂)
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Non-conformality

q

p

B̂

f N−1(B̂)

B̂ for the new metric d̃ .



Decomposition of the dynamics



Pseudo-orbits

Definitions. (xn)n∈Z is a ε-pseudo-orbit if ∀n ∈ Z, d(xn, f (xn) < ε.

x is chain-recurrent if it belongs to a periodic ε-pseudo-orbit for any ε>0.

x ∼ y if x , y belong to a same periodic ε-pseudo-orbit for any ε > 0.

I An equivalence relation which defines the chain-recurrence classes.
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I An equivalence relation which defines the chain-recurrence classes.

Other characterization. (Conley)

The chain-recurrence classes are the

largest invariant compact sets that cannot

be split by attractors.



Pseudo-orbits

Definitions. (xn)n∈Z is a ε-pseudo-orbit if ∀n ∈ Z, d(xn, f (xn) < ε.

x is chain-recurrent if it belongs to a periodic ε-pseudo-orbit for any ε>0.

x ∼ y if x , y belong to a same periodic ε-pseudo-orbit for any ε > 0.

I An equivalence relation which defines the chain-recurrence classes.

Questions.
– How many classes?
– Which are the isolated classes?
– What is the dynamics inside each class?



Connecting lemma for pseudo-orbits

Theorem. (Bonatti-C.) f with non-degenerated periodic points.

x chain-recurrent ⇒ there is g C 1-close to f such that x is periodic.

x ∼ y ⇒ there is g C 1-close to f and n≥1 such that y = f n(x).

(One jump only = Hayashi connecting lemma.)

perturbation

Consequence 1. For f generic in the space of C 1-diffeomorphisms,
the closure of Per(f ) coincides with the chain-recurrent set.

Consequence 2. In the space of conservative C 1-diffeomorphisms,
the generic f is transitive.
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Connecting lemma for pseudo-orbits

Definition. A periodic orbit O = {p, f (p), . . . , f `(p) = p} is
hyperbolic if the eigenvalues of Df ` have moduli different from 1.

I This property is generic.

I There exists stable and unstable manifolds W s(O), W u(O).

Consequence 3. For f ∈ Diff1(M) generic and for any
(hyperbolic) periodic orbit O, the transverse intersection points
between W s(O) and W u(O) are dense in the chain-recurrence
class containing O.
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Homoclinic classes

Definition. Two hyperbolic periodic orbits O,O ′ are homoclinically
related if W u(O) |∩ W s(O ′) 6= ∅ and W u(O ′) |∩ W s(O) 6= ∅.

Definition. The homoclinic class of O:

H(O) := closure(
⋃
{O ′ homoclinically related to O})

= closure(W s(O) |∩ W u(O)).

I The dynamics on H(O) is transitive.

I The homoclinic orbits allow to “mix”

the periodic behavior.



The dynamics on the periodic set

Theorem.(B.-C.) For f ∈ Diff1(M) generic, and O periodic orbit,
the chain-recurrence class and the homoclinic class of O coincide.

Theorem.(C.) For f ∈ Diff1(M) generic, any chain-recurrence class
is limit of a sequence of homoclinic classes (in Hausdorff topology).

I The union of the homoclinic classes is a “skeleton”
for the global dynamics.
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Perturbation inside homoclinic classes

Franks lemma. Fix ε>0, any f , and O = {p, . . . , f `(p) = p}.
For any sequence of linear maps (Ai ) with ‖Ai − Df (f i (p))‖ < ε,
there exists g that is 2ε-close to f in Diff1(M) such that

g i (p) = f i (p) and Dg(g i (p)) = Ai .

I Reduction to linear algebra (see the second lecture)



Beyond the C 1-diffeomorphisms



Other classes of systems

Our perturbative approach was based on:
– the elementary perturbation lemma,
– the Franks lemma.

Huge difficulties to generalize:

– in higher regularity,

– when an additional structure is preserved.
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The geodesic flow

N: a Riemannian manifold.
M = T 1N supports the geodesic flow.

C k -perturbation of ←→ C k+1-perturbation of
the flow on T 1N the metric on N

Difficulty: a local perturbation of the metric does not induces
a local perturbation of the geodesic flow!

State of the art in C 1-topology:

– Franks lemma is known (Contreras, Vissher, Lazrag-Rifford-Ruggiero),

– the closing lemma is unknown.



A recent result...
Reeb flows: manifolds with a contact form have a natural vector field.

Example. N Riemannian ⇒ T 1N is contact; geodesic flow = Reeb flow.

Theorem. (Irie 2015) M: a contact 3−manifold. U: an open set.
There exists a C∞-perturbation of the contact form such that the
new Reeb flow admits a periodic point in U.

Corollary. N: a surface.
For the C∞-generic Riemannian metric, the geodesic flow admits a
set of periodic orbits which is dense in N.

I Still unknown in the phase space T 1N...

I Uses spectral invariant for the Embedded Contact Homology.

I No control on the support of the periodic orbits!
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A panorama of the space of
C 1-diffeomorphisms

A bifurcating approach



Obstructions to hyperbolicity

Hyperbolic systems: stability, good description.

Hyperbolicity conjecture. (Palis)

Any diffeomorphism can be approximated by a diffeomorphism which

– either has a heterodimensional cycle or a homoclinic tangency,

– or is hyperbolic.
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Conjectured panorama of diff 1(M)

Back to Cantor sets
We show that partially hyperbolic maps in         Diff

 tend to possess (thick) invariant Cantor sets:
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