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» We will mainly discuss the case of diffeomorphisms.
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Perturbative approach

Study the stability / robustness:
How does the dynamics change under perturbations?

Some dynamics seem difficult to be described:
Are these pathological systems exceptional?

Study the typical (or generic) properties:
Can one describe the dynamics for a large subset of systems?
(on a dense, dense Gs or dense open set,...)

Example. (Peixoto) In dimension 1, there exists a dense open set
of diffeomorphisms whose dynamics is Morse-Smale, i.e. supported
on finitely many periodic orbits.
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— Transitivity : does there exists a dense orbit?

— Attractors: find open sets U such that f(U) C U. M

— Periodic set: describe the closure of

Per(f)={x, 3n>1,f"(x)=x}.

» This lecture addresses the perturbations of the orbit structure.

» The second lecture will consider more quantitative properties:
Per(f) and the linear dynamics above this set will be a skeleton for

study further dynamical properties.
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The closing problem

Problem. Consider a point x which is forward recurrent (the accu-
mulation set of {f"(x),n > 0} contains x.)
Does there exists g close to f such that x is periodic?

One has to specify the class of systems, (e.g. Diff*(M) for some k > 1).

Corollary. If the answer is 'yes’, there is a dense Gs set G C Diffk(l\/l)
such that for f €G, Per(f) is dense in the set of recurrent points.

Proof. — One can “stabilizes” the periodic points
= Perf(f) can not shrink by perturbation (semi-continuity).
— Baire argument: f — Per(f) is continuous on a dense G; set.

— If Per(f) is smaller than the set of recurrent points (when f € G), the
closing property allows to increase Per(f) (contradicts the continuity).
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there exists a diffeomorphism ¢ such that ¢(x) = y and which:
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Elementary perturbation. For any x, y close and € > 0,
there exists a diffeomorphism ¢ such that ¢(x) = y and which:

— is e-close to the identity for the C*-topology,

— coincides with the identity outside a ball with radius

(.y R ~ e~ Ykd(x, y)V/k.

» The perturbation is localized at a point.
» The support is ‘huge’ for high topologies.
» For k =1, the ratio R/d(x,y) is fixed when ¢ > 0 is fixed.
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there exist two iterates p,q = f"(p) in the forward orbit of p such
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The Cl-closing lemma: the case ¢ > 4/3

Selection lemma. For any forward recurrent point z, and r > 0,
there exist two iterates p,q = f"(p) in the forward orbit of p such

that the ball J
5._p p+q7§ (P, q)
2 "2 2

is contained in B(z,r) and is disjoint from f(p),...,f""1(p).

“Proof”.

— Consider all the returns in B(z,r)
p1,---,Pps until a large time.

L d(pi.p:
— Choose p;, pj minimizing d(pi+I5jP pj)

- ,aB(z,r)) '




The Cl-closing lemma: the general case

Perturbation lemma.
For any f,

consider p, q and the ball B .= {x, d (x, %
Then, there exists g such that

-8 (x) =1 (y),

-dci(f,g) < 4/3,

—f and g coincide outside B.
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Decomposition of the dynamics



Pseudo-orbits

Definitions. (x,)nez is a e-pseudo-orbit if ¥n € Z, d(x,, f(xy) < €.
x is chain-recurrent if it belongs to a periodic e-pseudo-orbit for any > 0.

x ~ y if x,y belong to a same periodic e-pseudo-orbit for any € > 0.

» An equivalence relation which defines the chain-recurrence classes.
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Other characterization. (Conley)

The chain-recurrence classes are the
largest invariant compact sets that cannot
be split by attractors.




Pseudo-orbits

Definitions. (x,)nez is a e-pseudo-orbit if ¥n € Z, d(x,, f(xy) < €.
x is chain-recurrent if it belongs to a periodic e-pseudo-orbit for any > 0.

x ~ y if x,y belong to a same periodic e-pseudo-orbit for any € > 0.

» An equivalence relation which defines the chain-recurrence classes.

Questions.

— How many classes?

— Which are the isolated classes?

— What is the dynamics inside each class?
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Theorem. (Bonatti-C.) f with non-degenerated periodic points.

x chain-recurrent = there is g C'-close to f such that x is periodic

x ~y = there is g Cl-close to f and n>1 such that y=f"(x).

(One jump only = Hayashi connecting lemma.)
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Consequence 1. For f generic in the space of C-diffeomorphisms,
the closure of Per(f) coincides with the chain-recurrent set.

Consequence 2. In the space of conservative C-diffeomorphisms,
the generic f is transitive.
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Homoclinic classes

Definition. Two hyperbolic periodic orbits O, O’ are homoclinically
related if W4(O)th W=(0O’") # 0 and W!(O’)h W=(O) # 0.

Definition. The homoclinic class of O:

H(O) := c/osure(U{O' homoclinically related to O})

= closure(W?*(0O)h W*“(0)).

» The dynamics on H(O) is transitive.

» The homoclinic orbits allow to “mix”
the periodic behavior.
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The dynamics on the periodic set

Theorem.(B.-C.) For f € Diff*(M) generic, and O periodic orbit,
the chain-recurrence class and the homoclinic class of O coincide.

Theorem.(C.) For f € Diff'(M) generic, any chain-recurrence class
is limit of a sequence of homoclinic classes (in Hausdorff topology).

» The union of the homoclinic classes is a “skeleton”
for the global dynamics.



Perturbation inside homoclinic classes

Franks lemma. Fix >0, any f, and O = {p,..., f'(p) = p}.
For any sequence of linear maps (A;) with ||A; — Df(f'(p))|| < e,
there exists g that is 2¢-close to f in Diff*(M) such that

g'(p) = f'(p) and Dg(g'(p)) = Ai.

» Reduction to linear algebra (see the second lecture)
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Other classes of systems

Our perturbative approach was based on:
— the elementary perturbation lemma,
— the Franks lemma.

Huge difficulties to generalize:
—in higher regularity,

— when an additional structure is preserved.



The geodesic flow

N: a Riemannian manifold.
M = TN supports the geodesic flow.

Ck-perturbation of — Ck+1 perturbation of
the flow on T1N the metric on N

Difficulty: a local perturbation of the metric does not induces
a local perturbation of the geodesic flow!

State of the art in C!-topology:

— Franks lemma is known (Contreras, Vissher, Lazrag-Rifford-Ruggiero),

— the closing lemma is unknown.
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A recent result...

Reeb flows: manifolds with a contact form have a natural vector field.

Example. N Riemannian = TN is contact; geodesic flow = Reeb flow.

Theorem. (Irie 2015) M: a contact 3—manifold. U: an open set.
There exists a C*-perturbation of the contact form such that the
new Reeb flow admits a periodic point in U.

Corollary. N: a surface.
For the C*°-generic Riemannian metric, the geodesic flow admits a
set of periodic orbits which is dense in N.

» Still unknown in the phase space T1N...
» Uses spectral invariant for the Embedded Contact Homology.

» No control on the support of the periodic orbits!
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Obstructions to hyperbolicity
Hyperbolic systems: stability, good description.
Obstruction 1

Lack of bundle splitting:
homoclinic tangency

Obstruction 2
Lack of contraction/expansion:

heterodimensional cycle

Hyperbolicity conjecture. (Palis)
Any diffeomorphism can be approximated by a diffeomorphism which
— either has a heterodimensional cycle or a homoclinic tangency,

— or is hyperbolic.



Conjectured panorama of diff*(M)
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