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Delay Differential Equations

ẋ(t) = f (t, x(t), x(t − r1), . . . , x(t − rN))

Initial condition (perhaps)

x(θ) = ϕ(θ), θ ∈ [−R, 0], some R ≥ rk.

Delays

rk ≥ 0 (constant), or

rk = rk(t) ≥ 0 (nonautonomous variable), or

rk = rk(x(t)) ≥ 0 (state dependent).

Many other more complicated possibilities: distributed delays,

implicitly defined delays,. . .
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Dynamical Systems Framework

Phase space X = C [−R, 0] works well for constant delays.
Extensive development by Jack Hale and many co-workers:

I local linearization

I Floquet theory

I invariant manifolds

I (finite-dimensional) attractors

Variable/state-dependent delays: fundamental work by Hartung,
Krisztin, Walther, Wu.

For non-constant delays much remains to be done (e.g.,

smoothness of stable manifold).
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Regularity of Solutions

ẋ(t) = f (t, x(t), x(t − r1), . . . , x(t − rN))

Suppose x(t) is a bounded solution defined for all t ∈ R (e.g., a

periodic solution or more generally a solution on the attractor).
If f and rk are C∞ smooth, then so is x(t).
What if f and rk are analytic?

Theorem (Nussbaum). If each rk > 0 is a constant, and f is
analytic and independent of t, then x(t) is analytic in t.

But in general the answer is not so clear.

ẋ(t) = sin(t2)x(t − 1) or ẋ(t) = e it
2
x(t − 1)

There exists a solution for t ∈ R with x(−∞) = 1. It is C∞, but
we don’t know whether or not it is analytic.
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Some Examples
ẋ(t) = −f (x(t − 1))

If xf (x) > 0 for x 6= 0, f ′(0) > π

2 , and f is appropriately bounded,
then there exists a “slowly oscillating periodic solution,” which is

part of a global compact attractor.

σẋ(t) = −x(t) − f (x(t − 1))

Similar conclusion with f as above, except f ′(0) > 1 and σ > 0
sufficiently small.

Replace x(t − 1) with x(t − r ) above, where r = r (x(t)) for

appropriate r (·), for similar results.
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σẋ(t) = −x(t) − kx(t − r ),

σ > 0, k > 1, r (x(t)) = 1 + x(t).

For σ small the periodic solution is C∞, but analyticity is

unknown.

For a given C∞ solution x(t) we distinguish two sets:

A = {t0 | x(t) is analytic for t in some neighborhood of t0},

N = R \ A.

Note that A ⊆ R is open and N ⊆ R is closed.
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ẋ(t) = α(t)x(t) + β(t)x(η(t)), η(t) = t − r (t)

Here α(t), β(t), and r (t) are 2π-periodic and analytic.

If x(t) is a 2π-periodic solution, it can happen that both A 6= ∅
and N 6= ∅.

The sets A and N are intimately related to the dynamics of the
“history map” η : S1 → S1, namely

η(A \M) ⊆ A, η(N ) ⊆ N ,

M = {t0 ∈ R | t0 is a local max or min of η(t)}.
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A Class of Integral Equations

νx(t) =

∫
t

η(t)
x(s) ds, η(t) = t − r (t)

Here ν 6= 0 and r : R → R with r (t + 2π) = r (t) ≥ 0. Any

solution of this equation also satisfies

νẋ(t) = x(t) + η̇(t)x(η(t)).

The quantity ν will appear as an eigenvalue of the above integral
operator.
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We shall later also assume r (t) is analytic for all t.
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Integral Operator

(Lx)(t) =

∫
t

η(t)
x(s) ds, x ∈ X ,

X = {x : R → R | continuous and 2π periodic}

Then L : X → X is a positive operator (with respect to the cone of
nonnegative functions).

Krein-Rutman implies there exists ν > 0 and x ∈ X \ {0}, with

x ≥ 0, such that
Lx = νx

if and only if the spectral radius equals rad(L) > 0. And if so, one
can take ν = rad(L).



10

Theorem. The spectral radius is positive, rad(L) > 0, if and only if

inf
s≥t

η(s) < t (∗)

for every t ∈ R.



10

Theorem. The spectral radius is positive, rad(L) > 0, if and only if

inf
s≥t

η(s) < t (∗)

for every t ∈ R.

Remark. If η(t) < t (that is, r (t) > 0) for every t, then (∗) holds

and rad(L) > 0. In this case the eigenfunction is unique.
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Sketch of Proof. Suppose (∗) holds for every t. Using (∗) we

obtain points

t0 < t1 < t2 < · · · < tm ≡ t0(mod 2π)

such that
tk ∈ (η(tk+1), tk+1).

It follows that if x ≥ 0 and x(tk) > 0, then (Lx)(tk+1) > 0.

Taking x ≥ 0 to be a function with small bumps at the points tk ,

it follows that
Lx ≥ cx for some c > 0.

This implies (upon iterating) that ‖Ln‖ ≥ cn, and thus
rad(L) ≥ c > 0.
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Now suppose (∗) is false for some t but that rad(L) > 0.

By Krein-Rutman there exists a nontrivial x ∈ X , with x ≥ 0, such
that Lx = νx for some ν > 0.

Then for any τ ≥ t we have t ≤ η(τ) ≤ τ , and so

ν|x(τ)| ≤

∫
τ

η(τ )
|x(s)| ds ≤

∫
τ

t

|x(s)| ds.

Gronwall implies x(t) ≡ 0 identically, a contradiction.///
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We now come to a main result on the analyticity set A.

Theorem. In addition to the standing assumptions (periodicity

and nonnegativity) on r (t), assume that

r (t) is analytic in t,

r (t∗) = 0 for some t∗, and

rad(L) > 0.

Then the set of analyticity A is a nonempty open set with infinitely

many connected components (mod 2π). The set of nonanalyticity
N is uncountable. Further, under a “stretching” condition on η

the set N has empty interior and no isolated points, and is thus a
generalized Cantor set.
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r (t) = ρ(1− cos t), ρ > ρ0.
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An example of a system satisfying the above conditions is given by

r (t) = ρ(1− cos t), ρ > ρ0.

If ρ = nπ for an integer n, the sets A and N can be described

precisely and N is a Cantor set.
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Steps in the Proof

Study invariant intervals I = [a, b], namely η(I ) ⊆ I = compact

I invariant =⇒ x(t) = 0 for all t ∈ I , thus int(I ) ⊆ A
I invariant =⇒ len(I ) = b − a < 2π

Possible to have I ⊆ J both invariant, with I 6= J

Each invariant I is contained in a maximal invariant J

The maximal intervals are pairwise disjoint

I = [a, b] maximal =⇒ η(a) = η(b) = a

There are finitely many maximal intervals, and at least one

I = [a, b] maximal implies:
x(t) 6≡ 0 in [a − ε, a] or [b, b + ε] for any ε, thus a, b ∈ N
[a− ε, a]∩N and [b, b + ε]∩N are uncountable for any ε
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Uncountability of N

Suppose I = [a, b] is the only maximal interval of η.

Denote Ik = [a + 2πk, a + 2π(k + 1)]. Then for large ν we have

ην(Ik) ⊇ Ik and ην(Ik+1) ⊇ Ik .

For any t ∈ R let

S(t0) = {t ∈ R | ηµ(t) = t0 for some µ ≥ 1}.

Then the closure S(t0) is uncountable.

Do this with t0 = a ∈ N . Then S(a) ⊆ N is uncountable.

Iterate the points in S(a) backwards to get them in a
neighborhood of a (mod 2π), and of b.
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Components of A

Again suppose I = [a, b] is the only maximal interval.

There exists some point c ∈ A with c ∈ (b − 2π, a).

Iterate c backward to get arbitrarily close to a. Then a is a limit

point (to the left) of points in A, and of points in N .

Thus A has infinitely many components near a (and near b).
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N Can Have Isolated Points

η(t) is near t − 2πn over some interval

η(t0) = t0 − 2πn and |η̇(t0)| < 1 =⇒ t0 ∈ A

η(t0) = t0 − 2πn and |η̇(t0)| > 1 =⇒ generically t0 ∈ N



19

Nonanalyticity at a Point
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Nonanalyticity at a Point

ẋ(t) = α(t)x(t) + β(t)x(η(t)), η(t) = t − r (t)

α(t), β(t), r (t) analytic and 2π-periodic

Assume that
η(t0) = t0, |η̇(t0)| > 1.

An analytic Hartman-Grobman transformation gives

ẏ(t) = α̃(t)y(t) + β̃(t)y(µt), |µ| > 1
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ẏ(t) = α̃(t)y(t) + β̃(t)y(µt), |µ| > 1

Expand (formal) Taylor series to get

y(t) =

∞∑

k=0

yktk , yk =

(
µk

2
σk

k!

)
wk ,

with lim
k→∞

wk = w∞ finite.

Theorem. w∞ = 0 if and only if there exists an analytic solution
in a neighborhood of t0.
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Can N have nonempty interior?

Answer unknown, but if so it would be very interesting: An interval

where the solution is everywhere C∞ but nowhere analytic.
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N Can Be a Cantor Set

η(t) = t − nπ(1− cos t)

Then there is a maximal interval I = [0, τ ] for some τ ∈ (0, π
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η(t) = t − nπ(1− cos t)

Then there is a maximal interval I = [0, τ ] for some τ ∈ (0, π

2 )

There is also its symmetric “twin” I ′ = [π − τ, π] which is invariant

mod 2π.

Although x(t) is nonzero in I ′, it is nonetheless analytic in the

interior.

But the endpoints of I ′ are not points of analyticity. Thus

(0, τ), (π− τ, π) ⊆ A, 0, τ, π− τ, π ∈ N
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Take any other interval (connected component) of A, say

J = (a, b) ⊆ A, a, b ∈ N

Consider the iterates ηk(J). Either

ηk(J) = int(I ) or ηk(J) = int(I ′)

for some k, or else

ηk(J) ∩ I = ηk(J) ∩ I ′ = ∅ for all k (∗∗)

But (**) is impossible due to the stretching condition:

There exist k1 < k2 < k3 < . . . such that

len(ηki+1(J)) > 2len(ηki (J))


