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Delays
rk > 0 (constant), or

rk = ri(t) > 0 (nonautonomous variable), or

ri = re(x(t)) > 0 (state dependent).

Many other more complicated possibilities: distributed delays,
implicitly defined delays,. ..
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Dynamical Systems Framework

Phase space X = C[—R, 0] works well for constant delays.
Extensive development by Jack Hale and many co-workers:

v

local linearization
» Floquet theory

» invariant manifolds
>

(finite-dimensional) attractors

Variable/state-dependent delays: fundamental work by Hartung,
Krisztin, Walther, Wu.

For non-constant delays much remains to be done (e.g.,
smoothness of stable manifold).
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Suppose x(t) is a bounded solution defined for all t € R (e.g., a
periodic solution or more generally a solution on the attractor).
If f and ri are C*° smooth, then so is x(t).

What if f and ry are analytic?

Theorem (Nussbaum). If each ri > 0 is a constant, and f is
analytic and independent of t, then x(t) is analytic in t.

But in general the answer is not so clear.
x(t) =sin()x(t —1) or x(t) = e x(t 1)

There exists a solution for t € R with x(—oc) = 1. Itis C*, but
we don't know whether or not it is analytic.
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Some Examples
x(t) = —f(x(t - 1))

If xf(x) > 0 for x # 0, f(0) > 5, and f is appropriately bounded,
then there exists a “slowly oscillating periodic solution,” which is
part of a global compact attractor.

ox(t) = —x(t) — F(x(t — 1))

Similar conclusion with f as above, except f/(0) > 1 and o > 0
sufficiently small.

Replace x(t — 1) with x(t — r) above, where r = r(x(t)) for
appropriate r(-), for similar results.
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ox(t) = —x(t) — kx(t — r),

o>0, k>1, r(x(t))=1+x(t).

For o small the periodic solution is C*°, but analyticity is
unknown.

For a given C* solution x(t) we distinguish two sets:
A = {to | x(t) is analytic for t in some neighborhood of ty},
N =R\ A

Note that A C R is open and N C R is closed.
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x(t) = a(t)x(t) + B(t)x(n(t)), n(t) =t —r(t)
Here a(t), B(t), and r(t) are 2m-periodic and analytic.

If x(t) is a 2m-periodic solution, it can happen that both A # ()
and NV # (.

The sets A and N are intimately related to the dynamics of the
“history map” 1 : St — S, namely

nA\M) C A, nN)CN,

M = {ty € R| tp is a local max or min of n(t)}.
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A Class of Integral Equations
t
ux(t) :/ x(s)ds, n(t) = t—r(2)
n(t)

Here v # 0 and r : R — R with r(t 4+ 27) = r(t) > 0. Any
solution of this equation also satisfies

vx(t) = x(t) +0(t)x(n(t))-

The quantity v will appear as an eigenvalue of the above integral
operator.
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We shall later also assume r(t) is analytic for all ¢.
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Integral Operator
t
(Lx)(t) = / x(s)ds, xe€X,
7

X ={x: R — R continuous and 27 periodic}

Then L: X — X is a positive operator (with respect to the cone of
nonnegative functions).

Krein-Rutman implies there exists v > 0 and x € X \ {0}, with
x >0, such that
Lx = vx

if and only if the spectral radius equals rad(L) > 0. And if so, one
can take v = rad(L).
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Theorem. The spectral radius is positive, rad(L) > 0, if and only if

inf (s) < t (%)

s>t

for every t € R.

Remark. If n(t) < t (thatis, r(t) > 0) for every t, then (x) holds
and rad(L) > 0. In this case the eigenfunction is unique.
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Sketch of Proof. Suppose () holds for every t. Using (%) we
obtain points

to<t1<th<---<ty=ty(mod 27)
such that
tic € (N(tk+1); tor)-
It follows that if x > 0 and x(tx) > 0, then (Lx)(txk+1) > O.
Taking x > 0 to be a function with small bumps at the points t,

it follows that
Lx > cx for some ¢ > 0.

This implies (upon iterating) that ||L"|| > ¢", and thus
rad(L) > ¢ > 0.
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Now suppose (x) is false for some t but that rad(L) > 0.

By Krein-Rutman there exists a nontrivial x € X, with x > 0, such
that Lx = vx for some v > 0.

Then for any 7 > t we have t < n(7) < 7, and so
vix(7)] < / Ix(s)] ds < / Ix(s)| ds.
n(7) t

Gronwall implies x(t) = 0 identically, a contradiction.///
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We now come to a main result on the analyticity set A.

Theorem. In addition to the standing assumptions (periodicity
and nonnegativity) on r(t), assume that

r(t) is analytic in t,
r(t.) = 0 for some t,, and

rad(L) > 0.

Then the set of analyticity A is a nonempty open set with infinitely
many connected components (mod 27). The set of nonanalyticity
N is uncountable. Further, under a “stretching” condition on 7
the set ' has empty interior and no isolated points, and is thus a
generalized Cantor set.
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An example of a system satisfying the above conditions is given by

r(t) = p(l —cost), p > po.

If p = nm for an integer n, the sets A and A can be described
precisely and NV is a Cantor set.
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Steps in the Proof

Study invariant intervals | = [a, b], namely 1(/) C | = compact

[ invariant = x(t) =0 for all t € /, thus int(/) C A

[ invariant = len(/)=b—a <2~

Possible to have | C J both invariant, with /| # J

Each invariant / is contained in a maximal invariant J

The maximal intervals are pairwise disjoint

| = [a, b] maximal = n(a)=n(b)=a

There are finitely many maximal intervals, and at least one

I = [a, b] maximal implies:
x(t)#0in[a—e,a] or [b,b+¢] for any ¢, thus a,b € N
[a—¢,a] NN and [b, b+ ] NN are uncountable for any €
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Uncountability of N
Suppose | = [a, b] is the only maximal interval of 7.
Denote Iy = [a+ 2wk, a+ 2m(k 4+ 1)]. Then for large v we have

n”(l) 2 I and  n"(Ik+1) 2 Ik
For any t € R let

S(to) = {t € R|n*(t) = ty for some pu > 1}.

Then the closure S(t) is uncountable.

Do this with tg = a € /. Then S(a) C N is uncountable.

Iterate the points in S(a) backwards to get them in a
neighborhood of a (mod 27), and of b.



17

Components of A

Again suppose | = [a, b] is the only maximal interval.



17

Components of A
Again suppose | = [a, b] is the only maximal interval.

There exists some point ¢ € A with ¢ € (b — 2w, a).



17

Components of A
Again suppose | = [a, b] is the only maximal interval.
There exists some point ¢ € A with ¢ € (b — 2w, a).

Iterate ¢ backward to get arbitrarily close to a. Then ais a limit
point (to the left) of points in A, and of points in \V.



17

Components of A
Again suppose | = [a, b] is the only maximal interval.
There exists some point ¢ € A with ¢ € (b — 2w, a).

Iterate ¢ backward to get arbitrarily close to a. Then ais a limit
point (to the left) of points in A, and of points in \V.

Thus A has infinitely many components near a (and near b).
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N Can Have lIsolated Points
n(t) is near t — 27tn over some interval
n(to) = to —2wnand |N(th)| <1 = tHeA

n(to) = to — 2wn and |n(ty)] > 1 = generically to € N/
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Nonanalyticity at a Point

x(t) = a(t)x(t) + A(O)x(n(t), n(t) =t —r(t)

a(t), B(t), r(t) analytic and 27-periodic

Assume that
n(to) = to, In(to)| > 1.

An analytic Hartman-Grobman transformation gives

y(t) = a(t)y() + B(e)y(ut), |ul>1
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y(t) = a(t)y() + B(t)y(ut), |ul>1

Expand (formal) Taylor series to get

o0 #kZUk
y(t) = Zthk, Yk = ( P >Wk,
k=0

with lim wy, = wy, finite.
k—o00

Theorem. w,, = 0 if and only if there exists an analytic solution
in a neighborhood of t.
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Can NV have nonempty interior?

Answer unknown, but if so it would be very interesting: An interval
where the solution is everywhere C° but nowhere analytic.
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N Can Be a Cantor Set

n(t) =t — nm(1 — cost)
Then there is a maximal interval / = [0, 7] for some 7 € (0, 5)
There is also its symmetric “twin” |” = [ — 7, 7] which is invariant
mod 27.

Although x(t) is nonzero in I’, it is nonetheless analytic in the
interior.

But the endpoints of /” are not points of analyticity. Thus

(0,7), (r—7,7) C A, O,r,m—1,mrEN



23

Take any other interval (connected component) of A, say

J={(a,b) C A, a,be N



23

Take any other interval (connected component) of A, say
J={(a,b) C A, a,be N
Consider the iterates n*(J). Either
k _ k _ /
n*(J) =int(/) or n*(J)=int(l")

for some k,



23
Take any other interval (connected component) of A, say
J={(a,b) C A, a,be N
Consider the iterates n*(J). Either
k _ k _ /
n*(J) =int(/) or n*(J)=int(l")
for some k, or else

)Nl =n")NI'=0 forall k D)



23

Take any other interval (connected component) of A, say

J={(a,b) C A, abe N
Consider the iterates n*(J). Either
k() =int(1) or n*(J) =int(l")
for some k, or else

(DNl =n*U)NTI'=0 forall k

But (**) is impossible due to the stretching condition:

There exist k1 < ko < k3 < ... such that

len(n*+1(J)) > 2len(n*(J))



