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1. Itô Stochastic Differential Equations

• ODE system:

x′ = V (x), x ∈ Rn.

• Itô SDE:

dX = V (X)dt + G(X)dW, X ∈ Rn

W – m-dimensional Wiener process,

G – n×m matrix-valued function,

X – stochastic process:

X(t) – stochastic variable (∀t), i.e.,

measurable map form probability space (Ω,U , P ) to Rn.



• Solutions of SDE:

X(t) = x0 +

∫ t

0

V (X(t))dt +

∫ t

0

G(X(t))dW,

where
∫ t

0
GdW is understood in the sense of Itô integral.

• Itô’s Formula

Assume n = 1, u : R1 → R1 smooth, X(·) solves SDE.

Y (t) := u(X(t))

dY = u′dX = u′(V dt + GdW ) wrong !

Theorem(Itô’s chain rule).

dY =
(

u′V +
1

2
G2u′′

)

dt + u′GdW.

Fact:

dW ≈ (dt)1/2 in some sense



2. Fokker-Planck Equation

• Probability Properties: Under some conditions

(i) If Xs,x is the unique solutions on [s, T ) satisfying X(s) = x,

then the probability function

P (s, x, t, B) = Pr {Xs,x(t) ∈ B}, B ⊂ B

is a transition probability, where B is the set of all Borel subsets in

Rn.

(ii) If

P (s, x, t, B) =

∫

B

p(s, x, t, y)dy,

then p is the kernel of the Fokker-Planck equation



• Fokker-Planck equation:










ut = Lu =:
n
∑

i,j=1

∂2
ij(a

iju)− div(V u), x ∈ Rn, t > 0,

u(x, t) ≥ 0,
∫

Rn u(x, t)dx = 1,

where (aij) =
GG⊤

2
– diffusion term; V – drift term.

Assume A := (aij) > 0 everywhere.

• Stationary Fokker-Planck equation: Under some conditions,

u(x, t)→ u(x) as t→ +∞, and u(x) satisfies










Lu =:
n
∑

i,j=1

∂2
ij(a

iju)− div(V u) = 0, x ∈ Rn

u(x) ≥ 0,
∫

Rn u(x)dx = 1.

(1)



3. Motivation

General dynamics issues:

stochastic stability: Classify “dynamics” which are “robust” under

the noise perturbations.

– General dynamics subjects are invariant measures (and invariant

sets) of ODE.

• Stochastic stability of invariant measures is directly related to the

steady states of the Fokker-Planck equation.

• Fact: Stationary measure µ = udx, where u is a steady state of

the F-P eq., is an invariant measure of the diffusion process X

generated by SDE.



Consider a null family

A = {Aα}α∈Λ = {(aij
α )}α∈Λ, Aα → 0.

Denote by uAα
the steady states F-P equation with A = Aα. The

stochastic stability is to characterize the limits of the set of

measures {uAα
dx}, as |Aα|C0 → 0.

Questions:

1) Existence of the steady states?

2) As |Aα|C0 → 0, compactness of {uAα
dx} ?

3) Concentration of {uAα
dx} ?



4. Steady States

• Measure-valued solutions: Meaningful solutions of (1) in the

weakest term are actually probability measures.

Definition. A Borel probability measure µ is solution of Lµ = 0

if
∫

Ω

L∗fdµ = 0 ∀f ∈ C∞
0 (Ω)

where L∗ is the adjoint of L

L∗f :=
n

∑

i,j=1

aij(x)
∂2f

∂xi∂xj
+ V · ∇f ∀f ∈ C2(Ω).

Remark: If dµ = udx for some u ∈ C2, then Lu = 0 in classical

sense (when coefficients ∈ C2). i.e., u solves (1) in the classical

sense.



Known Results

1) L is unif. elliptic and defined on a compact set

• Theorem (Zeeman, 1988): With smooth coefficients, the

stationary Fokker-Planck equation defined on a compact manifold

admits a unique strong solution.

• When eq. is defined on a bounded Ω ⊂ Rn, solve






Lu = 0 in Ω

u|∂Ω = 1

or






Lu = 0 in Ω

Σij∂i(a
iju)νj + V · νu = 0 on ∂Ω

where ν is normal vector.

Remark: Existence is not true when Ω is unbounded, or L not

unif. ellip..



Example 1. Ω = Rn, V = 0, (aij) = I







△u = 0,

u(x) ≥ 0,
∫

Rn u(x)dx = 1,

Example 2. Ω = (0, 1), V = 0, a(x) = x2

(x2u)′′ = 0, u ≥ 0,

∫ 1

0

u(x)dx = 1.

No any measure-valued solution can exist!

Counter examples on uniqueness

Bogachev-Röckner-Stannat (1999, 2002), Shaposhnikov (2008)

(aij) = I, ∃V ∈ C∞(Rn), s.t. (1) has more than one solution.

It actually admits infinitely many linearly independent solutions.



2) The case of Ω = Rn

Khasminskii’s Theorem (1960, 1980): Following the

Khasminskii’s Theorem in SDE, one can conclude that if

a) aij , V ∈ Liploc,

b) ∃ U ∈ C2(Rn) satisfying

i) lim
x→∞

U(x) = +∞; ii) lim
x→∞

L∗U(x) ≤ −γ < 0,

then (1) admits a unique strong solution.

—Extensions to non-Lip. A and V by

Bensoussan (1988), Skorohod (1989), Veretennikov (1987, 1997,

1999)...Albeverio, Bogachev, Krylov, Röckner, Stannat,

Shaposhnikov (1997-2012)



Assume A): aij ∈W
1,p
loc , V ∈ L

p
loc, with p > n.

Theorem(Albeverio, Bogachev, Krylov, Röckner,

Stannat,Shaposhnikov, 1997-2012). Assume A) and b), then (1)

admits a unique positive solution in W
1,p
loc .

Under A),

Regularity : B–K–R (1997, 2001).

Uniqueness : A–B–R (1999), B–R–S (1999, 2002) under L∗U ≤ αU

(∀|x| ≫ 1) for some α > 0.

Existence : B–R (2000) under

i) lim
x→∞

U(x) = +∞; ii)′ lim
x→∞

L∗U(x) = −∞.

B-R-Sha (2012) under b).



2) Equations defined in Ω ⊂ Rn

Main analysis: measure estimates

Example.

For an exterior domain N = Ω \K for some K ⊂⊂ Ω,
∫

N

uAdx ≤ C|A|C0(K)

∫

K

uAdx,

This implies existence result, also the compactness of {uAα
dx} by

Prokhorov Theorem: a setM of measures on Ω is relatively

sequentially compact if it is tight , i.e., for any ǫ > 0 there exists a

compact subset Kǫ ⊂ Ω such that µ(Ω \Kǫ) < ǫ for all µ ∈M.

• More delicate estimates are obtained, which can imply the

existence when the equation allows degenerate.

• Lower bound estimates are also obtained, which can imply

non-existence results.



Basic Lemmas

Lemma 1(Integral Identity).

Assume A). Let u ∈W
1,p
loc (Ω) be a weak solution of (1) in Ω. Then

for any generalized Lipschitz domain Ω′ ⊂⊂ Ω and any function

F ∈ C2(Ω̄′) with F |∂Ω′ =constant,
∫

Ω′

(L∗F )u dx =

∫

∂Ω′

(aij∂iFνj)u ds,

where for a.e. x ∈ ∂Ω′, (νj(x)) denotes the unit outward normal

vector of ∂Ω′ at x.

• In application Ω′ is often chosen as sublevel sets of a function U

Ωρ = {x ∈ Ω : U(x) < ρ}.



Definition. A non-negative U ∈ C(Ω) is said to be a compact

function if

1) limx→∂Ω U(x) = supΩ U := ρM ;

2) U(x) < ρM , x ∈ Ω.

Remark: Here ∂Ω and x→ ∂Ω are understood under the topology

of the extended Euclidean space

En = Rn ∪ ∂Rn, ∂Rn = {x∞
∗ : x∗ ∈ Sn−1},

where x∞ is the infinity element of the ray through x, with

identifying

En ←→ B̄1(0)

through p : En → B̄1(0), ∂Rn → ∂B1(0).

Example.

Unbounded compact functions in Rn: limx→∞ U(x) = +∞.



Let u ∈ C(Ω) and let U ∈ C1(Ω) be a compact function.

Consider the measure function

y(ρ) :=

∫

Ωρ

u dx, ρ ∈ (0, ρM ),

and the open set

I =: {ρ ∈ (0, ρM ) : ∇U(x) 6= 0, x ∈ U−1(ρ)},

where ρM = supΩ U .

Lemma 2 (Differential Formula). The measure function y is of the

class C1 on I with derivatives

y′(ρ) =

∫

∂Ωρ

u

|∇U | ds, ρ ∈ I.



Definition. Let U be a C2 compact function in Ω.

1. U is called a (stochastic) Lyapunov function (resp. (stochastic)

anti-Lyapunov function), if there is a neighborhood N of ∂Ω

and a constant γ > 0, such that

L∗U(x) ≤ −γ, (resp. ≥ γ), x ∈ N . (2)

2. U is called a (stochastic) weak Lyapunov function (resp.

(stochastic) weak anti-Lyapunov function), if γ = 0 in (2).

Remark: Recall that a classical Lyapunov function U for an ODE

system is such that

V · ∇U(x) ≤ −γ < 0, |x| ≫ 1,

which implies the existence of global attractor.



Measure Estimates

For U ∈ C1, let h, H be two non-negative, locally bounded

functions on [0, ρM ) such that ∀ρ ∈ [0, ρM )

h(ρ) ≤
∑

aij(x)∂iU(x)∂jU(x) ≤ H(ρ), x ∈ U−1(ρ).

Theorem 1. Assume that (1) has a Lya. funct. U with Lya. const.

γ. Then ∃ρm < ρM s.t. for any measure solution µ of (1) in Ω,

µ(Ω \ Ωρ) ≤ γ−1Cρm,ρ( sup
(ρm,ρ)

H)µ(Ωρ), ρ ∈ [ρm, ρM ),

where the constant Cρm,ρ ∼ ρm, ρ.

Remark. This implies

1. existence if there exists a Lyapunov function;

2. compactness of the set {uAα
dx} if there exists a uniform

Lyapunov function w.r.t. the family A = {Aα} as Aα → 0.



Theorem 2. Let U be a compact function such that for a.e. ρ

close to ρM ,

∇U(x) 6= 0, ∀x ∈ U−1(ρ).

I) If U is Lyapunov, then for any measure solution µ:

µ(Ω \ Ωρ) ≤ e
−γ

R

ρ

ρm

1
H(t)dt

, ρ ∈ [ρm, ρM ).

II) If U is anti-Lyapunov with γ being an anti-Lyapunov constant,

then for any measure solution µ:

µ(Ωρ \ Ω∗
ρm

) ≥ µ(Ωρ0 \ Ω∗
ρm

)e
γ

R

ρ

ρ0

1
H(t) dt

, ρ ∈ (ρ0, ρM ),

where Ω∗
ρm

= {x ∈ Ω : U(x) ≤ ρm}, ρ0 > ρm.

Set

B∗(A) =

{

compact U :

∫ ρM

ρm

1

H(t)
dt =∞

}



Remark. This implies

1)existence of stationary measures in the degenerate case A ≥ 0 if

V ∈ C0 and there exists a Lyapunov function in B∗(A);

2)non-existence of stationary measures if there exists an

anti-Lyapunov function in B∗(A).

One can formulate a necessary and sufficient condition for the

existence of solutions of (1)ǫ with Aǫ = ǫA.

• Corollary (Cases with small noise):

Assume A) and 0 < λI ≤ A ≤ ΛI in Rn.

If ∃U ∈ C2 with C−1I ≤ (D2U) ≤ CI ∀|x| ≫ 1, s.t.

lim
x→∞

V · ∇U = µ (±∞ is allowed.)

Then, µ < 0 iff (1)ǫ admits a unique solution in W
1,p
loc , for ǫ ∈ (0, ǫ0)

with ǫ0 ∼ n, µ, λ, Λ, and C.



Application. Take U(x) = |x|2, x ∈ Rn.

lim
x→∞

V · x < 0 iff (1)ǫ admits unique solution .

Theorem 3. Assume h > 0 for ρ close to ρM .

I) If U is a weak Lyapunov function, then for any ρ0 ∈ (ρm, ρM ),

µ(Ω \ Ωρm
) ≤ µ(Ωρ0 \ Ωρm

)e
R

ρM
ρ0

(H̃(ρ))−1dρ
,

where H̃(ρ) = h(ρ)
∫ ρ

ρm

1
H(s)ds, ρ ∈ [ρm, ρM ).

II) If U is a weak anti-Lyapunov function, then for any

ρ0 ∈ (ρm, ρM ),

µ(Ωρ \ Ωρm
) ≥ µ(Ωρ0 \ Ωρm

)e
R

ρ

ρ0
(H̃(t))−1dt

, ρ ∈ [ρ0, ρM ),

where H̃(ρ) = H(ρ)
∫ ρ

ρm

1
h(s)ds, ρ ∈ [ρm, ρM ).



Remark. This implies

1) existence of steady states if there exists a weak Lyapunov

function in

B∗(A) =

{

compact U :

∫ ρM

ρm

1

h(t)
dt <∞

}

;

2) non-existence if there exists a weak anti-Lyapunov function in

B(A) =

{

compact U :

∫ ρM

ρm

(H(t)

∫ t

ρm

1

h(s)
ds)−1dt =∞

}



5. Stochastic Stability of Invariant Sets

Assume that the ODE system generates a local flow ϕt. A limit

measure is a weak∗-limit point of ǫG-stationary measures as ǫ→ 0.

• Theorem (Global concentration). If ϕt is dissipative in U , then

all limit measures are supported in the global attractor J , i.e., J is

G-stable w.r.t. any G.

• Theorem (Local concentration).

1) (Stabilization) If J0 is a strong local attractor of ϕt, then ∃ G

s.t. all G-limit measures are supported in J0, i.e., J0 is G-stable.

2) (Di-stabilization) If R0 is a strong local repeller of ϕt, then ∃ G

s.t. all G-limit measures are supported away from R0, i.e., R0 is

G-unstable.

3) (Instability of equilibrium) If R0 is an equilibrium, then 2) holds

for any bounded G.



6. Stochastic Bifurcations

We can also define stochastic global (structural) stability using

stationary measures. If the global stability is broken as parameters

very, then stochastic bifurcation will occur.

• Example (Stochastic Hopf bifurcation): Consider






dx = (bx− y − x(x2 + y2))dt +
√

ǫg11(x, y)dW1 +
√

ǫg12(x, y)dW2,

dy = (x + by − y(x2 + y2))dt +
√

ǫg21(x, y)dW1 +
√

ǫg22(x, y)dW2,

where G(x, y) = (gij(x, y)) ∈W
1,2p̄
loc is non-singular and bounded.

b ≤ 0 : Jb = {0}. Hence µb,ǫ → δ0 as ǫ→ 0. =⇒ {0} and δ0 are

G-stable.

b > 0 : Jb = Ω̄b - the closed disk of radius
√

b. But each limit

measure of {µb,ǫ} is supported on Cb - the circle with radius
√

b.

=⇒ Cb and µb (Haar measure on Cb) become G-stable in this case.
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