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Managing the risk of vaccine hesitancy and  

Managing the risk of vaccine hesitance and refusals 

Sadly,	
  puMng	
  Glasser	
  and	
  colleagues’	
  recommended	
  
approach	
  into	
  prac<ce	
  remains	
  easier	
  said	
  than	
  done……	
  
	
  
Transparent	
  communica<ons	
  and	
  tailored	
  interven<ons	
  can	
  
help	
  to	
  build	
  trust	
  in	
  the	
  effec<veness	
  and	
  safety	
  of	
  vaccines,	
  
in	
  the	
  system	
  that	
  delivers	
  them,	
  and	
  in	
  the	
  mo<va<ons	
  of	
  the	
  
policy	
  makers	
  who	
  decide	
  which	
  vaccines	
  are	
  needed	
  when	
  
and	
  where.	
  This	
  method	
  takes	
  commitment,	
  but	
  the	
  tailored	
  
mul<pronged	
  approach	
  is	
  the	
  only	
  way	
  to	
  maintain	
  
vaccina<on	
  programme	
  successes	
  in	
  the	
  long	
  run.	
  



Mathema<cal	
  models	
  for	
  within-­‐	
  and	
  between-­‐host	
  dynamics	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  IN	
  ISOLATION	
  

k        Infection rate of cells 
m, d   Mortality of cells  
p        Virus production 
c        Clearance of viruses 

At individual level (cell-virus) 

T, T*  Uninfected, Infected cells  

V        Density of virus

λ        Infection rate of hosts 
b        Birth rate of hosts 
 µ, δ   Death rates of hosts 

At population level (an SI model) 

S, I     Susceptible, Infected hosts  

N        Total density of hosts

dS
dt

= b(N )− λIS − µS

dI
dt

= λIS − (µ +δ )I

N = S + I   

dT
dt

= Λ− kVT −mT

dT *

dt
= kTV − (m + d)T *

dV
dt

= pT * − cV

 
Rw =

T0kp
c(m + d)  

Rb =
λN0

µ +δ

Rw=1 is the threshold value. Rb=1 is the threshold value.



Coupling	
  within-­‐	
  and	
  between-­‐host	
  dynamics	
  (nested	
  models)	
  

k        InfecPon	
  rate	
  of	
  cells	
  
m, d   Mortality	
  of	
  cells,	
  d	
  = d(p)	
  	
  
p        Virus	
  producPon	
  
c        Clearance	
  of	
  viruses	
  

At individual level (cell-virus) 

T, T*  Uninfected,	
  Infected	
  cells	
  	
  

V        Density	
  of	
  virus	
  

λ              InfecPon	
  rate	
  of	
  hosts	
  
µ, δ          Death	
  rates	
  of	
  hosts	
  

At population level (SI model) 

S, I          SuscepPble,	
  Infected	
  hosts	
  	
  

               Equilibrium	
  values	
  (at	
  fast	
  Pme	
  scale)	
  

b(S,I)      Birth	
  rate,	
  	
  	
  

dS
dt

= b(S, I )− λ(V̂ )IS − µS
dT
dt

= Λ− kVT −mT

dT *

dt
= kTV − (m + d)T *

dV
dt

= pT * − cV

T̂ ,V̂
b(S0,0) = µN0

 
Rw =

T0kp
c[m + d(p)]  

Rb =
λN0

µ +δ
= λ(p)N0

µ +δ (p)

dI
dt

= λ(V̂ )IS − (µ +δ (T̂ ))I

(Gilchrist & Sasaki, JTB 2002; Gilchrist & Coombs, TPB 2006; Boldin & Diekmann, JMB, 2008; 
Mideo, Alizon, & Day, Trends Ecol Evol.  2008; Qesmi, Heffernan & Wu, JMB, 2015) 



Coupling	
  within-­‐	
  and	
  between-­‐host	
  dynamics	
  (nested	
  models)	
  

At individual level (cell-virus) At population level (SI model) 

dS
dt

= b(S, I )− λ(V̂ )IS − µS
dT
dt

= Λ− kVT −mT

dT *

dt
= kTV − (m + d)T *

dV
dt

= pT * − cV

 
Rw =

T0kp
c[m + d(p)]  

Rb =
λ(V̂ )N0

µ +δ (T̂ )
= λ1(p)N0

µ +δ (p)

dI
dt

= λ(V̂ )IS − (µ +δ (T̂ ))I

 
Let  Rw (p*) = max

0<p<pmax
Rw (p)

  
Let  Rb (p

⋅) = max
0<p<pmax

Rb (p)

v  	
  If	
  p*=po,	
  then	
  there	
  is	
  no	
  conflict	
  between	
  selecPon	
  at	
  the	
  two	
  different	
  levels	
  	
  
v  	
  Otherwise,	
  a	
  conflict	
  exists	
  between	
  natural	
  selecPon	
  at	
  the	
  two	
  levels	
  

(Gilchrist & Sasaki, JTB 2002; Gilchrist & Coombs, TPB 2006; Boldin & Diekmann, 
JMB, 2008; Mideo, Alizon, and Day, Trends Ecol Evol.  2008; Lenhart, 2014, 2015) 



Emerging disease dynamics  

when the within- and between-host systems are  

coupled dynamically 
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Life cycle of Toxoplasma gondii   

v  The	
  only	
  known	
  definiPve	
  
hosts	
  for	
  T.	
  gondii	
  are	
  
members	
  of	
  family	
  Felidae	
  
(domesPc	
  cats	
  and	
  relaPves)	
  

v  Cats	
  become	
  infected	
  a\er	
  
consuming	
  infected	
  rats,	
  or	
  
directly	
  by	
  ingesPon	
  of	
  
sporulated	
  oocysts,	
  which	
  
can	
  survive	
  and	
  remain	
  
infecPve	
  for	
  many	
  months	
  

v  The	
  parasites	
  infect	
  
intesPnal	
  epithelial	
  cells	
  in	
  
cats.	
  Tachyzoites	
  invade	
  
cells	
  and	
  mulPplies.	
  When	
  
the	
  cells	
  die,	
  the	
  tachyzoites	
  
are	
  released	
  and	
  infect	
  
other	
  cells	
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Cellular stages of T. gondii  (simplified) 

IllustraPon	
  from:	
  Georges'	
  Parasitology	
  for	
  Veterinarians,	
  6th	
  ediPon,	
  D.D.	
  Bowman,	
  1995.	
  W.B.	
  Saunders	
  Co.,	
  Philadelphia,	
  PA	
  
Illustration from: Georges' Parasitology for Veterinarians, 6th edition, D.D. Bowman, 1995. W.B. Saunders
Co., Philadelphia, PA

Return to top of page

Site in host where adult parasite is found :
Small intestinal cells.

Return to top of page

Diagnostic Stage:
In cat: oocyst.
In intermediate hosts: Tissue cysts.

Sporulated and unsporulated oocysts
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A model dynamically coupling within- and between-host systems 

(1)	
  

Within-­‐host	
  sub-­‐system:	
  

λ, k    Transmission rates 
µ        Birth and death rate of hosts
m, d   Mortality of cells  
p        Parasite production 
c        Mortality of parasites 
θ, γ    Contamination, clearance 
g(E)   Ingestion of oocysts 
        

S, I     Susceptible, Infectious hosts 

E        Environmental contamination  (0 ≤ E < 1) 

T, T*  Uninfected, Infected cells  

V        Parasite density

Between-­‐host	
  sub-­‐system:	
  

(2a)	
  

Environmental	
  contamina<on:	
  

(2b)	
  

dT
dt

= Λ− kVT −mT

dT *

dt
= kTV − (m + d)T *

dV
dt

= g(E)+ pT * − cV

dS
dt

= µN − λES − µS

dI
dt

= λES − µI

N = S + I    (constant)

dE
dt

= θ IV (1− E)−γ E

g(0) = 0,  g(E) ≥ 0,  ′g (E) ≥ 0,  ′′g (E) ≤ 0.



 
V (E) = 1

c
g(E)+ p T *(E)( ),   T *(E) = m

m + d
T0 − T (E)( ),   T (E) = 1

2
a1 − a1

2 − 4a2( ) (3)	
  

Consider	
  the	
  within-­‐host	
  sub-­‐system	
  (1)	
  as	
  the	
  fast-­‐system	
  (with	
  E	
  being	
  constant).	
  	
  
	
  
The	
  within-­‐host	
  reproduc<on	
  number:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

	
  

Equilibrium	
  for	
  E	
  >	
  0:	
  	
  for	
  all	
  Rw > 0,	
  there	
  is	
  a	
  unique	
  interior	
  equilibrium	
  given	
  by	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  where	
  

The fast system for within-host dynamics 

 
with   a1 =

g(E)(m + d)
pm

+T0 1+ 1
Rw

⎛
⎝⎜

⎞
⎠⎟

,     a2 =
T0

2

Rw

,     a1
2 − 4a2 ≥ T0

2 1− 1
Rw

⎛
⎝⎜

⎞
⎠⎟

2

.

 
Rw =

T0kp
c(m + d)

 
U(E) = T (E), T *(E), V (E)( )

Note:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  provides	
  an	
  input	
  for	
  the	
  between-­‐host	
  (I,E)	
  sub-­‐system.	
  	
  	
   
V (E)



Stability of the fast system 

Result	
  1.	
  For	
  0	
  <	
  E <	
  1,	
  	
  the	
  unique	
  posiPve	
  equilibrium	
  of	
  the	
  fast	
  system,	
  

                                                         , is	
  a	
  global	
  adractor	
  for	
  all Rw >	
  0.	
  	
  	
  

  

V (0) = lim
E→0
V (E) =

0 for  Rw ≤1,
m(Rw −1)

k
for  Rw >1.

⎧

⎨
⎪

⎩
⎪

   

Let	
  g(E)	
  be	
  any	
  funcPon	
  saPsfying	
  the	
  condiPons:	
  	
               

g(0) = 0,   g(E) ≥ 0,   ′g (E) ≥ 0,   ′′g (E) ≤ 0.

 
U(E) = T (E), T *(E), V (E)( )

Moreover,	
  the	
  parasite	
  load	
  at	
  the	
  iniPal	
  stage	
  of	
  environmental	
  contaminaPon	
  is	
             

In	
  the	
  case	
  when	
  g(E) = 0, 	
  the	
  global	
  stability	
  of	
  (generalized)	
  system	
  (1)	
  has	
  been	
  
shown	
  in	
  P.	
  De	
  Leenheer	
  and	
  H.	
  Smith	
  (SIAM	
  J.	
  Appl.	
  Math.,	
  2003) 



The sub-system on the slower time scale 

The	
  between-­‐host	
  reproduc<on	
  number	
  is:	
  

 
I = λE N − I( )− µI ,       E = θ I V (E) 1− E( )−γ E   (4)	
  

The	
  slow	
  system	
  consists	
  of	
  the	
  between-­‐host	
  equaPons	
  (2a)	
  together	
  with	
  the	
  
environmental	
  contaminaPon	
  equaPon	
  (2b)	
  with	
  V	
  being	
  replaced	
  by	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  of	
  the	
  
posiPve	
  equilibrium	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  of	
  the	
  fast	
  system.	
  That	
  is:	
    

U(E) = ( T (E), T *(E), V (E))
 
V (E)

  
Rb =

θ V (0)
µ

λN
γ

Result	
  2.	
  Assume	
  Rw >	
  1.	
  	
  The	
  infec<on-­‐free	
  equilibrium	
  W0=(0,0)	
  is	
  l.a.s.	
  if	
  Rb <	
  1                   

               and	
  unstable	
  if	
  Rb >	
  1.	
  	
  	
  

  
where  V (0) = m(Rw −1)

k
  for  Rw >1 



Multiple positive equilibria of the slow system when Rb < 1 

Let	
  W*=(I*,	
  E*)	
  denote	
  an	
  equilibrium	
  of	
  system	
  (4)	
  with	
  I*,	
  E*	
  >	
  0.	
  Then	
  
	
  	
  
and E*	
  saPsfies	
  the	
  equaPon	
  F(E)	
  =	
  G(E)	
  or	
  	
  H(E)	
  = F(E)	
  - G(E)	
  = 0   where	
  

I * = λE*N
λE* + µ

  
F(E) = 1− E

c
g(E)+ pm

m + d
T0 − T (E,Rw )( )⎡

⎣⎢
⎤
⎦⎥
,      G(E) = γ E

θN
+ m(Rw −1)

kRb

 

H(E)	
  has	
  the	
  properPes:	
  

  

H (0)
= V (0) 1− 1

Rb

⎛
⎝⎜

⎞
⎠⎟

, if Rw >1,

< 0,                     if Rw ≤1,

⎧

⎨
⎪⎪

⎩
⎪
⎪

H (1) < 0  and   ′′H (E) < 0.

Fig.	
  1	
  

Thus,	
  it	
  suffices	
  to	
  check	
  

Hmax = max0≤E≤1
H (E)

 
 T (E) = 1

2
a1 − a1

2 − 4a2( )

 
with   a1 =

g(E)(m + d)
pm

+T0 1+ 1
Rw

⎛
⎝⎜

⎞
⎠⎟

,    a2 =
T0

2

Rw
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  equaPon	
  F(E)	
  =	
  G(E)	
  or	
  	
  H(E)	
  = F(E)	
  - G(E)	
  = 0   where	
  

I * = λE*N
λE* + µ

  
F(E) = 1− E

c
g(E)+ pm

m + d
T0 − T (E,Rw )( )⎡

⎣⎢
⎤
⎦⎥
,      G(E) = γ E

θN
+ m(Rw −1)

kRb

 

H(E)	
  has	
  the	
  properPes:	
  

  

H (0)
= V (0) 1− 1

Rb

⎛
⎝⎜

⎞
⎠⎟

, if Rw >1,

< 0,                     if Rw ≤1,

⎧

⎨
⎪⎪

⎩
⎪
⎪

H (1) < 0  and   ′′H (E) < 0.

Fig.	
  1	
  

Thus,	
  it	
  suffices	
  to	
  check	
  the	
  sign	
  of	
  

Hmax = max0≤E≤1
H (E)



Result	
  3.	
  	
  (a)	
  For	
  Rw >1 and Rb >1,	
  a	
  unique	
  W*=(I*,	
  E*)	
  exists.   

               	
  (b)	
  For	
  Rw >1 and Rb < 1,	
  	
  

	
  

	
  

	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (c)	
  For	
  Rv <1, ……	
  

  (i)  if Hmax > 0 then W1
* ≠W2

*  exist;
 (ii)  if Hmax = 0 then a unique W *=W1

* =W2
*  exists;

(iii)  if Hmax < 0 then W *  does not exist.

 Let E1
* ≤ E2

*  denote the two possible roots of H (E) and let  Wi
* = (Ii

*,Ei
*)

denote the corresponding equilibria (i = 1,  2).  Denote Hmax = max
0≤E≤1

H (E). 

Multiple positive equilibria of the slow system when Rb < 1 



Fig. 2.  
Bifurcation 
diagrams 
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Result 4.  Existence and stability of interior equilibria of the slow system 
       Conditions                                                          Existence and stability 

   Rw > 1     Rb < 1        Hmax > 0                      W1
*  (unstab),    W2

*  (l.a.s.)
                                            Hmax = 0                      W1

* =W2
*  (saddle node)

                                  Hmax < 0                       None

                Rb > 1                                              Unique W *  (g.a.s.)



Fig. 3. Simulations of the coupled system 
showing dynamical behaviors of the fast  and 
slow processes for the case Rw > 1 and Rb > 1 
(there is a unique positive equilibrium ŵ ). 

Numerical simulations of the full system (1) and (2) 

the factors that may play a critical role in generating these
bifurcations. In this section we provide a more detailed discussion
about the parameter regions in which these bifurcations occur. For
demonstration purposes, we focus on the specific form gðEÞ ¼ aE.

Consider first the case Rw041 and Rb0o1. As mentioned
earlier, although in the absence of coupling, the between-host
system cannot have a positive equilibrium when R̂b0o1 (see
Section 1.1), the coupled system can have two positive equilibria
even when Rb0o1 provided that Hmax40 (see Part (a) in
Theorems 3 and 7). It is illustrated in Fig. 3 that the condition
Hmax ¼ 0 actually determines the lower bound RbL of Rb0 for the
existence of multiple interior equilibria. That is, a backward
bifurcation occurs at Rb0 ¼ 1.

The behavior of this backward bifurcation is demonstrated in
Fig. 7, which plots the equilibrium fraction of infected individuals
Î=N as a function of Rb0. The leftmost point on the curve
corresponds to the lower bound RbL, and the window for multiple
interior equilibria is ðRbL;1Þ. The solid (dashed) part represents the
stable (unstable) interior equilibrium. The vertical arrows indicate
the direction of solutions as t-1 for different initial conditions.
We observe that some solutions converge to the interior equili-
brium evenwhenRb0o1. The parameter values used in this figure
are the same as in Fig. 3(a). In this case, RbL ¼ 0:87.

5.1. An example

The results obtained in this study, particularly the possibility of
backward bifurcation, can be helpful for gaining insights into the
spread and control of environmentally driven infectious diseases
such as toxoplasmosis.

Fig. 4. Simulations of the full system for the case Rw041 and RbLoRb0o1 (see (a)) and the case RwLoRw0o1 (see (b)). The parameter values are chosen such that the
system has two positive equilibria. Solution curves for different initial conditions are plotted (showing only the fraction of infected individuals I=N). It demonstrates that for
initial conditions near Ið0Þ ¼ 0 the solutions converge to the infection-free equilibrium, whereas for higher initial Ið0Þ values the solutions converge to the stable interior
equilibrium.

Fig. 5. Simulation results of the full system for the case Rw041 and Rb041. In this case, the system has a unique interior equilibrium. We observe that the fast variables,
V and Tn, converge quickly to the interior equilibrium (less than 30 days), and that it takes much longer time for slow variables to stabilize at the interior equilibrium
(more than 20 years).

Fig. 6. Similar to Fig. 5 but showing the solution curves in the ðE;VÞ phase plane. It
illustrates that the solutions of the full system exhibit two time scales for the fast
system (represented by the fast variable V(t)) and the slow system (represented by
the slow variable E(t)). We observe that, for each trajectory, V(t) approaches the
slow manifold very quickly followed by a slow convergence of E(t) to the
equilibrium Ŵ , which is labeled by the solid circle.
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(more than 20 years).
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illustrates that the solutions of the full system exhibit two time scales for the fast
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Fig. 4. (a) Simulations of the coupled system showing multiple stable equilibria for 
the case Rw > 1 and Rb < 1 (there are two positive equilibria). Plot (b) illustrates 
the lower bound of the window for the backward bifurcation. 

Numerical simulations of the full system (1) and (2) 
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Fig. 5. The window for multiple interior equilibria, (RbL,1), increases with a. 

The role of ingestion rate a=g’(0) in the backward bifurcation 

RbL	
  
Rb	
  

dT
dt

= Λ− kVT −mT

dT *

dt
= kTV − (m + d)T *

dV
dt

= g(E)+ pT * − cV

Recall g(0) = 0,   g(E) ≥ 0,   ′g (E) ≥ 0,   ′′g (E) ≤ 0.
Examples:
1)  g(E) = aE

2)  g(E) = aE
1+ bE

RbL	
  

Rb	
  



Evolution of virulence 
Z.	
  Feng,	
  X.	
  Cen,	
  Y.	
  Zhao,	
  J.	
  Velasco-­‐Hernandez,	
  Math.	
  Biosci.,	
  	
  2015	
  

(1)	
  

Within-­‐host	
  sub-­‐system:	
   Between-­‐host	
  sub-­‐system:	
  

(2a)	
  

Environmental	
  contamina<on:	
  

(2b)	
  

dT
dt

= Λ− kVT −mT

dT *

dt
= kTV − (m + d)T *

dV
dt

= g(E)+ pT * − cV

dS
dt

= µN − λES − µS

dI
dt

= λES − (µ +δ )I

N = S + I    

dE
dt

= θ(V )I(1− E)−γ EV̂ = Λc p
c(m + d)

− m
k

,   T̂ = c(m + d)
kp

At steady-state:  

Trade-off relationship (between transmission and pathogen virulence) 

θ(V̂ ) = a1V̂
z ,  z > 0 δ (T̂ ) = a2

1
T̂
− 1
T0

⎛
⎝⎜

⎞
⎠⎟

and 



Burst size 

Within-host and between-host fitness of pathogen 

where                are steady-state values of the within-host system  

Φ(p) = p
m + d(p)

V̂ (p) = ΛcΦ(p)
c

− m
k

,     T̂ (p) = c
kΦ(p)

,     d(p) = d0p
2

Within-host RN 
 
Rw (p) =

Φ(p)kT0
c

Between-host RN 
 
Rb (p) =

θ(V̂ (p))
µ +δ (T̂ (p))

⋅ λS0
γ

V̂  and T̂

 
Let  Rw (p*) = max

0<p<pmax
Rw (p)   and   Rb (p

• ) = max
0<p<pmax

Rb (p)

(5) 



 
From  δ (T̂ ) = a2

1
T̂
− 1
T0

⎛
⎝⎜

⎞
⎠⎟
  and  T̂ (p) = c

kΦ(p)
     ⇒       δ (p) = a2

kΦ(p)
c

− m
Λc

⎛
⎝⎜

⎞
⎠⎟

 

Notation: 

     pmax -- Physiological upper bound for pathogen production 

     p*  -- Optimal pathogen production at within-host level, 

     pc -- The critical point at which   

     p�  -- Optimal pathogen production at between-host level 

     δmax -- Upper bound for virulence 
     δ*  -- Optimal pathogen virulence at within-host level 

     δc -- The critical point at which    

     δ�  -- Optimal pathogen virulence at between-host level 

Relationship between virulence δ and pathogen production p  

 ′Φ (pc ) = 0  (or ′Rw (pc ) = 0)
 
Rw (p

*) = max
0<p<pmax

Rw (p)

 
Rw (δ

*) = max
0<δ <δmax

Rw (δ )

 
Rb (p

• ) = max
0<p<pmax

Rb (p)

 
Rb (δ

• ) = max
0<δ <δmax

Rb (δ )
 ′Rb (δ c ) = 0

p* = min pmax, pc{ },      δ * = δ (p*) = δmax (6) 



θ(p) = a1
ΛcΦ(p)

c
− m
k

⎛
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⎞
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z

,    δ (p) = a2
kΦ(p)
c

− m
Λc

⎛
⎝⎜

⎞
⎠⎟

  

θ(δ )=θ0
Λcδ
a2k

⎛
⎝⎜

⎞
⎠⎟

z

Then θ can be written as a function of δ with                           ; and thus,  

 
Rb (δ ) = λS0θ0

γ (µ +δ )
Λcδ
a2k

⎛
⎝⎜

⎞
⎠⎟

z

,     Rb (p) = λS0θ0

γ (µ +δ (p))
Λcδ (p)
a2k

⎛
⎝⎜

⎞
⎠⎟

z

At the between-host level, consider the case z <1.  Note that (see (5)) 

(7) 

Optimal pathogen production                   and virulence   p
*  and  p•  δ

*  and  δ •



Optimal pathogen production                   and virulence   p
*  and  p•

  
Rb (δ ) = λS0θ0

γ (µ +δ )
Λcδ
a2k

⎛
⎝⎜

⎞
⎠⎟

z

 and  Rb (p) = λS0θ0

γ (µ +δ (p))
Λcδ (p)
a2k

⎛
⎝⎜

⎞
⎠⎟

z

.Consider  

 

dRb

dp
= dRb

dδ
dδ
dp

= (δ c −δ )q
dδ
dp
,

  
Note that ′Rb (δ c ) = 0,  where δ c =

zµ
1− z

,  and

 
where   q = λS0a1(1− z)

γδ (µ +δ )2
Λcδ
a2k

⎛
⎝⎜

⎞
⎠⎟

z

> 0.

At the within- and between-host levels: 

δ * = δ (p*) = δmax    and   δ • = min{δmax,δ c}

v  If 

v  If 
 δmax < δ c  then δ • = δ *,  p• = p* (Fig. (a))
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 δmax > δ c  then δ • < δ *,  p• < p* (Fig. (b))
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Summary 
	
  

Ø  When the within- and between-host systems are in isolation, the dynamics are 
determined by the reproduction numbers (Rw and Rb) with threshold equal to 1.  

Ø  When the two systems are dynamically linked, backward bifurcations can occur, 
leading to a new threshold value Rb = RbL< 1. 

Ø  Two time scales of the immunological and epidemiological processes allow the 
analysis of the fast and slow systems for the derivation of the threshold 
conditions. Numerical simulations of the full system confirms the analytic results.  

 
Ø  The window (RbL ,1)  for multiple attractors due to the backward bifurcation 

decreases with the inoculation rate constant a, which can be reduced by control 
measures such as vaccination or reduced contact with contaminated environment  

Ø  The dynamically coupled model can be used to study questions related to the 
evolution of pathogen virulence and whether or not a conflict exists between 
natural selection at the within- and between-host levels. 



Meta-population models and mixing:  
A case study 

In	
  2000,	
  authoriPes	
  declared	
  measles	
  eliminated	
  from	
  the	
  

United	
  States.	
  In	
  January	
  2008,	
  an	
  inten<onally	
  

unvaccinated	
  7-­‐year-­‐old	
  boy	
  unknowingly	
  infected	
  with	
  

measles	
  returned	
  from	
  Switzerland,	
  resulPng	
  in	
  the	
  largest	
  

outbreak	
  in	
  San	
  Diego,	
  California,	
  since	
  1991	
  



Mathematical modeling has affected vaccination policy 
throughout the developed world and, via the WHO, elsewhere 

 

Policy goals vary with disease and setting, but preventing 
outbreaks is common 

 

This is attained by exceeding the population immunity at 
which R, the average number of secondary infections per 
infectious person, is one 

 

The threshold (at which Rv=1) is p=1-1/R0, where R0 is the 
average number of effective contacts while infectious 

Background 



•  While	
  immunity	
  is	
  at	
  or	
  above	
  this	
  threshold	
  for	
  many	
  vaccine-­‐
preventable	
  diseases	
  in	
  the	
  US,	
  policymakers	
  are	
  concerned	
  about	
  
heterogeneity	
  in	
  vaccinaPon	
  coverage	
  

•  Socioeconomic	
  status	
  sPll	
  affects	
  access	
  to	
  medical	
  care,	
  but	
  ACIP	
  
recommended	
  vaccines	
  became	
  accessible	
  in	
  1994	
  via	
  the	
  Vaccines	
  
for	
  Children	
  Program	
  

•  Currently,	
  policymakers	
  are	
  concerned	
  about	
  personal-­‐belief	
  
exemp<ons	
  (PBE),	
  by	
  which	
  parents	
  can	
  avoid	
  having	
  their	
  children	
  
vaccinated	
  

•  Parents	
  who	
  have	
  the	
  belief	
  that	
  vaccinaPon	
  is	
  harmful	
  tend	
  to	
  live	
  
in	
  the	
  same	
  neighborhoods	
  and,	
  consequently,	
  their	
  children	
  
adend	
  the	
  same	
  elementary	
  schools	
  

Background (cont’d) 
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A metapopulation model and the mixing matrix (cij) 
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The next generation matrix is  

Rv = ρ(K)  is the dominant eigenvalue of K 
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1
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$%

&
'(
, where

When n = 2, 



Baseline Characteristics 

Characteristic Measles Mumps Rubella 

R0 ignoring heterogeneity & mixing 10.71 8.49 4.08 

Population-immunity threshold 0.907 0.882 0.755 

Vaccine efficacy  (dose 1) 
Vaccine efficacy  (dose 2) 

0.92 
0.95 

0.8 
0.9 

0.9 
0.95 

Average population immunity 0.922 0.872 0.921 

R0 considering heterogeneity & non-random mixing 18.06 14.33 6.88 

Population-immunity threshold  0.945 0.93 0.855 

Rv considering heterogeneity & non-random mixing 3.39 2.88 1.29 

Table	
  1.	
  VaccinaPon	
  against	
  measles,	
  mumps	
  and	
  rubella	
  in	
  elementary	
  schools	
  
in	
  San	
  Diego	
  County,	
  California.	
  	
  



Measles Results 

Intervention Coverage Rv  Schools Children 

MMR coverage at school entry 97.1 3.39 638 39,132 

Eliminating personal-belief 
exemptions 

       2.48   2.28 292 972 

Low-coverage, high-activity schools         0.4-0.9      0.24-1.37 65 164-342 

All high-activity schools         0.9-1.4      0.26-1.37 385 369-547 

All low-coverage schools         0.9-1.6      0.24-2.37 114 361-638 

Private schools       0.4   0.02 208 145 

Among these interventions, eliminating non-medical exemptions is comparable to 
increasing by 50% the proportion of children vaccinated in low-coverage schools 

Table	
  2.	
  Impact	
  of	
  hypothePcal	
  intervenPons	
  to	
  control	
  measles	
  in	
  San	
  Diego	
  
County,	
  California,	
  elementary	
  schools.	
  	
  



Contributions of n=200 schools in San Diego District to R0 
and Rv by location 

Articles
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We then calculated the meta-population reproduction 
numbers for measles, mumps, and rubella in San Diego 
County. By contrast with the naive numbers discussed 
above, for which we used weighted average per person 
eff ective contact rates and proportions immune (which is 
tantamount to assuming homo geneous randomly-mixing 
subpopulations), these numbers use school-specifi c ones. 
Henceforth, we omit the term meta-population when 
possible without confusion. Next we mapped school or 
neighbourhood contributions to measles’ reproduction 
numbers.

Modelling interventions
We modelled the eff ect of our interventions—vaccinating 
all children with personal-belief exemptions; increasing 
uptake by 10% or 50% in all low-immunity schools or only 
infl uential low-immunity ones (appendix pp 1–2); or 
increasing private school uptake to the public school 
average—on the outbreak potential of measles, the average 
number of secondary infections per infectious person (ie, 
realised reproduction number).

To model vaccinating children with personal-belief 
exemptions, we incremented school-specifi c proportions 
of children immune to each disease by products of the 
proportions with non-medical exemptions and dose-
specifi c vaccine effi  cacies (92% for one dose and 95% for 
two doses),12 weighted by the proportions of children 
who had received one and two doses in their respective 
schools. For example, in a hypothetical school in which 
90% of students had received one dose of the MMR 
vaccine, 85% had received two doses, and 5% had 
personal-belief exemptions, this intervention would 
increase the proportion immune to measles from 
0·05 × 0·92 + 0·85 × 0·95 ≈ 0·85 to [0·05 + (0·05 × 0·05)] × 
0·92 + [0·85 +(0·85 × 0·05)] × 0·95 ≈ 0·9.

To model 10% or 50% increases of uptake in low-
immunity (defi ned as schools in which <90% of students 
are immune) or infl uential schools (defi ned as schools 
with average per person contact rates of at least three per 
day, or more than 30% of their contacts with children in 
other schools or neighbourhoods, or both), we multiplied 
the proportions of their children who are immune by 1·1 
or 1·5. For example, in a hypothetical school in which 50% 
of students were immune, this intervention would increase 
immunity to 55% and 75%. In a school in which 89% of 
students were immune, post-intervention pro portions 
immune would be 98% and 100%. 

To model increasing private school uptake, which 
averaged 0·89 in 2007, to that of public schools, which 
averaged 0·93, we multiplied the proportion of children 
immune in each private school by the ratio of the public 
and private school averages. For example, in a private 
school in which 85% of students were immune, 
immunity would increase to 0·85 × (0·93/0·89) ≈ 0·89 
post-intervention. 

Role of the funding source
There was no external funding source for this study. The 
corresponding author had access to all data and had fi nal 
responsibility for the decision to submit the manuscript 
for publication.

Results
39 132 children began school in 2008 in San Diego County, 
of whom 95% had received two doses of MMR vaccine and 
97% had received one dose. Figure 1 shows the spatial 
distribution of contact rates for children entering 
elementary school in San Diego School District, the 
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in San Diego School District
The red dot shows the location of the school in which the 2008 measles outbreak began. The small peak of residual 
outbreak potential (B) is attributable to 30% of the children in this school having personal-belief exemptions to 
vaccination. Comparison of fi gures shown in the appendix (pp 5–6) illustrates the eff ect of vaccinating all such 
children in San Diego County.
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We then calculated the meta-population reproduction 
numbers for measles, mumps, and rubella in San Diego 
County. By contrast with the naive numbers discussed 
above, for which we used weighted average per person 
eff ective contact rates and proportions immune (which is 
tantamount to assuming homo geneous randomly-mixing 
subpopulations), these numbers use school-specifi c ones. 
Henceforth, we omit the term meta-population when 
possible without confusion. Next we mapped school or 
neighbourhood contributions to measles’ reproduction 
numbers.

Modelling interventions
We modelled the eff ect of our interventions—vaccinating 
all children with personal-belief exemptions; increasing 
uptake by 10% or 50% in all low-immunity schools or only 
infl uential low-immunity ones (appendix pp 1–2); or 
increasing private school uptake to the public school 
average—on the outbreak potential of measles, the average 
number of secondary infections per infectious person (ie, 
realised reproduction number).

To model vaccinating children with personal-belief 
exemptions, we incremented school-specifi c proportions 
of children immune to each disease by products of the 
proportions with non-medical exemptions and dose-
specifi c vaccine effi  cacies (92% for one dose and 95% for 
two doses),12 weighted by the proportions of children 
who had received one and two doses in their respective 
schools. For example, in a hypothetical school in which 
90% of students had received one dose of the MMR 
vaccine, 85% had received two doses, and 5% had 
personal-belief exemptions, this intervention would 
increase the proportion immune to measles from 
0·05 × 0·92 + 0·85 × 0·95 ≈ 0·85 to [0·05 + (0·05 × 0·05)] × 
0·92 + [0·85 +(0·85 × 0·05)] × 0·95 ≈ 0·9.

To model 10% or 50% increases of uptake in low-
immunity (defi ned as schools in which <90% of students 
are immune) or infl uential schools (defi ned as schools 
with average per person contact rates of at least three per 
day, or more than 30% of their contacts with children in 
other schools or neighbourhoods, or both), we multiplied 
the proportions of their children who are immune by 1·1 
or 1·5. For example, in a hypothetical school in which 50% 
of students were immune, this intervention would increase 
immunity to 55% and 75%. In a school in which 89% of 
students were immune, post-intervention pro portions 
immune would be 98% and 100%. 

To model increasing private school uptake, which 
averaged 0·89 in 2007, to that of public schools, which 
averaged 0·93, we multiplied the proportion of children 
immune in each private school by the ratio of the public 
and private school averages. For example, in a private 
school in which 85% of students were immune, 
immunity would increase to 0·85 × (0·93/0·89) ≈ 0·89 
post-intervention. 
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Detailed results are presented in two published articles 


