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Application of an SIR model to vaccination policymaking

* An elaboration of theory about preventing outbreaks in homogeneous
populations to include heterogeneity or preferential mixing

Zhilan Feng, Andrew Hill, Philip Smith and John Glasser
J. Theoretical Biology, 2015

« The effect of heterogeneity in uptake of the measles, mumps, and rubella
vaccine on the potential for outbreaks of measles: a modelling study

John Glasser, Zhilan Feng, Saad Omer, Philip Smith, Lance Rodewald
Lancet Infectious Diseases, 2016



Accompanied Comment (Lancet Infectious Diseases, 2016)

Comment

Managing the risks of vaccine hesitancy and refusals

In The Lancet Infectious Diseases, John Glasser and
colleagues® report the results of a spatially-stratified
model to better understand the dynamics of disease
outbreaks and the link with vaccine hesitancy and
refusal. Using data for 39132 children starting
elementary school in San Diego County, CA, USA, in
2008 (2% of whom had a personal-belief exception to
vaccines), the authors show the effect of heterogeneity
on the reproduction numbers for measles, mumps, and
rubella. Although the mean population immunities
for measles, mumps, and rubella were similar to the
population-immunity  thresholds, modelling for
non-random mixing (unvaccinated children tend to

services; and the negative influence of so-called vaccine
controversies in the media, especially the wider diffusion
of vaccine-critical messages on the internet and social
media. In most countries only a very small proportion of
the population hold strong anti-vaccination convictions
(so-called vaccine deniers). However, up to a third of
people might have doubts and uncertainties that can
lead them to refuse some vaccines but agree to others,
delay vaccination, or follow the recommended schedule
but with reluctance.*

Vaccine hesitancy, defined as delay in acceptance or
refusal of vaccines despite availability of vaccination
services, is now recognised as a complex and rapidly
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Accompanied Comment (Lancet Infectious Diseases, 2016)

Managing the risk of vaccine hesitance and refusals I
Comment

Sadly, putting Glasser and colleagues’ recommended
approach into practice remains easier said than done......

Transparent communications and tailored interventions can | .
help to build trust in the effectiveness and safety of vaccines, o
in the system that delivers them, and in the motivations of the :'jl
policy makers who decide which vaccines are needed when pns
and where. This method takes commitment, but the tailored ::
multipronged approach is the only way to maintain PIS:

ule
vaccination programme successes in the long run. —
TOT mMedsies, mumps, dnd rupeiid were Simiidr to the  vdccine nesitarcy, aernea ds deidy In dcceptance or  Lancetinfect Dis2016

population-immunity  thresholds, modelling for refusal of vaccines despite availability of vaccination ;’“:"Shedf;::g
- : : . : ! ' ebruary 4,
non-random mixing (unvaccinated children tend to services, is now recognised as a complex and rapidly htp://dx.doiorg/i0.1016/
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Mathematical models for within- and between-host dynamics
IN ISOLATION

At individual level (cell-virus) At population level (an S/ model)
T
o= A=KV =T gzb(m_w—us
dT’ "
?:kTV—(mHI)T %zllS—(#+5)1
d_V:pT*—CV N=5+1
dt

T, T* Uninfected, Infected cells S, I  Susceptible, Infected hosts

Vv Density of virus N Total density of hosts

k Infection rate of cells
m, d Mortality of cells

A Infection rate of hosts
b Birth rate of hosts

p  Virus production u, 6 Death rates of hosts
c Clearance of viruses
AN
_ Tykp R, = 05
Y e(m+d) B+

R, =1 is the threshold value. ' R,=1 is the threshold value.
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Coupling within- and between-host dynamics (nested models)

(Gilchrist & Sasaki, JTB 2002; Gilchrist & Coombs, TPB 2006; Boldin & Diekmann, JMB, 2008;
Mideo, Alizon, & Day, Trends Ecol Evol. 2008; Qesmi, Heffernan & Wu, JMB, 2015)

At individual level (cell-virus)

dT
dr
dr”
dr

=A—kVT —mT

=kTV —(m+d)T"

T, T* Uninfected, Infected cells

V
k

Density of virus

Infection rate of cells

m, d Mortality of cells, d =d(p)

p

C

Virus production

Clearance of viruses

_ Tykp
" dm+d(p)]

At population level (S model)

df = b(S,1)— A(V)IS — uS

dl

dr

S, 1

T,V
b(S,T)

M, O

AIS — (1 +8(TH))I

Susceptible, Infected hosts

Equilibrium values (at fast time scale)

Birth rate, b(S,,0)= UN,

Infection rate of hosts

Death rates of hosts

2*No _ A(P)No

R — _
" u+d  u+d(p)
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Coupling within- and between-host dynamics (nested models)

(Gilchrist & Sasaki, JTB 2002; Gilchrist & Coombs, TPB 2006; Boldin & Diekmann,
JMB, 2008; Mideo, Alizon, and Day, Trends Ecol Evol. 2008; Lenhart, 2014, 2015)

At individual level (cell-virus)

d—T:A—kVT—mT
dt

dT”

=kTV —(m+d)T"
dt

@& T ey
a P

_ Tokp
c[m+d(p)]

Let R (p)= max R (p)

0<p<Pmax

L)

/

At population level (S model)

% =b(S,1)— AM(V)IS— uS

% = AWIS — (1 +8(T)I

_ AN, _ LN,
" u+8(T) u+d(p)

Let R, (p° )— max R, (p)

<P<Pmax

% If p"=p°, then there is no conflict between selection at the two different levels

% Otherwise, a conflict exists between natural selection at the two levels



Emerging disease dynamics

when the within- and between-host systems are

coupled dynamically
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A project developed during a working group at NIMBioS
(Multi-scale Modeling of the Life Cycle of Toxoplasma gondii)

Mike Gilchrist Jorge Velasco-Hernandez




PURDUE

Life cycle of Toxoplasma gondii

A\ " Infective Stage

e A A = Diagnostic Stage
L
0
T| ssue
(6] Cysts
“» A
« t‘ g { ;

)
.
B

Fecal
Oocysts

\
7’> ,‘4 ..

http./Awww. dpd cdc.govidpdx
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The only known definitive
hosts for T. gondii are
members of family Felidae
(domestic cats and relatives)

Cats become infected after
consuming infected rats, or
directly by ingestion of
sporulated oocysts, which
can survive and remain
infective for many months

The parasites infect
intestinal epithelial cells in
cats. Tachyzoites invade
cells and multiplies. When
the cells die, the tachyzoites
are released and infect
other cells
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Life cycle of Toxoplasma gondii

The only known definitive
hosts for T. gondii are
members of family Felidae
(domestic cats and relatives)

Cats become infected after
consuming infected rats, or
directly by ingestion of
sporulated oocysts, which

Oocysts released with , :
can survive and remain

Tissue feces and contaminate

cysts , infective for many months
the environment
> The parasites infect
Indest - intestinal epithelial cells in
' cats. Tachyzoites invade
(X cells and multiplies. When
o the cells die, the tachyzoites

are released and infect
other cells
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OIS
Cellular stages of T. gondii (simplified)
QOCYST ] = OOCYST
(intestinal cell) (felc'-’S)
|
|
Q GAMETE G GAMETE SPORl'JLATED
OOCYST
= with 8 zoites
SCHIZONT ingests ‘
(intestinal cells) cocyst

TACHYZOITE
Qissuc cells)

(%
z
TACHYZOITE "“GROUP” 2
(tissve cells) ediate 2
“GROUP”
BRADYZOITES—|®
in CYST
BRADYZOITES
in cyst

Illustration from: Georges' Parasitology for Veterinarians, 6th edition, D.D. Bowman, 1995. W.B. Saunders Co., Philadelphia, PA
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A model dynamically coupling within- and between-host systems

» Z.Feng, J. Velasco-Hernandez, B. Tapia-Santos,
A mathematical model for coupling within-host and between-host dynamics
in an environmentally-driven infectious disease, Mathematical Biosciences,
2013

» X.Cen, Z. Feng, Y. Zhao,
Emerqging disease dynamics in a model coupling within-host and between-
host systems, J. Theoretical Biology, 2014

» Z.Feng, X. Cen, Y. Zhao, J. Velasco-Hernandez,
Coupled within-host and between-host dynamics and evolution of virulence,

Mathematical Biosciences, 2015
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A model dynamically coupling within- and between-host systems

Within-host sub-system:
d_T

=A—kVT —mT
dt
dditszV—(m+d)T* (1)

d—V: g(E)+pT" —cV
dt

A, kK Transmission rates

U Birth and death rate of hosts
m, d Mortality of cells

)% Parasite production

c Mortality of parasites

6,y Contamination, clearance

2(E) Ingestion of oocysts

8(0)=0, g(E)20, g'(E)20, ¢"(E)<0.

Between-host sub-system:
ds

“~ =uN—-AES—puS

pals u
ﬂz?tES—,uI (2a)
dt

N =S+1 (constant)

Environmental contamination:

‘;—f —OIV(-E)-yE  (2b)

S, 1  Susceptible, Infectious hosts

E Environmental contamination (0 <E<1)

T, T* Uninfected, Infected cells

4 Parasite density
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The fast system for within-host dynamics

Consider the within-host sub-system (1) as the fast-system (with E being constant).

_ Tikp
Y oc(m+d)

The within-host reproduction number:

Equilibrium for E > 0: for all R, > 0, there is a unique interior equilibrium given by

U(E)=(T(E),T"(E),V(E)) where

5 1 ~ % ~ % ~ ~ 1
V(E)=—(g(E)+ pT"(E)), T (E)=l(TO—T(E)), T(E)=—(a1—\/a12—4a2) (3)
C m+d 2
) 2
with al:g(E)(m+d)+T0 1+L , a2:T—O, a’ —4a, =T, 1—L :
pm R, R, R,

Note: V(E) provides an input for the between-host (/,E) sub-system.
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Stability of the fast system

In the case when g(E) =0, the global stability of (generalized) system (1) has been
shown in P. De Leenheer and H. Smith (SIAM J. Appl. Math., 2003)

Let g(£) be any function satisfying the conditions:
g(0)=0, g(E)>0, g'(E)>0, g"(E)<0.

Result 1. For 0 < £ < 1, the unique positive equilibrium of the fast system,

U(E)= (T(E),T*(E),V(E)), is a global attractor for all R > 0.

Moreover, the parasite load at the initial stage of environmental contamination is

0 for R, <1,
VO)=lImV(E)=3 m(R,-1)

for R, >1.
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The sub-system on the slower time scale

The slow system consists of the between-host equations (2a) together with the
environmental contamination equation (2b) with V being replaced by V(E) of the
positive equilibrium U(E)=(T(E),T (E),V(E)) of the fast system. That is:

[=AE(N-I)-ul, E=60IV(E)1-E)-yE (4)

The between-host reproduction number is:

m(R, —1)

_ 6V(0) AN

R
TR

where V(0)=

for R, >1

Result 2. Assume R, > 1. The infection-free equilibrium W,=(0,0) is l.a.s. if R, <1
and unstable if R, > 1.
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Multiple positive equilibria of the slow system when R, < 1

*k

Let W'=(I", E") denote an equilibrium of system (4) with I', E">0. Then I = ;35* N
TUu

and E” satisfies the equation F(E) = G(E) or|H(E) =F(E) —G(E) = O] where

1- ~
F(E)= TE[g<E>+ (7, - T(E,RW>)}, G(E)=

|

T(E)= %(a1 —\a’ —4a, )

E 1 T’
with a1=g( )(m+d)+TO(l+—j, a, =—-
pm

YE N m(R, —1)
6N kR,




-

G0N A e

Multiple positive equilibria of the slow system when R, <1

Let W'=(I", E”) denote an equilibrium of system (4) with I', E*>0. Then [ = )'*—N
AE +U
and E” satisfies the equation F(E) = G(E) or|H(E) =F(E) —G(E) = O] where
1-E pm ~ ) yE m(R -1)
F(E)y=——|g(E)+ T,-T(E,R , G(E)= + -
(E)=— [g( )+ (T, =T W>)_ B)= v kR,
Fig. 1 o
H(E) has the properties: L 2"";‘;"33
( . —-== R;,0=0.93
= ‘7(0) 1-— |, if RW >1, — Rno=RnL «
H(0)- R, ) 7 esy N e Riy=0.75
<0, if R, <1, F
H(1)<0 and H”(E)<O.
Thus, it suffices to check the sign of ‘
'linmxzzjnlaXLEI(lz) ; 038 1

0<E<]
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Multiple positive equilibria of the slow system when R, < 1

Let El* < E; denote the two possible roots of H(E) and let Wi* =l l.* ,E; )
denote the corresponding equilibria (i =1, 2). Denote H_, = max H (E).

0<E<]

Result 3. (a) For R, >1 and R, >1, a unique W’=(I", E”) exists.
(b) For R, >1 and R, <1,

(i) if H_ >0 then W, #W, exist;
(ii) if H_, =0 then a unique W =W, =W, exists;
(iii) if H__ <0 then W does not exist.

(c) For R, <1, ......
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Stability of equilibria for the slow system

Result 4. Existence and stability of interior equilibria of the slow system

Conditions Existence and stability
R >1 R <l H_ >0 W’ (unstab), W, (Las.)
H_ . =0 W, =W, (saddle node)
H_ <0 None
R, >1 Unique W~ (g.a.s.)
/N I*/N
t Forward bifurcation 0%t Backward bifurcation Fig. 2.
04/ Bifurcation
ol l diagrams
for R, >1
0.2}
0.1} ) I
N
0 : A% ;*‘&_;_ — > Rb

05 R, ! 1.5
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Numerical simulations of the full system (1) and (2)

1.5 1 1
—_— T — I/N
-y {4 o 087 -=-- F {08
S 1} = £ z
X X € 06f 106 =
=~ N~ = =
z z E_ | mmm———— g
Z ~ 2 Z & 047 " 104 2
gosip__ oo Z E - E
0.2 t 10.2
1 -
0 ' 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0
0 30 60 90 120 150 0 5 10 15 20 25 30 35 40 45
Time (days) Time (years)
6. Fig. 3. Simulations of the coupled system
W showing dynamical behaviors of the fast and
al J slow processes for the case R,,> 1 and R, > 1
= (there is a unique positive equilibrium W ).
>
2 L) Ar r +
0. . . .
0 0.2 04 0.6 08
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Numerical simulations of the full system (1) and (2)

UENEIEVEESRESTICTY

I/N (a) I*/N (b)
0.5+
04
04
03}
03} l
0.2
02}
0.17 0.1} T
_______________________ 5\\
_& I Time 0 | v ; ¢ \\L ——— e R’b
0 20 40 60 0.5 R, 1 1.5

Fig. 4. (a) Simulations of the coupled system showing multiple stable equilibria for
the case R,,> 1 and R, < 1 (there are two positive equilibria). Plot (b) illustrates
the lower bound of the window for the backward bifurcation.
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The role of ingestion rate a=g’(0) in the backward bifurcation

I/N
— a=2x10°
04+
02+
E -._;_\--ﬂh—-k
0 be . 1

Fig. 5. The window for multiple interior equilibria, (R,,,1), increases with a.

R,

10

ax]l

02

04

0.6

08

Recall 4T _, .vr_ .7
dt
dr”
dr
dv

~——=g(E)+pT" —cV
" g(E)+p

=kTV —(m+d)T"

2) g(E)=

g(0)=0, g(E)20, g'(E)20, g"(E)<0.

Examples:

1) g(E)=aFE
ak

1+
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Evolution of virulence

Z. Feng, X. Cen, Y. Zhao, J. Velasco-Hernandez, Math. Biosci.,

2015
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Within-host sub-system:

d—TzA—kVT—mT
dt
ddit:kTV—(m+d)T*

av
= o(E)+ pT —=cV
o =g(E)+p

At steady-state:

(1)

Between-host sub-system:

dS
— =UN—-AES—uS
i H H

%zlES—(,u+6)l (2a)

N=S+1

Environmental contamination:

‘fl—f =0(V)I(1-E)-yE  (2b)

Trade-off relationship (between transmission and pathogen virulence)

9(\7):a1\7z,z>0 and 5(f)za2[%_i)

1
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Within-host and between-host fithess of pathogen

p
m+d(p)

Burst size ®D(p)=

Within-host RN R _(p)= 2Py

O(V(p)  AS,

Between-host RN R, (p)= ~
u+o(T(p) v

where V and T are steady-state values of the within-host system

ADp) m 5 _ 5
= T(p) D) d(p)=d,p (9)

V(p)=

Let R (p )= max R (p) and R, (p° )— max R, (p)

0<p<Pmax <P<Pmax
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Relationship between virulence é and pathogen production p

~ i_i _ _ k(I)(p)_ m
From B(T)—az(]: Toj (P) k(I)(p) o(p) az( P Ac)
p =min{p,..p.}, 6 =8(p)=86,, (6)
Notation:

Pmax -- Physiological upper bound for pathogen production

p" -- Optimal pathogen production at within-host level, R. (p )— max R (p)
p. -- The critical point at which  ®’(p_.)=0 (or R/ (p.)=0) R

p° -- Optimal pathogen production at between-host level R, (p° )— max R,(p)
Onax - Upper bound for virulence -

& -- Optimal pathogen virulence at within-host level R (5")= Orgl%iiaxR ()

O, -- The critical point at which  R/(6.)=0

o -- Optimal pathogen virulence at between-host level R, (8°)= ,max R,(0)



UPNEIEVEET RESTITITY

-

Optimal pathogen production p* and p° and virulence § and §°

At the between-host level, consider the case 7 <1. Note that (see (5))

A @ ‘ k®D
9(p)=al( "C(p)—ﬂ), 5(17):02( C(p)—m)

k A,

Acgj  and thus,

Then 6 can be written as a function of é with 9(6)=00(

a,

150 (ASY AS.6 A(S(p)jz
R 6 — ovo c : R — ovo c (7)
0 y(u+6>(a2kj »(P) Y(u+5(p))( ak
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Optimal pathogen production p* and p° and virulence § and §°

. 28,0, (AS) 28,0, (AS(p))
Consider R, (8)= 00 ( ¢ ) and R (p)= ks ( : ]
"yt 6)\ ark U yu+S(p)H\ ark
Note that R/(56.)=0, where 6, = lz_,u and
—Z 8
7,
AR, _dR, d5 _ 5 5 d o
dp do dp dp éi
Z = 3
AS,a,(1-2)( AO 2}
h — 0™1 C O |
e 1 S (v oy [k] " |

At the within- and between-host levels:

(b) — Ry

5§ =6(p)=6,, and & =min{S,, .0} e — 7,

max ?

 If §_ <8 then8'=8",p"=p (Fig.(@))

> If 5 >8 then 5" <8 ,p°<p (Fig.(b))
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Summary

>

When the within- and between-host systems are in isolation, the dynamics are
determined by the reproduction numbers (R, and R;) with threshold equal to 1.

When the two systems are dynamically linked, backward bifurcations can occur,
leading to a new threshold value R,= R,,<1.

Two time scales of the immunological and epidemiological processes allow the
analysis of the fast and slow systems for the derivation of the threshold
conditions. Numerical simulations of the full system confirms the analytic results.

The window (R,; ,1) for multiple attractors due to the backward bifurcation
decreases with the inoculation rate constant a, which can be reduced by control
measures such as vaccination or reduced contact with contaminated environment

The dynamically coupled model can be used to study questions related to the
evolution of pathogen virulence and whether or not a conflict exists between
natural selection at the within- and between-host levels.
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Meta-population models and mixing:

A case study

In 2000, authorities declared measles eliminated from the
United States. In January 2008, an intentionally
unvaccinated 7-year-old boy unknowingly infected with
measles returned from Switzerland, resulting in the largest

outbreak in San Diego, California, since 1991



.II. TNV ET RSy,

Background

@ Mathematical modeling has affected vaccination policy
throughout the developed world and, via the WHO, elsewhere

@ Policy goals vary with disease and setting, but preventing
outbreaks is common

@ This is attained by exceeding the population immunity at
which R, the average number of secondary infections per
infectious person, is one

@ The threshold (at which R,=1) is p=1-1/R,, where R, is the
average number of effective contacts while infectious
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Background (cont’d)

*  While immunity is at or above this threshold for many vaccine-
preventable diseases in the US, policymakers are concerned about
heterogeneity in vaccination coverage

* Socioeconomic status still affects access to medical care, but ACIP
recommended vaccines became accessible in 1994 via the Vaccines
for Children Program

* Currently, policymakers are concerned about personal-belief
exemptions (PBE), by which parents can avoid having their children
vaccinated

e Parents who have the belief that vaccination is harmful tend to live
in the same neighborhoods and, consequently, their children
attend the same elementary schools
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Personal belief exemption percentages by school and

district, San Diego County

Schools
e 0%
°  0.01-2.49%
O 250-4.99%
O  5.00-19.99%
O 220%
School Districts
[ Jo%
[]oot249%
[ 254.99%
B 5.00-19.99%
Bl = 20%

0.5

Pr(exempt)

100

School
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A metapopulation model and the mixing matrix (c;)

1-p;)Pa,
X /
1-pi /o,- The next generation matrix is
4N, Births Ry Ao, - Re,
mN, deaths omitted from the flow diagram K = Roe Ry o Rpe,,
" : : . :
% = ,L[Nl (1 — pi ) - (/ll + /LI)SI i ERvncnl 9%vncnl o 8%vncnn |
% =4S, —(y+u)l, R,=p(K) is the dominant eigenvalue of K
t
R. —
iztl = UN,p, + 71, - iR, Whenn =2,
I, %R =l!A+D+\/(A—D)2+4BC},where
A = aiﬁz Cij — b2
J Nj

N, =S +1+R, i,j=1,..n A=R ¢\, B=WR c,, C=N ,c,, D=N ,c,,
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Baseline Characteristics
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Table 1. Vaccination against measles, mumps and rubella in elementary schools

in San Diego County, California.

Characteristic Rubella

R, ignoring heterogeneity & mixing 10.71
Population-immunity threshold 0.907
Vaccine efficacy (dose 1) 0.92
Vaccine efficacy (dose 2) 0.95
Average population immunity 0.922

R, considering heterogeneity & non-random mixing 18.06
Population-immunity threshold 0.945

R, considering heterogeneity & non-random mixing 3.39

8.49
0.882

0.8
0.9
0.872

14.33
0.93
2.88

4.08
0.755

0.9
0.95
0.921

6.88
0.855
1.29
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Measles Results

Table 2. Impact of hypothetical interventions to control measles in San Diego
County, California, elementary schools.

MMR coverage at school entry 97.1 3.39 39,132
Eliminating personal-belief A 248 V2.8 292 972
exemptions

Low-coverage, high-activity schools P 0409 ¥ 0.24-137 65 164-342
All high-activity schools 4 09-1.4 | 0.26-1.37 385 369-547
All low-coverage schools A 09-1.6 | 0.24-2.37 114 361-638
Private schools 4 0.4 ¥ 0.02 208 145

Among these interventions, eliminating non-medical exemptions is comparable to
increasing by 50% the proportion of children vaccinated in low-coverage schools
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Contributions of n=200 schools in San Diego District to R,
and R, by location
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Detailed results are presented in two published articles

* An elaboration of theory about preventing outbreaks in homogeneous
populations to include heterogeneity or preferential mixing

Zhilan Feng, Andrew Hill, Philip Smith and John Glasser
J. Theoretical Biology, 2015

« The effect of heterogeneity in uptake of the measles, mumps, and rubella
vaccine on the potential for outbreaks of measles: a modelling study

John Glasser, Zhilan Feng, Saad Omer, Philip Smith, Lance Rodewald
Lancet Infectious Diseases, 2016



