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Managing the risk of vaccine hesitancy and  

Managing the risk of vaccine hesitance and refusals 

Sadly,	  puMng	  Glasser	  and	  colleagues’	  recommended	  
approach	  into	  prac<ce	  remains	  easier	  said	  than	  done……	  
	  
Transparent	  communica<ons	  and	  tailored	  interven<ons	  can	  
help	  to	  build	  trust	  in	  the	  effec<veness	  and	  safety	  of	  vaccines,	  
in	  the	  system	  that	  delivers	  them,	  and	  in	  the	  mo<va<ons	  of	  the	  
policy	  makers	  who	  decide	  which	  vaccines	  are	  needed	  when	  
and	  where.	  This	  method	  takes	  commitment,	  but	  the	  tailored	  
mul<pronged	  approach	  is	  the	  only	  way	  to	  maintain	  
vaccina<on	  programme	  successes	  in	  the	  long	  run.	  



Mathema<cal	  models	  for	  within-‐	  and	  between-‐host	  dynamics	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  IN	  ISOLATION	  

k        Infection rate of cells 
m, d   Mortality of cells  
p        Virus production 
c        Clearance of viruses 

At individual level (cell-virus) 

T, T*  Uninfected, Infected cells  

V        Density of virus

λ        Infection rate of hosts 
b        Birth rate of hosts 
 µ, δ   Death rates of hosts 

At population level (an SI model) 

S, I     Susceptible, Infected hosts  

N        Total density of hosts

dS
dt

= b(N )− λIS − µS

dI
dt

= λIS − (µ +δ )I

N = S + I   

dT
dt

= Λ− kVT −mT

dT *

dt
= kTV − (m + d)T *

dV
dt

= pT * − cV

 
Rw =

T0kp
c(m + d)  

Rb =
λN0

µ +δ

Rw=1 is the threshold value. Rb=1 is the threshold value.



Coupling	  within-‐	  and	  between-‐host	  dynamics	  (nested	  models)	  

k        InfecPon	  rate	  of	  cells	  
m, d   Mortality	  of	  cells,	  d	  = d(p)	  	  
p        Virus	  producPon	  
c        Clearance	  of	  viruses	  

At individual level (cell-virus) 

T, T*  Uninfected,	  Infected	  cells	  	  

V        Density	  of	  virus	  

λ              InfecPon	  rate	  of	  hosts	  
µ, δ          Death	  rates	  of	  hosts	  

At population level (SI model) 

S, I          SuscepPble,	  Infected	  hosts	  	  

               Equilibrium	  values	  (at	  fast	  Pme	  scale)	  

b(S,I)      Birth	  rate,	  	  	  

dS
dt

= b(S, I )− λ(V̂ )IS − µS
dT
dt

= Λ− kVT −mT

dT *

dt
= kTV − (m + d)T *

dV
dt

= pT * − cV

T̂ ,V̂
b(S0,0) = µN0

 
Rw =

T0kp
c[m + d(p)]  

Rb =
λN0

µ +δ
= λ(p)N0

µ +δ (p)

dI
dt

= λ(V̂ )IS − (µ +δ (T̂ ))I

(Gilchrist & Sasaki, JTB 2002; Gilchrist & Coombs, TPB 2006; Boldin & Diekmann, JMB, 2008; 
Mideo, Alizon, & Day, Trends Ecol Evol.  2008; Qesmi, Heffernan & Wu, JMB, 2015) 



Coupling	  within-‐	  and	  between-‐host	  dynamics	  (nested	  models)	  

At individual level (cell-virus) At population level (SI model) 

dS
dt

= b(S, I )− λ(V̂ )IS − µS
dT
dt

= Λ− kVT −mT

dT *

dt
= kTV − (m + d)T *

dV
dt

= pT * − cV

 
Rw =

T0kp
c[m + d(p)]  

Rb =
λ(V̂ )N0

µ +δ (T̂ )
= λ1(p)N0

µ +δ (p)

dI
dt

= λ(V̂ )IS − (µ +δ (T̂ ))I

 
Let  Rw (p*) = max

0<p<pmax
Rw (p)

  
Let  Rb (p

⋅) = max
0<p<pmax

Rb (p)

v  	  If	  p*=po,	  then	  there	  is	  no	  conflict	  between	  selecPon	  at	  the	  two	  different	  levels	  	  
v  	  Otherwise,	  a	  conflict	  exists	  between	  natural	  selecPon	  at	  the	  two	  levels	  

(Gilchrist & Sasaki, JTB 2002; Gilchrist & Coombs, TPB 2006; Boldin & Diekmann, 
JMB, 2008; Mideo, Alizon, and Day, Trends Ecol Evol.  2008; Lenhart, 2014, 2015) 



Emerging disease dynamics  

when the within- and between-host systems are  

coupled dynamically 



A	  project	  developed	  during	  a	  working	  group	  at	  NIMBioS	  
(MulP-‐scale	  Modeling	  of	  the	  Life	  Cycle	  of	  Toxoplasma	  gondii)	  

Jorge	  Velasco-‐Hernandez	  Mike	  Gilchrist	  



Life cycle of Toxoplasma gondii   

v  The	  only	  known	  definiPve	  
hosts	  for	  T.	  gondii	  are	  
members	  of	  family	  Felidae	  
(domesPc	  cats	  and	  relaPves)	  

v  Cats	  become	  infected	  a\er	  
consuming	  infected	  rats,	  or	  
directly	  by	  ingesPon	  of	  
sporulated	  oocysts,	  which	  
can	  survive	  and	  remain	  
infecPve	  for	  many	  months	  

v  The	  parasites	  infect	  
intesPnal	  epithelial	  cells	  in	  
cats.	  Tachyzoites	  invade	  
cells	  and	  mulPplies.	  When	  
the	  cells	  die,	  the	  tachyzoites	  
are	  released	  and	  infect	  
other	  cells	  

Fecal	  
Oocysts	  

Tissue	  
Cysts	  
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Cellular stages of T. gondii  (simplified) 

IllustraPon	  from:	  Georges'	  Parasitology	  for	  Veterinarians,	  6th	  ediPon,	  D.D.	  Bowman,	  1995.	  W.B.	  Saunders	  Co.,	  Philadelphia,	  PA	  
Illustration from: Georges' Parasitology for Veterinarians, 6th edition, D.D. Bowman, 1995. W.B. Saunders
Co., Philadelphia, PA

Return to top of page

Site in host where adult parasite is found :
Small intestinal cells.

Return to top of page

Diagnostic Stage:
In cat: oocyst.
In intermediate hosts: Tissue cysts.

Sporulated and unsporulated oocysts
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A model dynamically coupling within- and between-host systems 

(1)	  

Within-‐host	  sub-‐system:	  

λ, k    Transmission rates 
µ        Birth and death rate of hosts
m, d   Mortality of cells  
p        Parasite production 
c        Mortality of parasites 
θ, γ    Contamination, clearance 
g(E)   Ingestion of oocysts 
        

S, I     Susceptible, Infectious hosts 

E        Environmental contamination  (0 ≤ E < 1) 

T, T*  Uninfected, Infected cells  

V        Parasite density

Between-‐host	  sub-‐system:	  

(2a)	  

Environmental	  contamina<on:	  

(2b)	  

dT
dt

= Λ− kVT −mT

dT *

dt
= kTV − (m + d)T *

dV
dt

= g(E)+ pT * − cV

dS
dt

= µN − λES − µS

dI
dt

= λES − µI

N = S + I    (constant)

dE
dt

= θ IV (1− E)−γ E

g(0) = 0,  g(E) ≥ 0,  ′g (E) ≥ 0,  ′′g (E) ≤ 0.



 
V (E) = 1

c
g(E)+ p T *(E)( ),   T *(E) = m

m + d
T0 − T (E)( ),   T (E) = 1

2
a1 − a1

2 − 4a2( ) (3)	  

Consider	  the	  within-‐host	  sub-‐system	  (1)	  as	  the	  fast-‐system	  (with	  E	  being	  constant).	  	  
	  
The	  within-‐host	  reproduc<on	  number:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  

	  

Equilibrium	  for	  E	  >	  0:	  	  for	  all	  Rw > 0,	  there	  is	  a	  unique	  interior	  equilibrium	  given	  by	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  where	  

The fast system for within-host dynamics 

 
with   a1 =

g(E)(m + d)
pm

+T0 1+ 1
Rw

⎛
⎝⎜

⎞
⎠⎟

,     a2 =
T0

2

Rw

,     a1
2 − 4a2 ≥ T0

2 1− 1
Rw

⎛
⎝⎜

⎞
⎠⎟

2

.

 
Rw =

T0kp
c(m + d)

 
U(E) = T (E), T *(E), V (E)( )

Note:	  	  	  	  	  	  	  	  	  	  	  	  	  	  provides	  an	  input	  for	  the	  between-‐host	  (I,E)	  sub-‐system.	  	  	   
V (E)



Stability of the fast system 

Result	  1.	  For	  0	  <	  E <	  1,	  	  the	  unique	  posiPve	  equilibrium	  of	  the	  fast	  system,	  

                                                         , is	  a	  global	  adractor	  for	  all Rw >	  0.	  	  	  

  

V (0) = lim
E→0
V (E) =

0 for  Rw ≤1,
m(Rw −1)

k
for  Rw >1.

⎧

⎨
⎪

⎩
⎪

   

Let	  g(E)	  be	  any	  funcPon	  saPsfying	  the	  condiPons:	  	               

g(0) = 0,   g(E) ≥ 0,   ′g (E) ≥ 0,   ′′g (E) ≤ 0.

 
U(E) = T (E), T *(E), V (E)( )

Moreover,	  the	  parasite	  load	  at	  the	  iniPal	  stage	  of	  environmental	  contaminaPon	  is	             

In	  the	  case	  when	  g(E) = 0, 	  the	  global	  stability	  of	  (generalized)	  system	  (1)	  has	  been	  
shown	  in	  P.	  De	  Leenheer	  and	  H.	  Smith	  (SIAM	  J.	  Appl.	  Math.,	  2003) 



The sub-system on the slower time scale 

The	  between-‐host	  reproduc<on	  number	  is:	  

 
I = λE N − I( )− µI ,       E = θ I V (E) 1− E( )−γ E   (4)	  

The	  slow	  system	  consists	  of	  the	  between-‐host	  equaPons	  (2a)	  together	  with	  the	  
environmental	  contaminaPon	  equaPon	  (2b)	  with	  V	  being	  replaced	  by	  	  	  	  	  	  	  	  	  	  	  	  	  of	  the	  
posiPve	  equilibrium	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  of	  the	  fast	  system.	  That	  is:	    

U(E) = ( T (E), T *(E), V (E))
 
V (E)

  
Rb =

θ V (0)
µ

λN
γ

Result	  2.	  Assume	  Rw >	  1.	  	  The	  infec<on-‐free	  equilibrium	  W0=(0,0)	  is	  l.a.s.	  if	  Rb <	  1                   

               and	  unstable	  if	  Rb >	  1.	  	  	  

  
where  V (0) = m(Rw −1)

k
  for  Rw >1 



Multiple positive equilibria of the slow system when Rb < 1 

Let	  W*=(I*,	  E*)	  denote	  an	  equilibrium	  of	  system	  (4)	  with	  I*,	  E*	  >	  0.	  Then	  
	  	  
and E*	  saPsfies	  the	  equaPon	  F(E)	  =	  G(E)	  or	  	  H(E)	  = F(E)	  - G(E)	  = 0   where	  

I * = λE*N
λE* + µ

  
F(E) = 1− E

c
g(E)+ pm

m + d
T0 − T (E,Rw )( )⎡

⎣⎢
⎤
⎦⎥
,      G(E) = γ E

θN
+ m(Rw −1)

kRb

 

H(E)	  has	  the	  properPes:	  

  

H (0)
= V (0) 1− 1

Rb

⎛
⎝⎜

⎞
⎠⎟

, if Rw >1,

< 0,                     if Rw ≤1,

⎧

⎨
⎪⎪

⎩
⎪
⎪

H (1) < 0  and   ′′H (E) < 0.

Fig.	  1	  

Thus,	  it	  suffices	  to	  check	  

Hmax = max0≤E≤1
H (E)

 
 T (E) = 1

2
a1 − a1

2 − 4a2( )

 
with   a1 =

g(E)(m + d)
pm

+T0 1+ 1
Rw

⎛
⎝⎜

⎞
⎠⎟

,    a2 =
T0

2

Rw
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Thus,	  it	  suffices	  to	  check	  the	  sign	  of	  

Hmax = max0≤E≤1
H (E)



Result	  3.	  	  (a)	  For	  Rw >1 and Rb >1,	  a	  unique	  W*=(I*,	  E*)	  exists.   

               	  (b)	  For	  Rw >1 and Rb < 1,	  	  

	  

	  

	  

	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (c)	  For	  Rv <1, ……	  

  (i)  if Hmax > 0 then W1
* ≠W2

*  exist;
 (ii)  if Hmax = 0 then a unique W *=W1

* =W2
*  exists;

(iii)  if Hmax < 0 then W *  does not exist.

 Let E1
* ≤ E2

*  denote the two possible roots of H (E) and let  Wi
* = (Ii

*,Ei
*)

denote the corresponding equilibria (i = 1,  2).  Denote Hmax = max
0≤E≤1

H (E). 

Multiple positive equilibria of the slow system when Rb < 1 
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Result 4.  Existence and stability of interior equilibria of the slow system 
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Fig. 3. Simulations of the coupled system 
showing dynamical behaviors of the fast  and 
slow processes for the case Rw > 1 and Rb > 1 
(there is a unique positive equilibrium ŵ ). 

Numerical simulations of the full system (1) and (2) 

the factors that may play a critical role in generating these
bifurcations. In this section we provide a more detailed discussion
about the parameter regions in which these bifurcations occur. For
demonstration purposes, we focus on the specific form gðEÞ ¼ aE.

Consider first the case Rw041 and Rb0o1. As mentioned
earlier, although in the absence of coupling, the between-host
system cannot have a positive equilibrium when R̂b0o1 (see
Section 1.1), the coupled system can have two positive equilibria
even when Rb0o1 provided that Hmax40 (see Part (a) in
Theorems 3 and 7). It is illustrated in Fig. 3 that the condition
Hmax ¼ 0 actually determines the lower bound RbL of Rb0 for the
existence of multiple interior equilibria. That is, a backward
bifurcation occurs at Rb0 ¼ 1.

The behavior of this backward bifurcation is demonstrated in
Fig. 7, which plots the equilibrium fraction of infected individuals
Î=N as a function of Rb0. The leftmost point on the curve
corresponds to the lower bound RbL, and the window for multiple
interior equilibria is ðRbL;1Þ. The solid (dashed) part represents the
stable (unstable) interior equilibrium. The vertical arrows indicate
the direction of solutions as t-1 for different initial conditions.
We observe that some solutions converge to the interior equili-
brium evenwhenRb0o1. The parameter values used in this figure
are the same as in Fig. 3(a). In this case, RbL ¼ 0:87.

5.1. An example

The results obtained in this study, particularly the possibility of
backward bifurcation, can be helpful for gaining insights into the
spread and control of environmentally driven infectious diseases
such as toxoplasmosis.

Fig. 4. Simulations of the full system for the case Rw041 and RbLoRb0o1 (see (a)) and the case RwLoRw0o1 (see (b)). The parameter values are chosen such that the
system has two positive equilibria. Solution curves for different initial conditions are plotted (showing only the fraction of infected individuals I=N). It demonstrates that for
initial conditions near Ið0Þ ¼ 0 the solutions converge to the infection-free equilibrium, whereas for higher initial Ið0Þ values the solutions converge to the stable interior
equilibrium.

Fig. 5. Simulation results of the full system for the case Rw041 and Rb041. In this case, the system has a unique interior equilibrium. We observe that the fast variables,
V and Tn, converge quickly to the interior equilibrium (less than 30 days), and that it takes much longer time for slow variables to stabilize at the interior equilibrium
(more than 20 years).

Fig. 6. Similar to Fig. 5 but showing the solution curves in the ðE;VÞ phase plane. It
illustrates that the solutions of the full system exhibit two time scales for the fast
system (represented by the fast variable V(t)) and the slow system (represented by
the slow variable E(t)). We observe that, for each trajectory, V(t) approaches the
slow manifold very quickly followed by a slow convergence of E(t) to the
equilibrium Ŵ , which is labeled by the solid circle.
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Fig. 4. (a) Simulations of the coupled system showing multiple stable equilibria for 
the case Rw > 1 and Rb < 1 (there are two positive equilibria). Plot (b) illustrates 
the lower bound of the window for the backward bifurcation. 

Numerical simulations of the full system (1) and (2) 
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Fig. 5. The window for multiple interior equilibria, (RbL,1), increases with a. 

The role of ingestion rate a=g’(0) in the backward bifurcation 
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dT
dt

= Λ− kVT −mT

dT *

dt
= kTV − (m + d)T *

dV
dt

= g(E)+ pT * − cV

Recall g(0) = 0,   g(E) ≥ 0,   ′g (E) ≥ 0,   ′′g (E) ≤ 0.
Examples:
1)  g(E) = aE

2)  g(E) = aE
1+ bE

RbL	  

Rb	  



Evolution of virulence 
Z.	  Feng,	  X.	  Cen,	  Y.	  Zhao,	  J.	  Velasco-‐Hernandez,	  Math.	  Biosci.,	  	  2015	  

(1)	  

Within-‐host	  sub-‐system:	   Between-‐host	  sub-‐system:	  

(2a)	  

Environmental	  contamina<on:	  

(2b)	  

dT
dt

= Λ− kVT −mT

dT *

dt
= kTV − (m + d)T *

dV
dt

= g(E)+ pT * − cV

dS
dt

= µN − λES − µS

dI
dt

= λES − (µ +δ )I

N = S + I    

dE
dt

= θ(V )I(1− E)−γ EV̂ = Λc p
c(m + d)

− m
k

,   T̂ = c(m + d)
kp

At steady-state:  

Trade-off relationship (between transmission and pathogen virulence) 

θ(V̂ ) = a1V̂
z ,  z > 0 δ (T̂ ) = a2

1
T̂
− 1
T0

⎛
⎝⎜

⎞
⎠⎟

and 



Burst size 

Within-host and between-host fitness of pathogen 

where                are steady-state values of the within-host system  

Φ(p) = p
m + d(p)

V̂ (p) = ΛcΦ(p)
c

− m
k

,     T̂ (p) = c
kΦ(p)

,     d(p) = d0p
2

Within-host RN 
 
Rw (p) =

Φ(p)kT0
c

Between-host RN 
 
Rb (p) =

θ(V̂ (p))
µ +δ (T̂ (p))

⋅ λS0
γ

V̂  and T̂

 
Let  Rw (p*) = max

0<p<pmax
Rw (p)   and   Rb (p

• ) = max
0<p<pmax

Rb (p)

(5) 



 
From  δ (T̂ ) = a2

1
T̂
− 1
T0

⎛
⎝⎜

⎞
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  and  T̂ (p) = c

kΦ(p)
     ⇒       δ (p) = a2

kΦ(p)
c

− m
Λc

⎛
⎝⎜

⎞
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Notation: 

     pmax -- Physiological upper bound for pathogen production 

     p*  -- Optimal pathogen production at within-host level, 

     pc -- The critical point at which   

     p�  -- Optimal pathogen production at between-host level 

     δmax -- Upper bound for virulence 
     δ*  -- Optimal pathogen virulence at within-host level 

     δc -- The critical point at which    

     δ�  -- Optimal pathogen virulence at between-host level 

Relationship between virulence δ and pathogen production p  

 ′Φ (pc ) = 0  (or ′Rw (pc ) = 0)
 
Rw (p

*) = max
0<p<pmax

Rw (p)

 
Rw (δ

*) = max
0<δ <δmax

Rw (δ )

 
Rb (p

• ) = max
0<p<pmax

Rb (p)

 
Rb (δ

• ) = max
0<δ <δmax

Rb (δ )
 ′Rb (δ c ) = 0

p* = min pmax, pc{ },      δ * = δ (p*) = δmax (6) 
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Then θ can be written as a function of δ with                           ; and thus,  
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At the between-host level, consider the case z <1.  Note that (see (5)) 

(7) 

Optimal pathogen production                   and virulence   p
*  and  p•  δ

*  and  δ •



Optimal pathogen production                   and virulence   p
*  and  p•

  
Rb (δ ) = λS0θ0
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 and  Rb (p) = λS0θ0

γ (µ +δ (p))
Λcδ (p)
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.Consider  

 

dRb

dp
= dRb

dδ
dδ
dp

= (δ c −δ )q
dδ
dp
,

  
Note that ′Rb (δ c ) = 0,  where δ c =

zµ
1− z

,  and

 
where   q = λS0a1(1− z)

γδ (µ +δ )2
Λcδ
a2k

⎛
⎝⎜

⎞
⎠⎟

z

> 0.

At the within- and between-host levels: 

δ * = δ (p*) = δmax    and   δ • = min{δmax,δ c}

v  If 

v  If 
 δmax < δ c  then δ • = δ *,  p• = p* (Fig. (a))
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 δmax > δ c  then δ • < δ *,  p• < p* (Fig. (b))
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Summary 
	  

Ø  When the within- and between-host systems are in isolation, the dynamics are 
determined by the reproduction numbers (Rw and Rb) with threshold equal to 1.  

Ø  When the two systems are dynamically linked, backward bifurcations can occur, 
leading to a new threshold value Rb = RbL< 1. 

Ø  Two time scales of the immunological and epidemiological processes allow the 
analysis of the fast and slow systems for the derivation of the threshold 
conditions. Numerical simulations of the full system confirms the analytic results.  

 
Ø  The window (RbL ,1)  for multiple attractors due to the backward bifurcation 

decreases with the inoculation rate constant a, which can be reduced by control 
measures such as vaccination or reduced contact with contaminated environment  

Ø  The dynamically coupled model can be used to study questions related to the 
evolution of pathogen virulence and whether or not a conflict exists between 
natural selection at the within- and between-host levels. 



Meta-population models and mixing:  
A case study 

In	  2000,	  authoriPes	  declared	  measles	  eliminated	  from	  the	  

United	  States.	  In	  January	  2008,	  an	  inten<onally	  

unvaccinated	  7-‐year-‐old	  boy	  unknowingly	  infected	  with	  

measles	  returned	  from	  Switzerland,	  resulPng	  in	  the	  largest	  

outbreak	  in	  San	  Diego,	  California,	  since	  1991	  



Mathematical modeling has affected vaccination policy 
throughout the developed world and, via the WHO, elsewhere 

 

Policy goals vary with disease and setting, but preventing 
outbreaks is common 

 

This is attained by exceeding the population immunity at 
which R, the average number of secondary infections per 
infectious person, is one 

 

The threshold (at which Rv=1) is p=1-1/R0, where R0 is the 
average number of effective contacts while infectious 

Background 



•  While	  immunity	  is	  at	  or	  above	  this	  threshold	  for	  many	  vaccine-‐
preventable	  diseases	  in	  the	  US,	  policymakers	  are	  concerned	  about	  
heterogeneity	  in	  vaccinaPon	  coverage	  

•  Socioeconomic	  status	  sPll	  affects	  access	  to	  medical	  care,	  but	  ACIP	  
recommended	  vaccines	  became	  accessible	  in	  1994	  via	  the	  Vaccines	  
for	  Children	  Program	  

•  Currently,	  policymakers	  are	  concerned	  about	  personal-‐belief	  
exemp<ons	  (PBE),	  by	  which	  parents	  can	  avoid	  having	  their	  children	  
vaccinated	  

•  Parents	  who	  have	  the	  belief	  that	  vaccinaPon	  is	  harmful	  tend	  to	  live	  
in	  the	  same	  neighborhoods	  and,	  consequently,	  their	  children	  
adend	  the	  same	  elementary	  schools	  

Background (cont’d) 
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Baseline Characteristics 

Characteristic Measles Mumps Rubella 

R0 ignoring heterogeneity & mixing 10.71 8.49 4.08 

Population-immunity threshold 0.907 0.882 0.755 

Vaccine efficacy  (dose 1) 
Vaccine efficacy  (dose 2) 

0.92 
0.95 

0.8 
0.9 

0.9 
0.95 

Average population immunity 0.922 0.872 0.921 

R0 considering heterogeneity & non-random mixing 18.06 14.33 6.88 

Population-immunity threshold  0.945 0.93 0.855 

Rv considering heterogeneity & non-random mixing 3.39 2.88 1.29 

Table	  1.	  VaccinaPon	  against	  measles,	  mumps	  and	  rubella	  in	  elementary	  schools	  
in	  San	  Diego	  County,	  California.	  	  



Measles Results 

Intervention Coverage Rv  Schools Children 

MMR coverage at school entry 97.1 3.39 638 39,132 

Eliminating personal-belief 
exemptions 

       2.48   2.28 292 972 

Low-coverage, high-activity schools         0.4-0.9      0.24-1.37 65 164-342 

All high-activity schools         0.9-1.4      0.26-1.37 385 369-547 

All low-coverage schools         0.9-1.6      0.24-2.37 114 361-638 

Private schools       0.4   0.02 208 145 

Among these interventions, eliminating non-medical exemptions is comparable to 
increasing by 50% the proportion of children vaccinated in low-coverage schools 

Table	  2.	  Impact	  of	  hypothePcal	  intervenPons	  to	  control	  measles	  in	  San	  Diego	  
County,	  California,	  elementary	  schools.	  	  



Contributions of n=200 schools in San Diego District to R0 
and Rv by location 
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We then calculated the meta-population reproduction 
numbers for measles, mumps, and rubella in San Diego 
County. By contrast with the naive numbers discussed 
above, for which we used weighted average per person 
eff ective contact rates and proportions immune (which is 
tantamount to assuming homo geneous randomly-mixing 
subpopulations), these numbers use school-specifi c ones. 
Henceforth, we omit the term meta-population when 
possible without confusion. Next we mapped school or 
neighbourhood contributions to measles’ reproduction 
numbers.

Modelling interventions
We modelled the eff ect of our interventions—vaccinating 
all children with personal-belief exemptions; increasing 
uptake by 10% or 50% in all low-immunity schools or only 
infl uential low-immunity ones (appendix pp 1–2); or 
increasing private school uptake to the public school 
average—on the outbreak potential of measles, the average 
number of secondary infections per infectious person (ie, 
realised reproduction number).

To model vaccinating children with personal-belief 
exemptions, we incremented school-specifi c proportions 
of children immune to each disease by products of the 
proportions with non-medical exemptions and dose-
specifi c vaccine effi  cacies (92% for one dose and 95% for 
two doses),12 weighted by the proportions of children 
who had received one and two doses in their respective 
schools. For example, in a hypothetical school in which 
90% of students had received one dose of the MMR 
vaccine, 85% had received two doses, and 5% had 
personal-belief exemptions, this intervention would 
increase the proportion immune to measles from 
0·05 × 0·92 + 0·85 × 0·95 ≈ 0·85 to [0·05 + (0·05 × 0·05)] × 
0·92 + [0·85 +(0·85 × 0·05)] × 0·95 ≈ 0·9.

To model 10% or 50% increases of uptake in low-
immunity (defi ned as schools in which <90% of students 
are immune) or infl uential schools (defi ned as schools 
with average per person contact rates of at least three per 
day, or more than 30% of their contacts with children in 
other schools or neighbourhoods, or both), we multiplied 
the proportions of their children who are immune by 1·1 
or 1·5. For example, in a hypothetical school in which 50% 
of students were immune, this intervention would increase 
immunity to 55% and 75%. In a school in which 89% of 
students were immune, post-intervention pro portions 
immune would be 98% and 100%. 

To model increasing private school uptake, which 
averaged 0·89 in 2007, to that of public schools, which 
averaged 0·93, we multiplied the proportion of children 
immune in each private school by the ratio of the public 
and private school averages. For example, in a private 
school in which 85% of students were immune, 
immunity would increase to 0·85 × (0·93/0·89) ≈ 0·89 
post-intervention. 

Role of the funding source
There was no external funding source for this study. The 
corresponding author had access to all data and had fi nal 
responsibility for the decision to submit the manuscript 
for publication.

Results
39 132 children began school in 2008 in San Diego County, 
of whom 95% had received two doses of MMR vaccine and 
97% had received one dose. Figure 1 shows the spatial 
distribution of contact rates for children entering 
elementary school in San Diego School District, the 
location of the 2008 measles outbreak. Corresponding 
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Figure 3: Spatial distributions of contributions to the basic (ER0; A) and realised (ERv;
 
B) reproduction numbers 

in San Diego School District
The red dot shows the location of the school in which the 2008 measles outbreak began. The small peak of residual 
outbreak potential (B) is attributable to 30% of the children in this school having personal-belief exemptions to 
vaccination. Comparison of fi gures shown in the appendix (pp 5–6) illustrates the eff ect of vaccinating all such 
children in San Diego County.
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We then calculated the meta-population reproduction 
numbers for measles, mumps, and rubella in San Diego 
County. By contrast with the naive numbers discussed 
above, for which we used weighted average per person 
eff ective contact rates and proportions immune (which is 
tantamount to assuming homo geneous randomly-mixing 
subpopulations), these numbers use school-specifi c ones. 
Henceforth, we omit the term meta-population when 
possible without confusion. Next we mapped school or 
neighbourhood contributions to measles’ reproduction 
numbers.

Modelling interventions
We modelled the eff ect of our interventions—vaccinating 
all children with personal-belief exemptions; increasing 
uptake by 10% or 50% in all low-immunity schools or only 
infl uential low-immunity ones (appendix pp 1–2); or 
increasing private school uptake to the public school 
average—on the outbreak potential of measles, the average 
number of secondary infections per infectious person (ie, 
realised reproduction number).

To model vaccinating children with personal-belief 
exemptions, we incremented school-specifi c proportions 
of children immune to each disease by products of the 
proportions with non-medical exemptions and dose-
specifi c vaccine effi  cacies (92% for one dose and 95% for 
two doses),12 weighted by the proportions of children 
who had received one and two doses in their respective 
schools. For example, in a hypothetical school in which 
90% of students had received one dose of the MMR 
vaccine, 85% had received two doses, and 5% had 
personal-belief exemptions, this intervention would 
increase the proportion immune to measles from 
0·05 × 0·92 + 0·85 × 0·95 ≈ 0·85 to [0·05 + (0·05 × 0·05)] × 
0·92 + [0·85 +(0·85 × 0·05)] × 0·95 ≈ 0·9.

To model 10% or 50% increases of uptake in low-
immunity (defi ned as schools in which <90% of students 
are immune) or infl uential schools (defi ned as schools 
with average per person contact rates of at least three per 
day, or more than 30% of their contacts with children in 
other schools or neighbourhoods, or both), we multiplied 
the proportions of their children who are immune by 1·1 
or 1·5. For example, in a hypothetical school in which 50% 
of students were immune, this intervention would increase 
immunity to 55% and 75%. In a school in which 89% of 
students were immune, post-intervention pro portions 
immune would be 98% and 100%. 

To model increasing private school uptake, which 
averaged 0·89 in 2007, to that of public schools, which 
averaged 0·93, we multiplied the proportion of children 
immune in each private school by the ratio of the public 
and private school averages. For example, in a private 
school in which 85% of students were immune, 
immunity would increase to 0·85 × (0·93/0·89) ≈ 0·89 
post-intervention. 

Role of the funding source
There was no external funding source for this study. The 
corresponding author had access to all data and had fi nal 
responsibility for the decision to submit the manuscript 
for publication.

Results
39 132 children began school in 2008 in San Diego County, 
of whom 95% had received two doses of MMR vaccine and 
97% had received one dose. Figure 1 shows the spatial 
distribution of contact rates for children entering 
elementary school in San Diego School District, the 
location of the 2008 measles outbreak. Corresponding 
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Figure 3: Spatial distributions of contributions to the basic (ER0; A) and realised (ERv;
 
B) reproduction numbers 

in San Diego School District
The red dot shows the location of the school in which the 2008 measles outbreak began. The small peak of residual 
outbreak potential (B) is attributable to 30% of the children in this school having personal-belief exemptions to 
vaccination. Comparison of fi gures shown in the appendix (pp 5–6) illustrates the eff ect of vaccinating all such 
children in San Diego County.
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Detailed results are presented in two published articles 


