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The problem.

Piecewise smooth systems (“switched” systems):

x′ = f(x) , f(x) = fi(x) , x ∈ Ri , i = 1, . . . ,m ,

t ∈ [0, T ], x(0) = x0. Here, Ri ⊆ R
n are open, disjoint and partition

R
n:Rn =

⋃

iRi.
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The problem.

Piecewise smooth systems (“switched” systems):

x′ = f(x) , f(x) = fi(x) , x ∈ Ri , i = 1, . . . ,m ,

t ∈ [0, T ], x(0) = x0. Here, Ri ⊆ R
n are open, disjoint and partition

R
n:Rn =

⋃

iRi.

In each region Ri, we have a standard differential equation with
smooth vector field fi. On the boundaries .... ?

Assume that the Ri’s are separated (locally) by surfaces
characterized as zero sets of smooth functions.
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... the model ...

A lot of activity and open mathematical problems. Widely used in
applications.
(Filippov, Utkin, Sontag, Cortes, Acary-Brogliato, · · · ).

Systems with delays, models of relays, switches, gates, thermostats
and refrigeration processes.

Bang-bang controls, controllers in fields with obstacles, and
generally VSC.

Also mechanical systems (stick-slip).

m₁ m₂

k₁₂k₁
k₂

v
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... the model ...

Natura non facit saltum (Linnaeus, 1751) ... is model innatural,
wrong?
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... the model ...

Natura non facit saltum (Linnaeus, 1751) ... is model innatural,
wrong?

Probably neither . . . , perhaps not all “natural” processes are
smooth, or the PWS model is incomplete, or it is just a convenient
simplification of an underlying model, or the skeleton of it . . .
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smooth, or the PWS model is incomplete, or it is just a convenient
simplification of an underlying model, or the skeleton of it . . .
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Natura non facit saltum (Linnaeus, 1751) ... is model innatural,
wrong?

Probably neither . . . , perhaps not all “natural” processes are
smooth, or the PWS model is incomplete, or it is just a convenient
simplification of an underlying model, or the skeleton of it . . .

Can we see the difference?
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... the model ...

Natura non facit saltum (Linnaeus, 1751) ... is model innatural,
wrong?

Probably neither . . . , perhaps not all “natural” processes are
smooth, or the PWS model is incomplete, or it is just a convenient
simplification of an underlying model, or the skeleton of it . . .

Can we see the difference?
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... the model ...

Seidman calls the PWS system the residue of model reduction:
. . . apparent discontinuity is actually a continuous process having a
fine structure on a more rapid time scale
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Seidman calls the PWS system the residue of model reduction:
. . . apparent discontinuity is actually a continuous process having a
fine structure on a more rapid time scale

Utkin looks at the PWS system as unable to describe what happens
in the boundary layer
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Seidman calls the PWS system the residue of model reduction:
. . . apparent discontinuity is actually a continuous process having a
fine structure on a more rapid time scale

Utkin looks at the PWS system as unable to describe what happens
in the boundary layer

Whatever the case, our key point is that:
If a modeling simplification took place, and is meaningful, then the
PWS (reduced) model must have retained sufficient features to
understand the dynamics (behavior) of the true (unmodeled,
possibly unknown) problem (if any)
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... the model ...

Seidman calls the PWS system the residue of model reduction:
. . . apparent discontinuity is actually a continuous process having a
fine structure on a more rapid time scale

Utkin looks at the PWS system as unable to describe what happens
in the boundary layer

Whatever the case, our key point is that:
If a modeling simplification took place, and is meaningful, then the
PWS (reduced) model must have retained sufficient features to
understand the dynamics (behavior) of the true (unmodeled,
possibly unknown) problem (if any)

Thus, we look at PWS model with its own intrinsic mathematical

dignity, try to develop a mathematical framework and tools to
understand its dynamics, and indirectly (possibly) those of
unreduced (and un-modeled) problem (if any).
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... the model ...

Which features must be looked at? What has been retained? Is the
task well posed?
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... the model ...

Which features must be looked at? What has been retained? Is the
task well posed?

First, robustness of problem configuration:
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... the model ...

Which features must be looked at? What has been retained? Is the
task well posed?

First, robustness of problem configuration:

If the separating surface, call it Σ, has codimension d, then (locally,
in a neighborhood of Σ) there are 2d regions Ri’s and therefore 2d

vector fields fi’s:

Σ = {x ∈ R
n : h(x) = 0 , h : R

n → R
d} ,

where h(x) =

[

h1(x)
...

hd(x)

]

, ∇hj(x) 6= 0, j = 1, . . . , d, and the vectors

{∇h1(x), . . . ,∇hd(x)} are linearly independent, and smooth (C1)
for all x ∈ UΣ.
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... the model ...

Σ
1

Σ
2

R1

R4

R
2

R3

R

R5

Σ
3

6
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... the model ...

Case of interest: (a portion of) the surface Σ attracts nearby
trajectories, and it is reached in finite time. [Of course, time arrow
does matter.]
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Case of interest: (a portion of) the surface Σ attracts nearby
trajectories, and it is reached in finite time. [Of course, time arrow
does matter.]

As a consequence, solution trajectories with initial data on (part of)
Σ will be forced to remain on it. Motion (if defined) must continue
on Σ, sliding motion. (Irreversible).
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Case of interest: (a portion of) the surface Σ attracts nearby
trajectories, and it is reached in finite time. [Of course, time arrow
does matter.]

As a consequence, solution trajectories with initial data on (part of)
Σ will be forced to remain on it. Motion (if defined) must continue
on Σ, sliding motion. (Irreversible).

Important to characterize finite time attractivity of Σ, and ideally to
decide what to do if a trajectory reaches Σ, and when/if/how it
should leave it. [Here, we’ll assume that there are finitely many
events: changes of regime].
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... the model ...

Case of interest: (a portion of) the surface Σ attracts nearby
trajectories, and it is reached in finite time. [Of course, time arrow
does matter.]

As a consequence, solution trajectories with initial data on (part of)
Σ will be forced to remain on it. Motion (if defined) must continue
on Σ, sliding motion. (Irreversible).

Important to characterize finite time attractivity of Σ, and ideally to
decide what to do if a trajectory reaches Σ, and when/if/how it
should leave it. [Here, we’ll assume that there are finitely many
events: changes of regime].

First of all, a solution concept is needed.
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... the model ...

Filippov convexification.

1. Consider the set valued function

F (x) = co{ lim
k→∞

f(xk), xk → x, xk ∈ Ri} .

In other words, F (x) is the convex hull of the values of f(x)
obtained approaching x through (smooth) regions Ri.
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Filippov convexification.

1. Consider the set valued function

F (x) = co{ lim
k→∞

f(xk), xk → x, xk ∈ Ri} .

In other words, F (x) is the convex hull of the values of f(x)
obtained approaching x through (smooth) regions Ri.

2. Consider the differential inclusion obtained by replacing f with F :
x′ ∈ F (x), and a Filippov solution is a classical solution of this
differential inclusion.
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... the model ...

Filippov convexification.

1. Consider the set valued function

F (x) = co{ lim
k→∞

f(xk), xk → x, xk ∈ Ri} .

In other words, F (x) is the convex hull of the values of f(x)
obtained approaching x through (smooth) regions Ri.

2. Consider the differential inclusion obtained by replacing f with F :
x′ ∈ F (x), and a Filippov solution is a classical solution of this
differential inclusion.

Existence is a classical result [Filippov]. Uniqueness is more
complicated since it is necessary to characterize what happens on
the boundaries of the regions Ri’s.
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... the model ...

So, Filippov idea is to consider:

x′ ∈ F (x) =
2d
∑

i=1

λi(x)fi(x) , λi(x) ≥ 0 , and
2d
∑

i=1

λi(x) = 1 .
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So, Filippov idea is to consider:

x′ ∈ F (x) =
2d
∑

i=1

λi(x)fi(x) , λi(x) ≥ 0 , and
2d
∑

i=1

λi(x) = 1 .

Sliding motion on Σ must occur with a vector field that lies in the
tangent plane at x ∈ Σ:
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... the model ...

So, Filippov idea is to consider:

x′ ∈ F (x) =
2d
∑

i=1

λi(x)fi(x) , λi(x) ≥ 0 , and
2d
∑

i=1

λi(x) = 1 .

Sliding motion on Σ must occur with a vector field that lies in the
tangent plane at x ∈ Σ:

We call Filippov (sliding) vector field a smooth vector field of the
form

(a) fF :=
2
d

∑

i=1

λi(x)fi(x) , with λi(x) ≥ 0 ,

2
d

∑

i=1

λi(x) = 1 ,

(b) (∇hj(x))
T
fF(x) = 0 , for all j = 1, . . . , d .
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... the model ...

So, Filippov idea is to consider:

x′ ∈ F (x) =
2d
∑

i=1

λi(x)fi(x) , λi(x) ≥ 0 , and
2d
∑

i=1

λi(x) = 1 .

Sliding motion on Σ must occur with a vector field that lies in the
tangent plane at x ∈ Σ:

We call Filippov (sliding) vector field a smooth vector field of the
form

(a) fF :=
2
d

∑

i=1

λi(x)fi(x) , with λi(x) ≥ 0 ,

2
d

∑

i=1

λi(x) = 1 ,

(b) (∇hj(x))
T
fF(x) = 0 , for all j = 1, . . . , d .

Well understood process in case Σ has co-dimension 1, with a lot of
work here still being done (also in the planar case), including
periodic orbits, bifurcation studies, numerical methods.
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Σ of codimension 1

Label R1: h(x) < 0, R2: h(x) > 0. Define

w =

[

w1

w2

]

:=

[

∇h(x)T f1(x)
∇h(x)T f2(x)

]

, x ∈ Σ ,

⇒ attractivity in finite time (trajectories enter Σ transversally):

w1(x) ≥ a > 0 and w2(x) ≤ −b < 0 .

Have a unique Filippov (sliding) vector field

fF = (1 − α)f1 + αf2 , α : α = w1/(w1 − w2) .

If α = 0 (resp. α = 1), f1 (resp. f2), is tangent to Σ. Expect
trajectory to exit Σ and enter in R1 (resp. R2). These are tangential
(and smooth) exits: predicted by first order Filippov theory.

Well defined Filippov sliding vector field also for repulsive Σ:

w1(x) ≤ −c < 0 and w2(x) ≥ c > 0 , x ∈ Σ .

But ... sliding motion unstable, no uniqueness, can leave at any time
with f1 or f2: non-tangential (and non-smooth) exits.

Luca Dieci Sliding motion



... codimension 1 ...

Transversal crossing
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... codimension 1 ...

Transversal crossing

Sliding and tangential (smooth) exit
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... codimension 1 ...

Among several validations of Filippov sliding vector field:

limiting behavior of Euler iterates (and other 1-step methods)

x  (    )τ

2δ

h(x)=−δ
x 0

x  (    )
2 2

τ

1 1

h(x)=0

h(x)=δ

τ 2 f  2 (x  (    )1 τ 1 )1f  (   )1 x0
τ

limiting behavior of Sotomayor-Teixeira regularization

ẋ = (1− αǫ(h(x))) f1(x) + αǫ(h(x))f2(x) ,

with (for example)

αǫ(z) =







1 z > ǫ
1

2
+ z

4ǫ
(3− ( z

ǫ
)2) z ∈ [−ǫ, ǫ]

0 z < −ǫ

.
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Σ of codimension 2

Still object of investigation, and present emphasis. Now,
Σ1 = { x : h1(x) = 0}, Σ2 = { x : h2(x) = 0}, and we have
Σ = Σ1 ∩Σ2.
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Σ of codimension 2

Still object of investigation, and present emphasis. Now,
Σ1 = { x : h1(x) = 0}, Σ2 = { x : h2(x) = 0}, and we have
Σ = Σ1 ∩Σ2.

There are four different regions R1, R2, R3 and R4:

R1 : when h1 < 0 , h2 < 0 , R2 : when h1 < 0 , h2 > 0 ,

R3 : when h1 > 0 , h2 < 0 , R4 : when h1 > 0 , h2 > 0 .
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Σ of codimension 2

Still object of investigation, and present emphasis. Now,
Σ1 = { x : h1(x) = 0}, Σ2 = { x : h2(x) = 0}, and we have
Σ = Σ1 ∩Σ2.
There are four different regions R1, R2, R3 and R4:

R1 : when h1 < 0 , h2 < 0 , R2 : when h1 < 0 , h2 > 0 ,

R3 : when h1 > 0 , h2 < 0 , R4 : when h1 > 0 , h2 > 0 .
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... co-d 2 ...

Let

wi(x) =

[

w1
i (x)

w2
i (x)

]

=

[

∇hT
1 fi

∇hT
2 fi

]

, i = 1, 2, 3, 4 .

To form

fF =

4
∑

i=1

λi(x)fi(x)

we need to solve

[

W
1
T

]

λ =





w1
1 w1

2 w1
3 w1

4

w2
1 w2

2 w2
3 w2

4

1 1 1 1













λ1

λ2

λ3

λ4









=





0
0
1



 ,

obviously underdetermined (in general).
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... co-d 2 ...

Let

wi(x) =

[

w1
i (x)

w2
i (x)

]

=

[

∇hT
1 fi

∇hT
2 fi

]

, i = 1, 2, 3, 4 .

To form

fF =

4
∑

i=1

λi(x)fi(x)

we need to solve

[

W
1
T

]

λ =





w1
1 w1

2 w1
3 w1

4

w2
1 w2

2 w2
3 w2

4

1 1 1 1













λ1

λ2

λ3

λ4









=





0
0
1



 ,

obviously underdetermined (in general).

Note: algebraic nature of ambiguity.
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... co-d 2 ...

Ways in which this ambiguity has been “removed.”

a) Restrict to problems where there is no ambiguity (e.g., stick-slip
model).

b) Select a specific sliding field on Σ. Two choices studied.
Bilinear interpolant (a few people, including us)

ẋ = (1− α) ((1− β)f1 + βf2) + α ((1− β)f3 + βf4) ,

(α, β) ∈ (0, 1)2 : WλB = 0 with λB :=









(1 − α)(1 − β)
(1− α)β
α(1− β)

αβ









.

Nonlinear system to solve.

Moments method (D-Difonzo). For x ∈ Σ, solve

MλM =









0
0
1
0









, where M :=





W
eT

dT



 , d :=









d1
−d2
−d3
d4









,

and di = ‖wi‖2, i = 1, . . . , 4.
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... co-d 2 ...

c) Globally regularize the PWS system. Thus far, only one technique
has really been studied (a few people, including us): bilinear
regularization:

ẋ =(1 − αǫ1(h1(x)))[(1 − βǫ2(h2(x)))f1 + βǫ2(h2(x))f2(x)]+

αǫ1(h1(x))[(1 − βǫ2(h2(x)))f3 ++βǫ2(h2(x))f4(x)] .

where αǫ1 , βǫ2 , are smooth step functions as in the co-d 1 case.
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... co-d 2 ...

c) Globally regularize the PWS system. Thus far, only one technique
has really been studied (a few people, including us): bilinear
regularization:

ẋ =(1 − αǫ1(h1(x)))[(1 − βǫ2(h2(x)))f1 + βǫ2(h2(x))f2(x)]+

αǫ1(h1(x))[(1 − βǫ2(h2(x)))f3 ++βǫ2(h2(x))f4(x)] .

where αǫ1 , βǫ2 , are smooth step functions as in the co-d 1 case.
−→ Different regularizations are not equivalent to one another.

d) Other: Euler, SDE, hysteresis (delay), minimum variation. Limited
results, in rather restrictive cases.
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... co-d 2 ...

• Here, not interested in the selection process of a sliding vector field,
but rather in what is the dynamical impact of the ambiguity.

Is the ambiguity in the trajectory selection reflecting into a dynamics
concern?

Or: “can we (at least) say what should happen?”

Our viewpoint: it is Σ ’s properties with respect to the nearby vector
fields (namely, attractivity) that give appropriate insight.

Punchline is that “sliding” is a meaningful idealization as long as Σ
is attractive, even if one cannot generally uniquely determine how
sliding should take place. At the same time, trajectories can be
perturbed off Σ, and should not remain on Σ, if Σ is not attracting.
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... co-d 2 ...

• .... there are (too many) Filippov vector fields, the convex hull does
not know about attractivity of Σ ....
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Attractivity

There are two fundamentally different ways in which Σ can attract
nearby trajectories: through sliding, or in a spiral-like manner. In all
cases, the vectors wi, i = 1, 2, 3, 4, projections of the vector fields
along the normals, are the key.
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Attractivity

There are two fundamentally different ways in which Σ can attract
nearby trajectories: through sliding, or in a spiral-like manner. In all
cases, the vectors wi, i = 1, 2, 3, 4, projections of the vector fields
along the normals, are the key.

Below, we will let Σ±

1 = {x : h1(x) = 0 , h2(x) ≷ 0}, and similarly
for Σ±

2 . Also, let fF
±

1,2 the sliding vector fields (whenever properly

defined) on the sub-surfaces Σ±

1,2. These are co-d 1 Filippov sliding
vector fields. Say:

fF
+
1 = (1− α+)f2 + α+f4 , α+ =

[

∇hT
1 f2

∇hT
1 (f2 − f4)

]

x∈Σ+

1

.
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... through sliding ...

Definition (D, Elia, Lopez)

(a) For j = 1, . . . , 4, and x ∈ Rj , w1
j
and w2

j
do not have the same signs as the pair

(h1(x), h2(x)), and (w1
j
, w2

j
) 6= 0 on U ;

(b) At least one of the following conditions is satisfied on U :

(1+) det

[

w1
2

w1
4

1 1

]

> 0 together with (1+a ):

(1 − α+)w2
2
+ α+w2

4
< 0;

(1−) det

[

w1
3

w1
1

1 1

]

< 0 together with (1−a ):

(1 − α−)w2
1
+ α−w2

3
> 0;

(2+) det

[

w2
4 w2

3

1 1

]

< 0 together with (2+a ):

(1 − β+)w1
3 + β+w1

4 < 0;

(2−) det

[

w2
1 w2

2

1 1

]

> 0 together with (2−a ):

(1 − β−)w1
1 + β−w1

2 > 0;

(c) If any of (1±) or (2±) is satisfied, then (1±a ) or (2±a ) must be satisfied as well.
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... through sliding ...

Condition (a) implies that the vector fields fj , j = 1, . . . , 4, must
point towards at least one of Σ1,2.
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... through sliding ...

Condition (a) implies that the vector fields fj , j = 1, . . . , 4, must
point towards at least one of Σ1,2.

Condition (b) guarantees that there is attractive sliding towards Σ
along at least one of the Σ±

1,2.
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... through sliding ...

Condition (a) implies that the vector fields fj , j = 1, . . . , 4, must
point towards at least one of Σ1,2.

Condition (b) guarantees that there is attractive sliding towards Σ
along at least one of the Σ±

1,2.

Condition (c) states that if attractive sliding occurs along Σ±

1,2 it
must be towards Σ.
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... through sliding ...

Condition (a) implies that the vector fields fj , j = 1, . . . , 4, must
point towards at least one of Σ1,2.

Condition (b) guarantees that there is attractive sliding towards Σ
along at least one of the Σ±

1,2.

Condition (c) states that if attractive sliding occurs along Σ±

1,2 it
must be towards Σ.

There may be repulsive sliding along Σ±

1,2, but –if so– it must be
towards Σ.
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... through sliding ...

Condition (a) implies that the vector fields fj , j = 1, . . . , 4, must
point towards at least one of Σ1,2.

Condition (b) guarantees that there is attractive sliding towards Σ
along at least one of the Σ±

1,2.

Condition (c) states that if attractive sliding occurs along Σ±

1,2 it
must be towards Σ.

There may be repulsive sliding along Σ±

1,2, but –if so– it must be
towards Σ.

Lemma

If Σ is attractive through sliding then solution trajectories from UΣ reach
Σ in finite time.
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... through sliding ...

Example: Nodally attractive

Σ
1

2
Σ
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... through sliding ...

Example: partially attractive through sliding
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Spirally attractive

Spiral attractivity of Σ
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... spiralling ...

Spiral Attractivity of Σ (clockwise), characterized by this number
(CNSNS 2015)

µ =
w2

1(x)w
1
3(x)w

2
4(x)w

1
2(x)

w1
1(x)w

2
3(x)w

1
4(x)w

2
2(x)

, x ∈ Σ .
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... spiralling ...

Spiral Attractivity of Σ (clockwise), characterized by this number
(CNSNS 2015)

µ =
w2

1(x)w
1
3(x)w

2
4(x)w

1
2(x)

w1
1(x)w

2
3(x)w

1
4(x)w

2
2(x)

, x ∈ Σ .

Under appropriate assumptions, have µ > 0, and if µ ≤ µ0 < 1, then
Σ (and sliding regime on Σ) is spirally attractive, and Σ is reached
in finite time. [µ has a similar flavor to a Floquet multiplier.]

Luca Dieci Sliding motion



... spiralling ...

Spiral Attractivity of Σ (clockwise), characterized by this number
(CNSNS 2015)

µ =
w2

1(x)w
1
3(x)w

2
4(x)w

1
2(x)

w1
1(x)w

2
3(x)w

1
4(x)w

2
2(x)

, x ∈ Σ .

Under appropriate assumptions, have µ > 0, and if µ ≤ µ0 < 1, then
Σ (and sliding regime on Σ) is spirally attractive, and Σ is reached
in finite time. [µ has a similar flavor to a Floquet multiplier.]

Of course, there is a counterpart for the counterclockwise case.
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Exit Points

We differentiate between three types, always within the framework of a
generic first derivative theory.

Tangential Exit Points. Those values x ∈ Σ where one (and just
one) of the fF

±

1,2 is itself tangent to Σ. The corresponding fF
±

1,2 is
an exit vector field.
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one) of the fF

±

1,2 is itself tangent to Σ. The corresponding fF
±

1,2 is
an exit vector field.

Non-tangential Exit Points. Those values x ∈ Σ where one (and just
one) of the fi’s is tangent to either Σ1 or Σ2. The fi is an exit
vector field.
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Exit Points

We differentiate between three types, always within the framework of a
generic first derivative theory.

Tangential Exit Points. Those values x ∈ Σ where one (and just
one) of the fF

±

1,2 is itself tangent to Σ. The corresponding fF
±

1,2 is
an exit vector field.

Non-tangential Exit Points. Those values x ∈ Σ where one (and just
one) of the fi’s is tangent to either Σ1 or Σ2. The fi is an exit
vector field.

Spiral Exit Point. One has µ = 1. Now, there is no preferred
direction along which one should leave Σ. Any of f1, f2, f3, f4, is a
possible choice. [Similar to repulsive sliding on a co-dimension 1
surface].
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Exit Points

We differentiate between three types, always within the framework of a
generic first derivative theory.

Tangential Exit Points. Those values x ∈ Σ where one (and just
one) of the fF

±

1,2 is itself tangent to Σ. The corresponding fF
±

1,2 is
an exit vector field.

Non-tangential Exit Points. Those values x ∈ Σ where one (and just
one) of the fi’s is tangent to either Σ1 or Σ2. The fi is an exit
vector field.

Spiral Exit Point. One has µ = 1. Now, there is no preferred
direction along which one should leave Σ. Any of f1, f2, f3, f4, is a
possible choice. [Similar to repulsive sliding on a co-dimension 1
surface].

NB: All of these exit points can be detected by looking at the
entries of W .
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... exit ...

Tangential exit point.
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... exit ...

Tangential exit point.

Luca Dieci Sliding motion



... exit ...

Tangential exit point.
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... exit ...

Non-tangential exit point.

Luca Dieci Sliding motion



... exit ...

Non-tangential exit point.
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... exit ...

Non-tangential exit point.
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Sliding vector field

How do the bilinear interpolant and moments vector fields relate to
attractivity of Σ?

(D-Elia-Lopez, JDE, 2013)

The bilinear vector field is well defined, smoothly varying, both when Σ is
attractive through sliding, and spirally. But, it does not (in general) align
smoothly with an exit vector field at tangential exit points.

(D-Difonzo, JDDE-2014)

The moments vector field is well defined, smoothly varying, both when Σ
is attractive through sliding, and spirally. And, it aligns smoothly with
the exit vector field at tangential exit points.

• Neither of them can smoothly align with a non-tangential exit vector
field.
• Extension of moments method gives unique sliding vector field also for
(nodally) attractive manifolds of higher codimension (multilinear
interpolant does not).
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Sliding in R
3

Impact of ambiguity? Look at problems in R
3.
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Sliding in R
3

Impact of ambiguity? Look at problems in R
3.

Consider the case in which Σ = Σ1 ∩ Σ2 in R
3, hence, Σ is a (piece

of a) curve and –by tangency– all Filippov vector fields on Σ are
parallel, though have different norms.
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Sliding in R
3

Impact of ambiguity? Look at problems in R
3.

Consider the case in which Σ = Σ1 ∩ Σ2 in R
3, hence, Σ is a (piece

of a) curve and –by tangency– all Filippov vector fields on Σ are
parallel, though have different norms.

Assume that exit points are tangential and that if an exit point is
reached, then all trajectories exit from Σ. Note that not all
trajectories necessarily exit smoothly (this depends on the particular
sliding vector field).
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Sliding in R
3

Impact of ambiguity? Look at problems in R
3.

Consider the case in which Σ = Σ1 ∩ Σ2 in R
3, hence, Σ is a (piece

of a) curve and –by tangency– all Filippov vector fields on Σ are
parallel, though have different norms.

Assume that exit points are tangential and that if an exit point is
reached, then all trajectories exit from Σ. Note that not all
trajectories necessarily exit smoothly (this depends on the particular
sliding vector field).

Further, assume that no Filippov vector field fF (in the convex hull
of the fi’s) has an equilibrium on Σ.
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... R3 ...

Theorem (D-Elia-Lopez, JNLS 2015)

With previous assumptions, the systems ẋ = fF(x), with fF(x) any
smooth Filippov sliding vector field, are all orbitally equivalent.

• A reparametrization of time has taken place, solutions associated to
different sliding vector fields are tracing the same orbit, but at
different speeds.
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... R3 ...

Impact of previous equivalence in the case of periodic orbits.
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... R3 ...

Impact of previous equivalence in the case of periodic orbits.

Suppose for a given choice of vector field fF on Σ, the associated
trajectory slides on a portion of it, leaves it at a tangential exit point,
then eventually returns to it, after sliding on parts of Σ±

1,2, so that
altogether it traces a periodic orbit γ, a portion of which is on Σ.
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... R3 ...

Impact of previous equivalence in the case of periodic orbits.

Suppose for a given choice of vector field fF on Σ, the associated
trajectory slides on a portion of it, leaves it at a tangential exit point,
then eventually returns to it, after sliding on parts of Σ±

1,2, so that
altogether it traces a periodic orbit γ, a portion of which is on Σ.
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... R3 ...

Assume that there are no equilibria for any possible Filippov sliding
vector field on Σ, and that these sliding vector fields all exit at the
same tangential exit point. Does it matter which sliding vector field
one selects?
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... R3 ...

Assume that there are no equilibria for any possible Filippov sliding
vector field on Σ, and that these sliding vector fields all exit at the
same tangential exit point. Does it matter which sliding vector field
one selects?

The answer to this question is not immediate, since not all choices
of sliding on Σ guarantee smooth exits.
However, the stability properties of the periodic orbit γ are
independent of how one selects a (smooth) sliding vector field on Σ.
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... R3 ...

Assume that there are no equilibria for any possible Filippov sliding
vector field on Σ, and that these sliding vector fields all exit at the
same tangential exit point. Does it matter which sliding vector field
one selects?

The answer to this question is not immediate, since not all choices
of sliding on Σ guarantee smooth exits.
However, the stability properties of the periodic orbit γ are
independent of how one selects a (smooth) sliding vector field on Σ.

Theorem

Under the previous assumptions, the Floquet multipliers of the linearized
trajectories are the same, regardless of how we slide on Σ. In the previous
scenario, two of them will be equal to 0 and one equal to 1.
[Super-stable].
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Final considerations: what should happen?

Final questions (D, Elia, 2015) ... .

Given the ambiguity in selecting a specific sliding vector field, can
one at least say what should happen to sliding trajectories,
particularly insofar as their behavior when they reach “exit points?”
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Final considerations: what should happen?

Final questions (D, Elia, 2015) ... .

Given the ambiguity in selecting a specific sliding vector field, can
one at least say what should happen to sliding trajectories,
particularly insofar as their behavior when they reach “exit points?”

What happens to trajectories of the smooth globally regularized
problem?

ẋ =(1 − αǫ1(h1(x)))[(1 − βǫ2(h2(x)))f1 + βǫ2(h2(x))f2(x)]+

αǫ1(h1(x))[(1 − βǫ2(h2(x)))f3 ++βǫ2(h2(x))f4(x)] .
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Final considerations: what should happen?

Final questions (D, Elia, 2015) ... .

Given the ambiguity in selecting a specific sliding vector field, can
one at least say what should happen to sliding trajectories,
particularly insofar as their behavior when they reach “exit points?”

What happens to trajectories of the smooth globally regularized
problem?

ẋ =(1 − αǫ1(h1(x)))[(1 − βǫ2(h2(x)))f1 + βǫ2(h2(x))f2(x)]+

αǫ1(h1(x))[(1 − βǫ2(h2(x)))f3 ++βǫ2(h2(x))f4(x)] .

Do regularized solutions converge to the “bilinear” interpolant
sliding solution when the parameter(s) go to 0?
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... final considerations ...

In R
3, with h1(x) = x1, h2(x) = x2, through singular perturbation

analysis of slow/fast systems . . .
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... final considerations ...

In R
3, with h1(x) = x1, h2(x) = x2, through singular perturbation

analysis of slow/fast systems . . .

If (α∗(x3), β
∗(x3)) (solution of nonlinear system for bilinear method) is

an asymptotically stable equilibrium of the fast system, and initial
condition is in the basin of attraction of this equilibrium, then the answer
is yes.
Further, as long as the solution of the fast system remains asymptotically
stable, then the solution of the regularized system remains in a
neighborhood of Σ.
Finally, if Σ is attractive along two sub-surfaces, then (α∗(x3), β

∗(x3)) is
as-stable.
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... final considerations ...

In R
3, with h1(x) = x1, h2(x) = x2, through singular perturbation

analysis of slow/fast systems . . .

If (α∗(x3), β
∗(x3)) (solution of nonlinear system for bilinear method) is

an asymptotically stable equilibrium of the fast system, and initial
condition is in the basin of attraction of this equilibrium, then the answer
is yes.
Further, as long as the solution of the fast system remains asymptotically
stable, then the solution of the regularized system remains in a
neighborhood of Σ.
Finally, if Σ is attractive along two sub-surfaces, then (α∗(x3), β

∗(x3)) is
as-stable.

However, the equilibrium of the fast system may be as-stable even if
Σ is not attractive. Thus, regularized solution may converge to a
sliding solution even if Σ is not attractive!
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... final considerations ...

Example (Tangential Exits)

In R
4, Σ is the (x3, x4)-plane. The circle x2

3 + x2
4 = 2 is made up by

tangential exit points.

Regularized Integration: ǫ1 = ǫ2 = 10−5
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... final considerations ...

Example (Tangential Exits)

In R
4, Σ is the (x3, x4)-plane. The circle x2

3 + x2
4 = 2 is made up by

tangential exit points.

Random Euler: steps centered at τ = 10−6
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... final considerations ...

Example (Non Tangential Exit)

Σ is the x3 axis, and x3 = 3 is a non-tangential exit point.

Regularized Integration: ǫ1 = ǫ2 = 10−6
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... final considerations ...

Example (Non Tangential Exit)

Σ is the x3 axis, and x3 = 3 is a non-tangential exit point.

Random Euler: steps centered at τ = 10−5
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... final considerations ...

Example (Spiral Exit)

Σ is the x3 axis, and x3 = 1 is a spiral exit point.

Regularized Integration: ǫ1 = ǫ2 = 10−5
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... final considerations ...

Example (Spiral Exit)

Σ is the x3 axis, and x3 = 1 is a spiral exit point.

Regularized Integration: ǫ1 = 10−4, ǫ2 = 10−3
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... final considerations ...

Example (Spiral Exit)

Σ is the x3 axis, and x3 = 1 is a spiral exit point.

Random Euler: steps centered at τ = 10−5
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Summary

Random Euler behavior supports our insight into the key interplay
between attractivity and loss of it.
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Regularization methods have pitfalls deriving from having
superimposed their own dynamics to that of the PWS system.
Further, even slight changes in the regularization parameters render
different outcomes.
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between attractivity and loss of it.

Regularization methods have pitfalls deriving from having
superimposed their own dynamics to that of the PWS system.
Further, even slight changes in the regularization parameters render
different outcomes.

“Safe” conclusions:

(a) be leery of techniques whose dynamics are not compatible with PWS
system;

(b) strive to make statements on dynamics which do not depend on the
specific choice of selection. Typically, these are going to be coarse
results.
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Summary

Random Euler behavior supports our insight into the key interplay
between attractivity and loss of it.

Regularization methods have pitfalls deriving from having
superimposed their own dynamics to that of the PWS system.
Further, even slight changes in the regularization parameters render
different outcomes.

“Safe” conclusions:

(a) be leery of techniques whose dynamics are not compatible with PWS
system;

(b) strive to make statements on dynamics which do not depend on the
specific choice of selection. Typically, these are going to be coarse
results.

More personal ... if need to simulate problem, use sliding vector
fields able to detect smooth tangential exits while monitoring other
first order exits.
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