
Setting of the problem

Non-autonomous semiflows and attractors

Dynamically gradient uniform attractors

Structural Stability of Uniform

Attractors: Topological and

Geometrical

Alexandre N. Carvalho

Instituto de Ciências Matemáticas e de Computação
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Seting of the problem

We are interested in the asymptotic behavior of solutions of initial
value problems of the form

{

u̇ = f (t, u), t > τ

u(τ) = u0 ∈ X ,
(1)

where X is a Banach space, f : J × D ⊂ R× X → X (J = R or
R

+, D̄ = X ) is a map belonging to some metric space C. Assume
that, for each u0 ∈ X and τ ∈ J the solution of (1) is defined for
all t ≥ τ ; that is,

◮ for each u0 ∈ X , there is a unique continuous function
[τ,∞) ∋ t 7→ u(t, τ, f , u0) ∈ X ‘satisfying’ (1).
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If f is time independent, u(t, τ, f , u0) = u(t − τ, 0, f , u0) and the
asymptotic behavior of solutions can be seen

◮ Making the t →∞ (seeing what happens to the state at the
final time t when t is driven further to the future)
or

◮ Making τ → −∞ (seeing what happens to the state at fixed
time t when the initial time τ is driven further to the past).
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On the other hand, if f is time dependent these two asymptotics
give rise to completely different scenarios.

◮ The asymptotics w.r.t. the elapsed time t−τ (when t−τ→∞)
is called forwards dynamics whereas the asymptotics w.r.t. τ

(when τ→−∞ and t is arbitrary but fixed) is called pullback
dynamics and they are in general unrelated.

It is natural that they be unrelated (in the non-autonomous case)
for the set of vector fields driving the solution may be completely
different.
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Based on this, two main approaches have been developed in order
to study attractors for (1):

◮ The pullback attractor ([13, 26]): An invariant family of sets
for the evolution process which is pullback (in general, not
forwards) attracting and

◮ The uniform attractor ([16]): a non-invariant minimal
compact set attracting bounded subsets of X forwards in time
(uniformly w.r.t. the initial time τ).
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◮ The pullback attractors main feature is the invariance and
that gives it an intrinsic relation with the associated evolution
process.

◮ The uniform attractors main feature is the forwards
attraction which the pullback attractors will not, in general,
possess.
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◮ Exploiting the invariance properties of the pullback attractors
one can prove their continuity (upper and lower
semicontinuity) and characterization in terms of its internal
structures ([2, 5, 9, 10, 13])

◮ The same kind of study of inner structures had no parallel for
uniform attractors due to its dissociation from the original
dynamical system.
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Main Objective

◮ Our aim is to ‘relate’ pullback and uniform attractors, to be
able to give a description of the uniform attractor and to
understand some of its dynamical structures.

◮ That will allow us to talk about continuity and topological
structural stability of uniform attractors, for a
non-autonomous perturbation of a semigroup.

◮ The geometric structural stability of uniform attractors can
also be accomplished (under suitable assumptions - ongoing
research).
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Non-autonomous semiflows and attractors

For f in C (for J = R
+),

Σ = closure of {f (s + ·, ·) : s ∈ R
+} w.r.t. the metric ρ of C.

For each t ≥ 0, define the shift operator θt : Σ→ Σ by

θt f (·, ·) = f (t + ·, ·).

The semigroup {θt : t ≥ 0} is called the driving semigroup and
we assume that it has a global attractor S in Σ.
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Characterization of the uniform attractor

For each σ ∈ Σ, consider the semiflow

R
+ × X ∋ (t, u0) 7→ ϕ(t, σ)u0 ∈ X

where, for each u0 ∈ X , R
+ ∋ t 7→ ϕ(t, σ)u0 ∈ X is the solution of

the initial value problem

u̇ = σ(t, u), t > 0,

u(0) = u0 ∈ X .
(2)

The family of maps (t, σ) ∈ R
+ × Σ 7→ ϕ(t, σ) ∈ C(X ), ‘satisfy’

◮ ϕ(0, σ) = IdX for all σ ∈ Σ,

◮ R
+ × Σ ∋ (t, σ) 7→ ϕ(t, σ)u ∈ X is continuous, and

◮ for all t, s ≥ 0 and σ ∈ Σ, ϕ(t + s, σ) = ϕ(t, θsσ)ϕ(s, σ), the
‘cocycle property’.
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Characterization of the uniform attractor

The association with the differential equation is no longer required.

Hereafter, we use the pair (ϕ, θ)(X ,Σ), called a non-autonomous
dynamical system (NDS), to study the asymptotics of (1).

Now we define the associated skew-product semigroup ([31, 32])
on X = X × Σ (with the product metric) by setting

Π(t)(u, σ) = (ϕ(t, σ)u, θtσ), t ≥ 0.

The semigroup property of θt and the cocycle property of ϕ ensure
that Π(·) satisfies the semigroup property.
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Thus, to a non-autonomous differential equation, we associate the
dynamical systems:

(a) The driving semigroup {θt : t ≥ 0} on Σ,

(c) The skew-product semigroup {Π(t) : t ≥ 0} on X × Σ,

(b) The NDS (ϕ, θ)(X ,Σ) and

(d) The evolution process S(t, τ)u0 = ϕ(t − τ, θτ f )u0, when
J = R.
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Each of these dynamical systems may have an associated attractor:

(i) The global attractor S for the driving semigroup θt ,

(ii) The global attractor A for the skew-product semiflow Π(t),

(iv) The pullback attractor {A(t)}t∈R for S(t, τ),

(v) The uniform attractor A for the NDS (ϕ, θ)(X ,Σ),
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Relationship between attractors

Definition ([15, 16, 35])

The NDS (ϕ, θ)(X ,Σ) is uniformly asymptotically compact
(UAC) if there exists a compact set K ⊂ X such that

lim
t→∞

sup
σ∈Υ

distH(ϕ(t, σ)B ,K ) = 0, (3)

for every bounded subset B of X and bounded set Υ of Σ.

Theorem
The NDS (ϕ, θ)(X ,Σ) is UAC and θt has a global attractor S if
and only if {Π(t) : t ≥ 0} has a global attractor A. In this case the
NDS (ϕ, θ)(X ,Σ) has a uniform attractor A and A = ΠX A.
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Theorem (Theorem 2.7 in [5])

Assume that Π(t) has a global attractor A (hence θt has a global
attractor S ). If η : R→ S is a global solution for θt , the process

Tη(t, s)u = ϕ(t − s, η(s))u, u ∈ X , t ≥ s,

has a pullback attractor {Aη(t) : t ∈ R} and

A =
⋃

η

⋃

t∈R

Aη(t)× {η(t)},

where the first union is taken over all global solutions η : R→ S

of θt . Moreover, the NDS (ϕ, θ)(X ,Σ) has a uniform attractor A
with

A = ΠX A =
⋃

η

⋃

t∈R

Aη(t).
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Characterization of the uniform attractor

Definition (lifted-invariant sets)

If η : R→ S is a global solution of θt and ξ : R→ X is such that

ϕ(t − s, η(s))ξ(s) = ξ(t), ∀t > s, and ξ(0) = x ,

we say that ξ is a global solution through x on η.

A set M⊂ X is lifted-invariant if for each x ∈M there is a
global solution η : R→ S of θt and a global solution ξ : R→ X
through x on η such that ξ(R) ⊂M.

If there is an ǫ > 0 such thatM is the maximal lifted-invariant set
in Oǫ(M), we say thatM is an isolated lifted-invariant set.
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Proposition (Characterization of Uniform Attractors)

Under the assumptions that NDS (ϕ, θ)(X ,Σ) is UAC and θt has a
global attractor, the uniform attractor A is the maximal bounded
isolated lifted-invariant set of X.
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Dynamically gradient uniform attractors

Definition
We say that a family Ξ = {Ξ1, · · · ,Ξn} of subsets of X is a
disjoint family of isolated lifted-invariant sets if each Ξi is an
isolated lifted-invariant set and there exists ǫ > 0 such that
Oǫ(Ξi ) ∩ Oǫ(Ξj) = ∅ if 1 6 i < j 6 n.
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Definition (Homoclinic structure)

Let (ϕ, θ)(X ,Σ) be a NDS with a uniform attractor A and a disjoint
family of isolated lifted-invariant sets Ξ = {Ξ1, · · · ,Ξn} in A.

A homoclinic structure in Ξ is a subset {Ξℓ1
, · · · ,Ξℓk

}, together
with global solutions ξi : R→ A through xi on ηi such that

Ξℓi

t→−∞
← ξi(t)

t→∞
→ Ξℓi+1

,

where Ξℓk+1
:= Ξℓ1

and if k = 1 there exists ǫ > 0 such that

sup
t∈R

dist(ξ1(t),Oǫ(Ξℓ1
)) > 0.
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Definition (Dynamically Gradient NDS)

A NDS (ϕ, θ)(X ,Σ) with a uniform attractor A is said to be
dynamically gradient relatively to a disjoint family of isolated
lifted-invariant sets Ξ = {Ξ1, · · · ,Ξn} if

◮ (GU1) for x ∈ A and global solution ξ : R→ A through x on
η, we have that

Ξj
t→−∞
← ξ(t)

t→∞
→ Ξi ,

for some 1 6 i , j 6 n.

◮ (GU2) There are no homoclinic structures in Ξ.

As a direct consequence of (GU1) and (GU2), we have that
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Proposition

If a NDS (ϕ, θ)(X ,Σ) with a uniform attractor A is dynamically
gradient relatively to a disjoint family of isolated lifted-invariant
sets Ξ = {Ξ1, · · · ,Ξn}, then the associated skew product semiflow
{Π(t) : t > 0} is dynamically gradient relatively to the disjoint
family of isolated invariant sets E={E1,· · ·, En}, with
Ei = {(x , σ) ∈ A : x ∈ Ξi}.

Conversely, if {Π(t) : t > 0} is dynamically gradient relatively to a
disjoint family of isolated invariant sets E = {E1, · · · , En} and

Ξi ∩ Ξj = ∅, 1 6 i < j 6 n, Ξi := ΠX Ei , 1 ≤ i ≤ n,

then (ϕ, θ)(X ,Σ) is dynamically gradient relatively to the disjoint
family of isolated lifted-invariant sets Ξ = {Ξ1, · · · ,Ξn}.
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Topological Structural Stability

Theorem
Let (ϕν , θ)(X ,Σν) be a NDS and {Πν(t) : t ≥ 0} be the associated
skew-product semiflows, ν ∈ [0, 1], and assume that

(a) For each ν ∈ [0, 1], {Πν(t) : t ≥ 0} has a global attractor Aν

and ∪ν∈[0,1]Aν is compact. Hence (ϕν , θ)(X ,Σν) has a uniform
attractor Aν = ΠX Aν and θt has a global attractor Sν in Σν .

(b) Σ0 = {σ0} and ϕ0(t, σ0) ≡ S0(t), where {S0(t) : t > 0} is a
dynamically gradient semigroup relatively to a disjoint family
of isolated invariants E0 = {E0,1, · · · ,E0,n}.

(c) For each ν ∈ [0, 1], there is a disjoint family of isolated
lifted-invariant sets Eν = {Eν,1, · · · , Eν,n} ⊂ Aν such that

max
16i6n

DistH(Eν,i ,E0,i )→ 0, as ν → 0+.
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(d) supσν∈Σν

[dist(ϕν(t, σν)x , ϕ0(t, σ0)x) + ρ(σν , σ0)]
ν→0+

−→ 0,
uniformly in compact subsets of R

+ × X .

(e) There is a δ > 0 such that if R ∋ t 7→ ξν(t) ∈ Aν is a global
solution through x on η, t0∈R and dist(ξν(t),Eν,i )6δ, for all
t 6 t0 (t > t0), then dist(ξν(t),Eν,i )→0 as t→−∞ (t→∞).

Then there exists ν0 > 0 such that the NDS (ϕν , θ)(X ,Σν) is a
dynamically gradient relatively to the disjoint family of isolated
lifted-invariant sets Eν = {Eν,1, · · · ,Eν,n}, for all ν ∈ [0, ν0].
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Aplications - Domains with a handle

Let Ω ⊂ R
N be a bounded smooth domain and P ,Q ∈ Ω̄.

Consider the problem

ut = ∆u + f (u), t > 0, x ∈ Ω,

∂u

∂n
= 0, x ∈ ∂Ω,

vt = vss + g(v), t > 0, s ∈ (0, 1),

v(t, 0) = u(t,P), v(t, 1) = u(t,Q), t > 0,

u(0, x) = u0(x), x ∈ Ω, v(0, s) = v0(s), s ∈ (0, 1)

(4)

where u0 ∈W 1,p(Ω), v0 ∈W 1,p(0, 1), p > N and f , g : R→ R

are C 1 functions such that lim sup
u→∞

f (u)
u

< 0 and lim sup
v→∞

g(v)
v

< 0.

Assume that all equilibria of (4) are hyperbolic.
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Aplications - Cascade System

Consider the problem

ut = uxx + f (u), t > 0, x ∈ (0, 1),

ux(t, 0) = ux(t, 1) = 0, t > 0,

vtt + βvt = vxx + g(u, v), t > 0, x ∈ (0, 1),

vx(t, 0) = vx(t, 1) = 0, t > 0,

u(0, x)=u0(x), v(0, x)=v0(x), vt(0, x)=v1(x), x∈(0, 1),

(5)

where u0 ∈ H1(0, 1), (v0, v1) ∈ H1(0, 1) × L2(0, 1) and f , g are C 1

functions satisfying suitable growth conditions and dissipation
conditions lim sup

u→∞

f (u)
u

< 0 and sup
u∈R

lim sup
v→∞

g(u,v)
v

< 0. Assume that

all equilibria of (5) are hyperbolic.
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Aplication - ODE with Periodic Orbits

Consider the following autonomous equation in polar coordinates

{

ṙ = −r(r − 1)(r − 2)

θ̇ = 1
(6)

which has, in the (x , y)−plane, P0 := (0, 0) as a stable fixed point
and periodic orbits P1 (unstable) and P2 (stable).

The problem (6) generates a semigroup with a global attractor
A0 ={(x , y) :‖(x , y)‖62} which is dynamically gradient relatively
to the family of isolated invariant sets P = {P0,P1,P2}.
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For each η ∈ [0, 1], consider the perturbed problem

{

ṙ = −r(r − 1)(r − 2) + fη(t), t ∈ R
+,

θ̇ = 1
(7)

where f0 ≡ 0, fη(t) ≥ 0, ∀η, t, sup
t,η

f ′η(t) <∞ and sup
t

fη(t)
η→0+

−→ 0.

It is easy to see that the skew-product semigroup associated to (7)
has global attractor and that ∪ν∈[0,1]Aν is relatively compact.
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Note that the region Aα1,α2 = {(x , y) ∈ R
2 : α1 6 ‖(x , y)‖ 6 α2},

1<α1 <2<α2, is positively invariant for any ση ∈ Sη, η is small.
Hence, if the restriction of the NDS to Aα1,α2 has a uniform
attractor M2,η.

Analogous reasoning can be used to prove the existence of isolated
lifted-invariant sets M1,η and M0,η for the NDS associated to (7).

Theorem 3 implies that the NDS is dynamically gradient relatively
to the disjoint family of lifted-invariant sets {M0,η,M1,η, M2,η}.
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Thank you very much for your attention.
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