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Talk I : Averaging operators in dynamical systems and effective
ergodic theorems

Talk II : Unitary representations, operator norm estimates, and
counting lattice points

Talk III : Best possible spectral estimates, the automorphic
representation of a lattice subgroup, and the duality principle on
homogeneous spaces

Talk IV : Fast equidistribution of dense lattice orbits, and best
possible Diophantine approximation on homogeneous algebraic
varieties
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Best possible spectral estimates for simple groups

A remarkable feature of unitary rep’s theory of simple groups is
that best possible spectral estimate can be realized very often.

This was observed already by Kazhdan (1967), and in fact
served as the cornerstone of his proof of Property T .

Recall that Kazhdan considered the subgroup L = SL2(R).<R2

of G = SL3(R), and the restriction of a general unitary rep’ π of G
without invariant unit vectors to L.

π |L has then no π(R2)-invariant unit vector, since matrix coeff. of
π decay to zero at infinity. By Mackey’s theory of unitary rep’s of
semi-direct products π |L is induced from a unitary rep’ of an
amenable subgroup of L

.

It follows that π |L is weakly contained in the regular rep’ rL !!!!!
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Tempered subgroups

Conclusion : the restriction of any unitary rep’ of G = SL3(R)
without invariant unit vectors to H = SL2(R) is a tempered
representation of SL2(R).

In particular, in any ergodic action of G = SL3(R) on a space X ,
averages βt supported on Bt ⊂ H = SL2(R) satisfy the best
possible norm estimate.

For example, if Γ is a lattice subgroup of SL3(R), the ergodic
action of SL2(R) on the probability SL3(R)/Γ has the fastest
possible rate of convergence to the space average.

It is therefore natural to define the following for general G and
(non-amenable) H.

(G,H, π) is tempered if the restriction of π to H is a tempered
rep’ of H.

H is a tempered subgroup of G if EVERY unitary rep’ π of G
without inv’ unit vectors has a tempered restriction to H.
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Examples of subgroup temperedness

Remarkably, there are several robust easily verifiable general
principles which can be used to establish subgroup
temperedness, as follows.

1) Kazhdan’s original semi-direct product argument : When
SL2(R).<Rd ⊂ G (suitably), any unitary rep’ of G without
Rd -invariant unit vectors is tempered when restricted to SL2(R).

2) When G is simple with property T , there are universal
pointwise bounds on the K -finite matrix coefficients of G in
general unitary representations (Cowling 1980, Howe 1980,
Howe-Moore 1976, How-Tan 1992, Li 1994, Oh 1998.....). These
bounds can be restricted to a simple subgroup H and are often in
L2+η(H) so that every restricted rep’ of H is tempered.

3) Margulis 1995 observed that this holds for (the images of) all
the irreducible linear representations SL2(R)→ SLn(R), n ≥ 3.
This observation can be greatly generalized.
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Subgroup temperedness, continued

4) Unitary rep’s of simple groups have matrix coefficients in
L2k (G) for some k . Restricting a rep’s of Gk to the diagonally
embedded copy of G yields matrix coefficients which are in
L2+η(G), so the diagonally embedded subgroup is (Gk ,G, π0

Gk/Γ
)

tempered.

5) For some lattices and their low level congruence subgroups
the Selberg eigenvalue conjecture is known to hold, so that
L2

0(G/Γ) is known to be a tempered representation of G. This
holds for example for SL2(Z) ⊂ SL2(R) and SL2(Z[i]) ⊂ SL2(C).
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Approximation by dense orbits : general set up

• Let G be a locally compact second countable group,

• Γ a discrete lattice subgroup of G,

• and let H be a closed subgroup.

• Assume that Γ is ergodic on G/H, with respect to the unique
G-quasi-invariant measure class.

• In that case, almost every Γ-orbit in G/H is dense.

• Let ‖g‖ denote a natural gauge on G, namely a continuous,
non-negative and proper function from G to R+.
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Exponent of approximation

• Let d denote a natural metric on G/H.

•We would like to analyze the efficiency of approximation by Γ-orbits
on the homogeneous space G/H, as follows.

• Let x ∈ G/H and suppose that for sufficiently small ε > 0, for every
x0 ∈ G/H we can solve the inequality d(γ−1x , x0) < ε,

• with γ ∈ Γ satisfying ‖γ‖ <
( 1
ε

)ζ
, and ζ = ζ(x , x0) <∞.

Thus ζ(x , x0) gives a rate of approximation of a general point
x0 ∈ G/H by the Γ-orbit of x .
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Basic problems

• Problem I : finiteness. Determine when does there exist a finite
constant ζ(Γ,G/H) which bounds the rate of approximation by almost
every lattice orbit. Determine when does there exist a finite uniform
bound for every lattice orbit, without exception.

• Problem II : Explicit bounds. Establish an upper bound and a lower
bound for the rate of approximation, and explicate their dependence
on G, H, and Γ explicitly.

• Problem III : Optimality. Give a simple, easily verifiable and widely
applicable criterion for when the upper and lower bounds coincide,
giving rise to the optimal rate of approximation by lattice orbits on the
homogeneous space.
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Scope of the problem : some instances

• G(R) a real algebraic group defined over Q, H(R) an algebraic
subgroup, Γ = G(Z) the lattice of integral points. This includes natural
Diophantine approximation problems on homogeneous affine
varieties, as well as on homogeneous projective varieties.

• G any connected real Lie group, H a closed subgroup and Γ an
ergodic, not necessarily arithmetic, lattice. This includes for example
H being a lattice subgroup itself, and thus also lattice orbit
approximation on locally symmetric spaces (when G is semisimple).

• G is an S-algebraic Q-group, H a closed subgroup, Γ = G(Z[S−1]).
This includes for example G = G(R)×G(Qp) and H = G(Qp),
namely approximation in the connected group G(R) by the dense
subgroup G(Z[ 1

p ]).
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• G(A) and H(A) are groups of rational adéles, Γ = G(Q). This
includes the problem of intrinsic diophantine approximation, namely
by rational points lying on the algebraic variety G(R)/H(R) itself.

• Other natural examples involve groups over arbitrary locally
compact fields, lattices over arbitrary number fields.......

• Other natural problems include establishing an analog of Khinchin’s
theorem when the rate is optimal, and possibly further refinements.....

•We now turn to describe a general approach to the problem of
establishing explicit bounds, and give a sufficient condition for
optimality, under certain conditions.

• A main assumption in our approach is that G is non-amenable.
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Previous results on approximation exponents

• Laurent and Nogueira (2011) : ζ ≤ 3 for the lattice SL2(Z) acting
linearly on the plane.

• Maucourant and Barak Weiss (2011) : an (explicit, but not as sharp)
upper bound for ζ for arbitrary lattices in SL2(R).

• For an S-arithmetic lattice G(Z[S−1]) (including G(Q)) acting on
homogeneous varieties G/H, G semisimple, the exponent was
estimated, and in some cases shown to be optimal and satisfy an
analog of Khinchin’s theorem, in previous joint work with Ghosh and
Gorodnik (2011).

• Kleinbock and Merrill (2013) have established the best possible
exponent for rational approximation on the unit spheres in any
dimension n ≥ 2, together with an analog of Khinchine’s theorem
(and even sharper results). More recently [FKMS] considered general
quadratic varieties.
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Diophantine approximation on affine homogeneous
varieties

• Let G be an algebraic Q-subgroup of SLn(F ) (for F = R, C, Qp......)

• Let Γ be a lattice subgroup of G, for example the lattice of integral
points G(Z) in G(R).

• Fix a norm on Rn and Cn, and on Mn(R) and Mn(C),

• and in the local field case, take the standard valuation on the field,
and the standard maximum norm on the linear space F n, and on
Mn(F ).
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Quantifying denseness

• Consider an affine subvariety V ⊂ F n which is invariant and
homogeneous under the G-action. Assume that almost every Γ-orbit
is dense in V . Restrict the norm chosen on F n to V .

• Consider the Diophantine inequality
∥∥γ−1x − x0

∥∥ < ε, with γ ∈ Γ
satisfying the norm bound ‖γ‖ ≤ Bε−ζ .

• Define the Diophantine approximation exponent κ(x , x0) as the
infimum of ζ > 0 such that the foregoing inequality has a solution with
the properties stated.

• κ(x , x0) is a Γ× Γ-invariant function, hence almost surely a constant
κ when the action is ergodic. κ depends on G, Γ and V , but not on
the norms chosen on F n and Mn(F ).
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Planar Inhomogeneous Diophantine approximation
• Consider the affine action of Γ = SL2(Z).<Z2 on R2.

• Here the optimal rate is κ = 1. In fact more precisely, for every
x0 = (u0, v0) ∈ R2, for almost every x = (u, v) ∈ R2, and for every ε
sufficiently small, it is possible to solve

∥∥γ−1x − x0
∥∥ < ε and

‖γ‖ ≤ B
ε · log2+η ( 1

ε

)
.

• Taking the resulting two inhomogeneous equations mod 1, we
conclude that for every x0 = (u0, v0) ∈ T2, for almost every
x = (u, v) ∈ T2, and for every ε sufficiently small, there are integers
a,b, c,d with

‖(au + bv , cu + dv)− (u0, v0)‖ < ε

such that ad − bc = 1, and

max {|a| , |b| , |c| , |d |} < B
ε
· log2+η

(
1
ε

)
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Inhomogeneous Diophantine approximation by
Gaussian integers.

• Consider the affine action of Γ = SL2(Z[i]).<Z[i]2 on C2.

• The optimal rate of approximation for the Γ-action on C2 is κ = 1.
As before, a similar conclusion holds for the rate of approximation by
SL2(Z[i])-orbits on C2/Z[i]2.

• The same conclusions hold for approximation in C2 by the orbits of
SL2(O3).<O2

3, where O3 is the ring of Eisenstein integers contained
in Q[

√
−3].

• For the corresponding approximation result using algebraic integers
in other imaginary quadratic number fields, it is possible to give upper
estimates for the exponent κ, but its exact value remains an open
problem.
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The constant-determinant variety
• Consider the variety of 3× 3 matrices with a fixed determinant
k 6= 0, V = Vk (F ) = {X ∈ M3(F ) ; det X = k} .

• The group G = SL3(F )× SL3(F ) acts transitively on V , via
(g1,g2)X = g1Xg−1

2 . The stability group of the point X = Id is the
subgroup H = ({h,h) ; h ∈ SL3(F )}.

• H is the fixed point set of the involution (g1,g2) 7→ (g2,g1) and
V = G/H is a semisimple symmetric space.

• Consider F = R,C,Qp, and every irreducible lattice Γ of
G = SL3(F )× SL3(F ) (e.g. F = R, Γ = SL3(Z[

√
p]), p prime).

• Then the exponent of Diophantine approximation of Γ on Vk (F ) is
given by κ = 4/3, in all cases.

• The best possible exponent for irreducible lattices in
SL2(F )×SL2(F ) is κ = 3/2. Whether it is achieved by any irreducible
lattice remains an open problem.
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Lower bound for the Diophantine exponent
• A basic ingredient in solving the Diophantine inequalities which
approximate a point x0 ∈ V is to estimate how many orbit points γ−1x
are available in a compact neighborhood Ω of x0 in the homogeneous
variety V = G/H.

• Define the empirical growth parameter for such points :

a = sup
Ω compact

lim sup
T→∞

log
∣∣{γ ∈ Γ ; ‖γ‖ < T , γ−1x ∈ Ω

}∣∣
log T

• the rate of growth of such orbit points obeys the bounds satisfied by
the volume growth of norm balls in the stability subgroup H, namely
T a−η � mH(HT )� T a+η, where a > 0.

• so the number of points available for the approximation obeys∣∣{γ ∈ Γ ; ‖γ‖ < T , γ−1x ∈ Ω
}∣∣� T a+η
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• Let d denote a bound for the local growth parameter of the invariant
measure mV on the affine subvariety V = G/H ⊂ F n, namely
mV ({‖v − v0‖ < ε} ≥ Cηεd+η, for all η > 0.

• For F = R this is simply the dimension of V . In general, in a
compact neighborhood Ω of x0 ∈ V there will exist an ε-separated net
of size roughly ε−d .

• There are at most T a+η pigeons (points of the form γ−1x in Ω, with
‖γ‖ < T ), and roughly ε−d pigeon holes (disjoint ε-balls in Ω.)

• If the Diophantine approximation in Ω was successful, then clearly
ε−d � T a+η, i.e. T � ε−d/a−η so that we have

• Thm F. [Ghosh-Gorodnik-N 2013] κ ≥ d
a , namely it is impossible to

approximate points on V = G/H as above by points in lattice orbits
any faster, namely using matrices of smaller norm.
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Deriving an upper bound

• For an upper bound on the Diophantine exponent we will use

• spectral estimates in the automorphic representation L2(Γ \G)
leading to an effective mean ergodic theorem for H,

• dynamical arguments exploiting the speed of distribution of H-orbits
in Γ \G, in the form of a shrinking target argument.

• A quantitative duality argument translating a rate in the action of H
on Γ \G to a rate in the action of Γ on G/H

• Consider the intersection of norm balls with the stability group H,
namely HT = {h ∈ H ; ‖h‖ < T}.

• Consider the invariant probability measure mΓ\G on Y = Γ \G and
the averaging operators πY (βT ) : L2(Γ \G)→ L2(Γ \G), given by
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The effective mean ergodic theorem

πY (βT )f (y) =
1

mH(HT )

∫
h∈HT

f (yh)dmH(h) , y ∈ Γ \G .

• Assume that the effective mean ergodic theorem for the averaging
operators π0

Y (βT ) holds, namely :

• there exists θ > 0 such that

‖πY (βT )f −
∫

Y
fdm‖L2(Γ\G) ≤ C(η)mH(HT )−θ+η‖f‖L2(Γ\G)

for every η > 0, suitable C(η), and t ≥ tη.
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An upper bound for the Diophantine exponent

• Let G ⊂ GLn(F ) be an algebraic group defined over F , H a Zariski
closed unimodular subgroup, Γ a discrete lattice in G.

• Restrict a norm on Mn(F ) to G, and assume that HT = GT ∩ H
satisfies the volume growth bounds with rate a.

• Let d denote a bound for the local growth parameter of the invariant
measure on the affine subvariety V = G/H ⊂ F n

• Assume that the averages βT supported on HT satisfy the effective
mean ergodic theorem in L2(Γ \G) with rate θ.

• Thm G.[Gohsh-Gorodnik-N 2013] Under the assumptions stated
above, the Diophantine exponent satisfies the upper bound
κ ≤ 1

2θ ·
d
a .

• Conclusion : if 2θ = 1 then the lower and upper bounds for the
Diophantine exponent coincide !
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Best possible rate of approximation

• Corollary 1. If the rate of convergence in the mean ergodic
theorem for the averaging operators βT acting on L2

0(Γ \G), is as fast
as the inverse of the square root of the volume of HT , then the rate of
Diophantine approximation of Γ-orbits on the variety V = G/H is best
possible, and the Diophantine exponent is given by κ = d

a , the a-priori
pigeon-hole bound.

• Corollary 2. If the stability group H is semi simple and non-compact,
and the restriction of the automorphic representation π0

G/Γ to H is a
tempered representation of H, then the Diophantine exponent of the
irreducible lattice Γ of G in its action on G/H is best possible, and is
given by κ = d

a .

• So understanding the exact extent of the class of tempered triples
(G,H, Γ) is a very intriguing problem !
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The duality principle

• Thm. G is an instance of the general method of duality in
homogenous dynamics, which aims to establish properties of the
Γ-orbits in G/H by using properties of the H-orbits in Γ \G.

•When aiming to establish a rate of approximation for Γ-orbits in G/H
when ordered by a norm, the dual property which is most pertinent is
the existence of a rate in the mean ergodic theorem for ball averages
on H acting on Γ \G.

• A general quantitative duality principle has been developed in joint
work with Alex Gorodnik. It yields conclusions which are considerably
more precise than just the existence of a rate of approximation by
Γ-orbits.

• For example, it is possible to prove quantitative mean and pointwise
ergodic theorems for the discrete averages supported on orbit points
when ordered by a norm, although the optimality of the rate is
compromised.
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Exploting duality in the Diophantine exponent problem

The gist of the matter is that given x0 ∈ G/H, we place it in an
ε-neighbourhood x0 ∈ Vε ⊂ G/H (so that mG/H(Oε) ∼ εdim G/H .

We have a continuous section G/H → G of the natural vibration
G→ G/H, and Vε is covered by a small neighbourhood Oε of the
point g0 (where x0 = g0H).

Let χε be the normalized characteristic function of Oε. Let us
periodize χε under Γ, forming φε(Γg) =

∑
γ∈Γ χε(γg)

φε being in L2(Γ \G), we consider the averaging operators
(supported on Bt ⊂ H) :

πΓ\G(βt )φε(Γu) =
1

mH(Bt )

∫
h∈Bt

φε(Γuh)dmH(h)
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Duality and approximation, cont’d

and deduce from the effective mean ergodic theorem for H in
L2

0(Γ \G) that∥∥∥∥∥πΓ\G(βt )φε −
∫

Γ\G
φεdmΓ\G

∥∥∥∥∥
L2

≤ CmH(Bt )
−θ ‖φε‖L2

equivalently, the family of functions πΓ\G(βt )φε converge at a
definite rate to the constant (non-zero) function∫

Γ\G
φεdmΓ\G ∼ εdim G/H .

Since φε is a Γ-periodization, we conclude that for all t ≥ tε
sufficiently large, for some u close to e, we have

πΓ\G(βt )φε(Γuh) =
∑
γ∈Γ

∫
h∈Bt

χε(γuh)dmH(h) 6= 0
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Approximation exponent

so that for some γ ∈ Γ we have γuh ∈ Oε with u ∈ C, a compact
set,

and thus γ ∈ Oεu−1h ⊂ OεCHT .

Since HT is defined by a norm we obtain an element γ ∈ Γ with a
bound on its norm, such that, when projecting to G/H it maps uH
close to x0 = g0H

or equivalently, γuH ∈ OεH .
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