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counting lattice points

Talk III : Best possible spectral estimates, the automorphic
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Talk IV : Fast equidistribution of dense lattice orbits, and best
possible Diophantine approximation on homogeneous algebraic
varieties
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Counting lattice points in admissible domains

G is a simple Lie group, Oε = {g ∈ G : d(g,e) < ε}.

An increasing family Bt , t > 0, of G is admissible if there exists
c > 0, t0 and ε0 such that for all t ≥ t0 and ε < ε0 we have :

Oε · Bt · Oε ⊂ Bt+cε, (1)
mG(Bt+ε) ≤ (1 + cε) ·mG(Bt ). (2)

Thm. E. Lattice point counting. Gorodnik+N, 2006.

G a connected Lie group, Γ ⊂ G a lattice, Bt ⊂ G admissible.

1)
∥∥π(βt )f −

∫
X f dmG/Γ

∥∥
L2 → 0 implies

|Γ ∩ Bt | = |Γt | ∼ mG(Bt ) as t →∞.

2)
∥∥∥π(βt )f −

∫
G/Γ

f dmG/Γ

∥∥∥
L2
≤ Cm(Bt )

−θ ‖f‖L2 implies

|Γt |
mG(Bt )

= 1 + O
(

m(Bt )
−θ/(dim G+1)

)
.
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Proof of Theorem E.

Step 1 : Applying the mean ergodic theorem

Let Oε be a small neighborhood of e and

χε =
χOε

mG(Oε)

consider the Γ-periodization of χε

φε(gΓ) =
∑
γ∈Γ

χε(gγ).

φ is a bounded function on G/Γ with compact support,∫
G
χε dmG = 1, and

∫
G/Γ

φε dµG/Γ = 1.
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Let us apply the mean ergodic theorem to the function φε.
It follows from Chebycheff’s inequality that for every δ > 0,

mG/Γ({hΓ ∈ G/Γ : |πG/Γ(βt )φε(hΓ)− 1| > δ}) −→ 0

In particular, for sufficiently large t , the measure of the deviation
set is smaller than mG/Γ(Oε), and so there exists gt ∈ Oε such
that

|πG/Γ(βt )φε(gt Γ)− 1| ≤ δ

and we can conclude the following

Claim I. Given ε, δ > 0, for t sufficiently large, there exists
gt ∈ Oε satisfying

1− δ ≤ 1
mG(Bt )

∫
Bt

φε(g−1gt Γ)dmG ≤ 1 + δ .
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On the other hand, by definition of φε and the averaging operators
πG/Γ(βt ) :

πG/Γ(βt )φε(hΓ) =

=
1

mG(Bt )

∫
Bt

φε(g−1hΓ)dmG =

=
1

mG(Bt )

∫
Bt

∑
γ∈Γ

χε(g−1hγ)dmG

=
∑
γ∈Γ

1
mG(Bt )

∫
Bt

χε(g−1hγ)dmG .
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Step 2 : Basic comparison argument

Claim II. For sufficiently large t and any h ∈ Oε,∫
Bt−cε

φε(g−1hΓ) dmG(g) ≤ |Γt | ≤
∫

Bt+cε

φε(g−1hΓ) dmG(g).

Proof. By definition∫
Bt−cε

φε(g−1hΓ) dmG(g) =
∑
γ∈Γ

∫
Bt−cε

χε(g−1hγ) dmG(g)

and if for γ /∈ Γt the integrand is zero, then we can estimate

≤
∑
γ∈Γt

∫
G
χε(g−1hγ) dmG(g) ≤ |Γt |.

But If χε(g−1hγ) 6= 0 for some g ∈ Bt−cε and h ∈ Oε, then clearly
g−1hγ ∈ supp χε = Oε, and so

γ ∈ h−1 · Bt−cε · (supp χε) ⊂ Bt .

by admissibility.
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on the other hand, since χε ≥ 0 and
∫

G χεdm = 1 :∫
Bt+cε

φε(g−1hΓ) dmG(g) ≥

≥
∑
γ∈Γt

∫
G
χε(g−1hγ) dmG(g) ≥ |Γt |.

provided that for γ ∈ Γt and h ∈ Oε,

supp(g 7→ χε(g−1hγ)) = hγ(supp χε)
−1 ⊂ Bt+cε

which is true again by admissibility,

Now taking t sufficiently large, h = gt and using Claims I and II

|Γt | ≤ (1 + δ)m(Bt+ε) ≤

≤ (1 + δ)(1 + cε)m(Bt ),

by admissibility. The lower estimate is proved similarly.
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Step 3 : Counting with an error term

Assuming ∥∥∥∥∥π(βt )f −
∫

G/Γ

fdµ

∥∥∥∥∥
L2

≤ Cm(Bt )
−θ ‖f‖L2

we must show

|Γt |
mG(Bt )

= 1 + O
(

m(Bt )
−θ

dim G+1

)
.

Proof. Clearly for ε small, mG(Oε) ∼ εn .
and thus also ‖χε‖2

2 ∼ ε−n, where n = dim G.

By the mean ergodic theorem and Chebycheff’s inequality :

mG/Γ({x ∈ G/Γ : |πG/Γ(βt )φε(x)− 1| > δ})

≤ Cδ−2ε−nm(Bt )
−2θ.
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Thus here the measure of the set of deviation decreases in t with
a prescribed rate determined by the effective ergodic Thm.

As we saw above, points x in its complement give us an
approximation to our counting problem with quality δ, and we
must also require that the measure of the deviation set be
smaller than mG(Oε) ∼ εn.

The estimate of the measure of the deviation set holds for all
parameters t , ε and δ, since the mean ergodic theorem with error
term is a statement about the rate of convergence in operator
norm, and is thus uniform over all functions.

Our upper error estimate in the counting problem is, as before

|Γt | ≤ (1 + δ)m(Bt+ε) ≤

≤ (1 + δ)(1 + cε)m(Bt ),

Taking δ ∼ ε ∼ m(Bt )
−θ/(n+1) balances the two significant parts

of the error and meets the condition above, and the result follows.
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Uniformity in the lattice point counting problem

Note that in the ergodic theoretic approach we have taken, the
important feature of uniformity of counting lattice points in finite
index subgroups Λ is immediately apparent.

Indeed all that is needed is that the averaging operators π(βt )
satisfy the same norm decay estimate in the space L2(G/Λ).

This holds when the set of finite index subgroups satisfy property
τ , namely when the spectral gap appearing in the
representations L2

0(G/Λ) has a positive lower bound.

Property τ has been shown to hold for the set of congruence
subgroups of any arithmetic lattice in a semisimple Lie group
(Burger-Sarnak, Lubotzky, Clozel.....), generalizing the Selberg
property

.
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Some previous results

The classical non-Euclidean counting problem asks for the
number of lattice points in a Riemannian ball in hyperbolic space
Hd . For this specific case, the best known bound is still the one
due to Selberg (1940’s) or Lax-Phillips (1970’s). Bruggeman,
Gruenwald and Miatello have established similar quality results
for lattice points in Riemannian balls in products of SL2(R)’s
(2008).

Riemannian and other bi-K -invariant balls in certain higher rank
simple Lie groups were considered by Duke-Rudnik-Sarnak
(1991). In this case, they have obtained the best error estimate
to date, which is matched by Thm. E (when adjusted for radial
averages).

Eskin-McMullen (1991) devised the mixing method, which
applies to general (well-rounded) sets, but have not produced an
error estimate. Maucourant (2005) has obtained an error
estimate using an effective form of the mixing method, and so
have Benoist-Oh in the S-algebraic case (2012). The resulting
estimates are weaker than those of Thm. E.
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Counting rational points

Counting rational points of bounded height on algebraic varieties
homogeneous under a simple algebraic group G defined over Q
has been considered by Shalika, Takloo-Bighash and Tschinkel
(2000’s). They used direct spectral expansion of the height zeta
function in the automorphic representation (using, in particular,
regularization estimates for Eisenstein series).

Gorodnik, Maucourant and Oh (2008) have used the
Eskin-McMullen mixing method in the problem of counting
rational points.

It is possible to consider the corresponding group G over the ring
of rational adéles, in which the group of rational points is
embedded as a lattice. Generalizing the operators norm
estimates from G(F ) (for all field completions F ) to the group of
adéles, it is possible to use the method based on the effective
mean ergodic theorem here too. The error estimate of Thm. E is
better that the estimate that both other methods produce.
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Ergodic theorems for lattice groups : Induced actions

To prove the mean and pointwise ergodic theorems for lattice
subgroups (stated as Thm. A in Talk I) we generalize the solution
of the lattice point counting problem.

Indeed, there we have considered the action of G on G/Γ,
namely the action induced to G from the trivial Γ-action on a
point. We now analyze the action induced to G from a general
ergodic action of Γ on (X , µ).

Denote by Y = G/Γ× X = G×X
Γ , with the measure mG/Γ × µ, the

action of G induced from the Γ-action on X .

It is defined as the space Y = G×X
Γ of Γ-orbits in G × X , where Γ

acts via (h, x)γ = (hγ, γ−1x). G acts on G × X via
g · (h, x) = (gh, x), an action which commutes with the Γ-action
and is therefore well defined on Y . The measure mG/Γ × µ is
G-invariant.
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Ergodic theorems for lattice groups : proof overview

The essence of the matter is to estimate the ergodic averages
πX (λt )φ(x) given by

1
|Γ ∩ Bt |

∑
γ∈Γ∩Bt

φ(γ−1x) , φ ∈ Lp(X ),

above and below by the ergodic averages πY (βt±C)Fε(y),
namely by

1
mG(Bt±C)

∫
g∈Bt±C

Fε(g−1y)dmG(g) .

The link between the two expressions is given by setting
y = (h, x)Γ ∈ (G × X )/Γ = Y and

Fε((h, x)Γ) =
∑
γ∈Γ

χε(hγ)φ(γ−1x) , F ∈ Lp(Y ),

where χε is the normalized characteristic function of an identity
neighborhood Oε. Assume from now on φ ≥ 0.
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The ergodic averages πY (βt±C)Fε can be rewritten in full as

∑
γ∈Γ

(
1

mG(Bt±C)

∫
g∈Bt±C

χε(g−1hγ)

)
φ(γ−1x) ,

We would like the expression in parentheses to be equal to one
when (say) γ ∈ Γ ∩ Bt−C and equal to zero when (say)
γ /∈ Γ ∩ Bt+C , in order to be able to compare it to πX (λt )φ. .

A favorable lower bound arises if χε(g−1hγ) 6= 0 and g ∈ Bt−C
imply that γ ∈ Bt , and a favorable upper bound arises if for
γ ∈ Γ ∩ Bt the support of χε(g−1hγ) contained in Bt+C .

Thus favorable lower and upper estimates depend only on the
regularity properties of the sets Bt , specifically on the stability
property under perturbations by elements h in a fixed
neighborhood, and volume regularity of mG(Bt ).
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Therefore taking some fixed Oε and C, the usual strong maximal
inequality for averaging over λt follows from the ordinary strong
maximal inequality for averaging over βt . It follows that for lattice
actions, as for actions of the group G, the maximal inequality
holds in great generality and requires only a coarse form of
admissibility.

The mean ergodic theorem for λt requires considerably sharper
argument, and in particular requires passing to ε→ 0, namely
mG(Oε)→ 0.

The effective uniform volume estimate appearing in the definition
of admissibility is utilized, and is matched against the
unavoidable quantity mG(Oε)−1 which the approximation
procedure introduces.
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The effective mean ergodic theorem requires in addition an
effective estimate on the decay of the operator norms∥∥π0

Y (βt )
∥∥

Lp
0(Y )

.

This decay estimate plays an indispensable role, and allows a
quantitative approximation argument to proceed, again using
crucially that the averages are admissible.

As a byproduct of the proof, we obtain an effective decay
estimate on the norms

∥∥π0
X (λt )

∥∥
Lp

0(X)
, for 1 < p <∞.
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Pointwise convergence and the invariance principle

A fundamental point in the completion of the proof of the
pointwise ergodic theorem is an invariance principle, asserting
that for any given Borel function F on Y , the pointwise ergodic
theorem for πY (βt ) holds for a set of points which contain a
strictly G-invariant conull set.

Since the induced action Y = (G × X )/Γ is a G-equivariant
bundle over G/Γ, this implies that for every single point yΓ, the
set of points x ∈ X where the pointwise ergodic theorem holds is
conull in X . This allows us to deduce that the set of points where
πX (λt )φ(x) converges is also conull in X , by looking at the fiber
over the point eΓ ∈ G/Γ.
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Some examples of ergodic actions
Example 1 : Action on Tn.

Γ = SLn(Z) acts on Tn = Rn/Zn, n ≥ 2,

ergodically and with a spectral gap. There exists an explicit θp > 0
such that for f ∈ Lp(Tn), p > 1 and almost every x ,∣∣∣∣∣∣ 1

|Γt |
∑
γ∈Γt

f (γ−1x)−
∫
Tn

fdµ

∣∣∣∣∣∣ ≤ Cp(x , f )e−θp t .

Example 2 : Action on the space of lattices.

Let Ld denote the space of unimodular lattice in Rd , taken with its
SLd (R)-invariant probability m . Let G ⊂ SLd (R) be a semisimple
group, and Γ ⊂ G be any lattice subgroup. Then Γ acts ergodically
and with a spectral gap, and thus for almost every lattice L, its Γ-orbit
in the space of lattices satisfy, for θp = θp(Γ,d) > 0, f ∈ Lp, p > 1∣∣∣∣∣∣ 1

|Γt |
∑
γ∈Γt

f (γ−1L)−
∫
Ld

fdm

∣∣∣∣∣∣ ≤ Cp(L, f )e−θp t .
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∫
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Equidistribution in isometric actions
Theorem F. Let (S,d) be a compact metric space, and Γ act by
isometries, ergodically w.r.t. an invariant prob. measure µ of full
support.

For every continuous function f on M,

lim
t→∞

max
x∈X

∣∣∣∣λt f (x)−
∫

S
fdµ
∣∣∣∣ = 0 ,

and in particular convergence holds for every starting point x .
Idea based on Guivarc’h’s argument for free groups, 1968.

If the Γ-action has a spectral gap, and the measure satisfies
µ(Bε) ≥ Cεd (for example if it has dimension n), then for every
Hölder continuous function f , and for every point x∣∣∣∣∣∣ 1

|Γt |
∑
γ∈Γt

f (γ−1x)−
∫
Tn

fdµ

∣∣∣∣∣∣ ≤ C ‖f‖e−κt ,

for an explicit rate κ > 0 (depending only on the Hölder
parameter of f ).
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Examples of isometric actions

.
Equidistribution holds for the action on any profinite completion,
including the congruence completion in the case of arithmetic
lattices (w.r.t. Haar measure on the compact group).

When Γ has property T and acts isometrically, λt f (x) for f
continuous converges to

∫
X fdµ for every point x , and

furthermore converges exponentially fast (in t) to the limit for
almost every point x.

In every action of Γ on a finite homogeneous space X , we have
the following norm bound for the averaging operators∥∥∥∥λt f −

∫
X

fdµ
∥∥∥∥

2
≤ Cm(Bt )

−θ2 ‖f‖2 ,
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Spectral estimates better than spectral transfer

G an lcsc unimodular group, mG Haar meas’, Bt ⊂ G bounded,

π : G→ U(Hπ) a strongly continuous unitary rep’ of G

Consider the averaging operators :

π(βt )v =
1
|Bt |

∫
Bt

π(g)v dmG(g)

Spectral transfer estimate : G a simple algebraic group, π a rep’
with a spectral gap and without invariant finite-dimensional
subspaces. Then for the even integer N = ne(π) we have
‖π(β)‖ ≤ ‖rG(β)‖1/N .

π is tempered if π ≤w rG, and then ‖π(β)‖ ≤ ‖rG(β)‖ for all abs’
cont’ prob’ measures β, which is the best possible estimate.
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Best possible spectral estimates

A remarkable feature of unitary rep’s theory of simple groups is
that best possible spectral estimate can be realized very often.

This was observed already by Kazhdan (1967), and in fact
served as the cornerstone of his proof of Property T .

Recall that Kazhdan considered the subgroup L = SL2(R).<R2

of G = SL3(R), and the restriction of a general unitary rep’ π of G
without invariant unit vectors to L.

π |L has then no π(R2)-invariant unit vector, since matrix coeff. of
π decay to zero at infinity. By Mackey’s theory of unitary rep’s of
semi-direct products π |L is induced from a unitary rep’ of an
amenable subgroup of L

.

It follows that π |L is weakly contained in the regular rep’ rL !!!!!

Representation Theory and effective ergodic theorems



Best possible spectral estimates

A remarkable feature of unitary rep’s theory of simple groups is
that best possible spectral estimate can be realized very often.

This was observed already by Kazhdan (1967), and in fact
served as the cornerstone of his proof of Property T .

Recall that Kazhdan considered the subgroup L = SL2(R).<R2

of G = SL3(R), and the restriction of a general unitary rep’ π of G
without invariant unit vectors to L.

π |L has then no π(R2)-invariant unit vector, since matrix coeff. of
π decay to zero at infinity. By Mackey’s theory of unitary rep’s of
semi-direct products π |L is induced from a unitary rep’ of an
amenable subgroup of L

.

It follows that π |L is weakly contained in the regular rep’ rL !!!!!

Representation Theory and effective ergodic theorems



Best possible spectral estimates

A remarkable feature of unitary rep’s theory of simple groups is
that best possible spectral estimate can be realized very often.

This was observed already by Kazhdan (1967), and in fact
served as the cornerstone of his proof of Property T .

Recall that Kazhdan considered the subgroup L = SL2(R).<R2

of G = SL3(R), and the restriction of a general unitary rep’ π of G
without invariant unit vectors to L.

π |L has then no π(R2)-invariant unit vector, since matrix coeff. of
π decay to zero at infinity. By Mackey’s theory of unitary rep’s of
semi-direct products π |L is induced from a unitary rep’ of an
amenable subgroup of L

.

It follows that π |L is weakly contained in the regular rep’ rL !!!!!

Representation Theory and effective ergodic theorems



Best possible spectral estimates

A remarkable feature of unitary rep’s theory of simple groups is
that best possible spectral estimate can be realized very often.

This was observed already by Kazhdan (1967), and in fact
served as the cornerstone of his proof of Property T .

Recall that Kazhdan considered the subgroup L = SL2(R).<R2

of G = SL3(R), and the restriction of a general unitary rep’ π of G
without invariant unit vectors to L.

π |L has then no π(R2)-invariant unit vector, since matrix coeff. of
π decay to zero at infinity. By Mackey’s theory of unitary rep’s of
semi-direct products π |L is induced from a unitary rep’ of an
amenable subgroup of L.

It follows that π |L is weakly contained in the regular rep’ rL !!!!!

Representation Theory and effective ergodic theorems



Best possible spectral estimates

A remarkable feature of unitary rep’s theory of simple groups is
that best possible spectral estimate can be realized very often.

This was observed already by Kazhdan (1967), and in fact
served as the cornerstone of his proof of Property T .

Recall that Kazhdan considered the subgroup L = SL2(R).<R2

of G = SL3(R), and the restriction of a general unitary rep’ π of G
without invariant unit vectors to L.

π |L has then no π(R2)-invariant unit vector, since matrix coeff. of
π decay to zero at infinity. By Mackey’s theory of unitary rep’s of
semi-direct products π |L is induced from a unitary rep’ of an
amenable subgroup of L.

It follows that π |L is weakly contained in the regular rep’ rL !!!!!

Representation Theory and effective ergodic theorems



Tempered subgroups

Conclusion : the restriction of any unitary rep’ of G = SL3(R)
without invariant unit vectors to H = SL2(R) is a tempered
representation of SL2(R).

In particular, in any ergodic action of G = SL3(R) on a space X ,
averages βt supported on Bt ⊂ H = SL2(R) satisfy the best
possible norm estimate.

For example, if Γ is a lattice subgroup of SL3(R), the ergodic
action of SL2(R) on the probability SL3(R)/Γ has the fastest
possible rate of convergence to the space average.

It is therefore natural to define the following for general G and
(non-amenable) H.

(G,H, π) is tempered if the restriction of π to H is a tempered
rep’ of H.

H is a tempered subgroup of G if EVERY unitary rep’ π of G
without inv’ unit vectors has a tempered restriction to H.
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Examples of subgroup temperedness

Remarkably, there are several robust easily verifiable general
principles which can be used to establish subgroup
temperedness, as follows.

1) Kazhdan’s original semi-direct product argument : When
SL2(R).<Rd ⊂ G (suitably), any unitary rep’ of G without
Rd -invariant unit vectors is tempered when restricted to SL2(R).

2) When G is simple with property T , there are universal
pointwise bounds on the K -finite matrix coefficients of G in
general unitary representations (Cowling 1980, Howe 1980,
Howe-Moore 1976, How-Tan 1992, Li 1994, Oh 1998.....). These
bounds can be restricted to a simple subgroup H and are often in
L2+η(H) so that every restricted rep’ of H is tempered.

3) Margulis 1995 observed that this holds for (the images of) all
the irreducible linear representations SL2(R)→ SLn(R), n ≥ 3.
This observation can be greatly generalized.
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Subgroup temperedness, continued

4) Unitary rep’s of simple groups have matrix coefficients in
L2k (G) for some k . Restricting a rep’s of Gk to the diagonally
embedded copy of G yields matrix coefficients which are in
L2+η(G), so the diagonally embedded subgroup is tempered.

5) For some lattices and their low level congruence subgroups
the Selberg eigenvalue conjecture is known to hold, so that
L2

0(G/Γ) is known to be a tempered representation of G. This
holds for example for SL2(Z) ⊂ SL2(R) and SL2(Z[i]) ⊂ SL2(C).
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