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Averaging operators in general unitary representations

Let G be a locally compact second countable unimodular group,
with Haar measure mG,

Bt ⊂ G a family of sets of finite measure, with mG(Bt )→∞.

Let π : G→ U(Hπ) be a strongly continuous unitary
representation of G, i.e. a continuous homomorphism of G to the
unitary group of the Hilbert space Hπ (with the strong topology).

For the Haar-uniform averages βt supported on Bt we define the
averaging operators πX (βt ) : H → H, given by :

π(βt )v =
1
|Bt |

∫
Bt

π(g)v dmG(g)

and study their norm convergence properties, ideally establishing
operator-norm decay estimates,

including for the rep’s π0
X on L2

0(X ) for an ergodic probability
measure-preserving G-action on X .
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Operator norm estimate, weak containment

Let π and σ be unitary representations of an lcsc group G, and
assume σ is (isomorphic to) a subrepresentation of π.

Then for for every probability measure β on G, clearly
‖σ(β)‖ ≤ ‖π(β)‖.

This inequality holds whenever diagonal matrix coeff’ 〈σ(g)v , v〉
of σ can be approximated uniformly on compact sets in G by
convex combinations of diagonal matrix coeff’ 〈π(g)w ,w〉 of π.

The latter condition is called weak containment, denoted σ ≤w π

It was established by Diximier (1969) that weak containment is
equivalent to the norm inequality ‖σ(f )‖ ≤ ‖π(f )‖ for every
f ∈ L1(G).
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Examples of weak containment

The existence of an asymptotically invariant sequence in G is
equipvalent to 1G ≤w rG, namely to the trivial rep’ of G being
weakly contained in the regular rep’ rG.

This condition is equivalent to ‖rG(β)‖ = 1 for every probability
measure β, and characterizes amenable groups (Reiter’s
criterion).

Property T is characterized by the trivial rep’ being separated
from unitary reps’ π without invariant unit vectors, or equivalently

sup
π
‖π(β)‖ ≤ α(β) < 1

for every generating measure β.
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Tempered representations

Non-amenable groups are thus characterized by the fact that
there exist measures β such that ‖rG(β)‖ < 1 in L2(G).

Equivalently, the averaging process associated with the random
walk on G defined by the convolution operator rG(β)f = f ∗ β for
f ∈ L2(G) is contractive.

We will call a unitary rep’ π of G a tempered representation if
π ≤w rG. It then follows that ‖π(β)‖ ≤ ‖rG(β)‖ for all abs. cont.
prob’ measures β on G.

It is typically not a feasible task to compute, or even to estimate
‖π(β)‖, for general G, π and β.

But, remarkably, for the extensive class consisting of
non-amenable algebraic groups it is possible to establish
operator norm estimates which go far beyond the contraction
property guaranteed by a spectral gap. In these norm estimates
the regular representation plays a major role.
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Integrability of matrix coefficients

A unitary rep’ π of G on Hπ is called an Lq-representation if there
exists a dense subspace H′π ⊂ Hπ such that the matrix
coefficients cv ,w (g) = 〈π(g)v ,w〉 are in Lq(G) for v ,w ∈ H′π.

Define the integrability exponent of π to be

p+(π) = inf {q ≥ 1 ; π is an Lq representation}

Since for unit vectors v and w clearly |cv ,w (g)| ≤ 1, it follows that
π is Lq-integrable for all q > p+(π).

Note that if π is an Lq-rep’ and σ is an Ls-rep’ with q, s ≥ 2, then
H′π ⊗H′σ is dense in Hπ ⊗Hσ, and π ⊗ σ is an Lr -rep’, with
1
r = 1

q + 1
s . So if q = s then π ⊗ σ is an L

q
2 -representation.
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Unitary representations of simple algebraic groups

Let σ be an irreducible infinite-dimensional unitary rep’ of an lcsc
simple algebraic group.

Then p+(σ) <∞, namely σ has a dense set of matrix
coefficients which belong to Lq(G), q > p+(σ).
This remarkable fact is due to Harish Chandra, Cowling, Howe,
Howe-Moore, Borel-Wallach.....

Furthermore, G has property T if and only if p+(σ) ≤ pG <∞
uniformly for all such σ : Quantitative property T .

Consequently, if N > p+(σ)/2, then σ⊗N has a dense subspace
of matrix coefficients which are in L2(G). Then σ⊗N is isomorphic
to a subrepresentation of∞ · rG (Cowling, Howe, Moore).

Similarly, if N ≥ p+(σ)/2 then σ⊗N has a dense subspace of
matrix coefficients in L2+ε(G) for every ε > 0, and then σ⊗N is
weakly contained in rG (Cowling-Haagerup-Howe).
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Operator norm estimates in the regular representation

Convolution operators on simple algebraic groups obey a
remarkable inequality known as the Kunze-Stein phenomenon :

For EVERY function F ∈ Ls(G), where 1 ≤ s < 2, we have for
every f ∈ L2(G)

‖F ∗ f‖L2(G) ≤ Cs ‖F‖Ls(G) ‖f‖L2(G) .

This inequality was established for SL2(R) by Kunze and Stein
(1960). They also established the result for all simple Lie groups
when F is bi-K -invariant, K a maximal compact sbgp.

The general case was established by Cowling (1978) for simple
Lie groups, using Herz’ majorization principle to reduce the
problem to that of estimating the operator norm in the boundary
representation.
For simple algebraic Chevalley groups over local fields the
inequality is due to Veca (2002), using the same method.
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Spectral transfer principle

Corollary: for EVERY prob. meas. on G of the form
β = χB/mG(B), and for all 1 < s < 2, (with 1

s + 1
s′ = 1) :

‖rG(β)‖L2(G)→L2(G) ≤ Cs

∥∥∥∥ χBt

mG(Bt )

∥∥∥∥
Ls(G)

= CsmG(B)−1/s′ .

The Lq-property of irreducible unitary rep’s can be combined with
the Kunze-Stein phenomenon and Jensen’s inequality to give the
following remarkably general operator norm estimate for
probability measures on simple algebraic groups G.

Theorem C. Spectral transfer principle. [N 98], [Gorodnik+N
2005]. For every unitary representation π of G with a spectral
gap and no finite-dimensional invariant subspaces, and for every
family of probability measures βt = χBt/mG(Bt ), the following
norm decay estimate holds (for every ε > 0)

‖π(βt )‖ ≤ ‖rG(βt )‖
1

ne(π) ≤ Cεm(Bt )
− 1

2ne(π) +ε ,

with ne(π) the least even integer ≥ p+(π).
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The effective mean ergodic theorem

In particular, we can bound the norm of the averaging operators
of πX (βt ) acting on L2

0(X ), when the action is ergodic and weak
mixing, namely has no finite-dimensional invariant subspaces.

Thm. D. Effective mean ergodic theorem. [N 98], [Gorodnik+N
2005]. For any weak mixing action of a simple algebraic group G
which has a spectral gap, and for any family Bt ⊂ G with
mG(Bt )→∞, the convergence of the time averages πX (βt ) to the
space average takes place at a definite rate :∥∥∥∥π(βt )f −

∫
X

fdµ
∥∥∥∥

L2(X)

≤ Cθ (mG(Bt ))−θ ‖f‖2 ,

for every 0 < θ < 1
2ne(π0

X )
.

Note that the only requirement needed to obtain the effective
mean ergodic Thm’ is simply that m(Bt )→∞, and the geometry
of the sets is not relevant at all. This fact allows a great deal of
flexibility in its application.
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Some comments on the spectral transfer principle

The norm estimate of the operator π(β) in a general rep’ π, has
been reduced to a norm estimate for the convolution operator
rG(β) in the regular rep’ rG. This establishes for simple groups an
analog of the transfer(ence) principle for amenable groups.

When the sets Bt are bi-K -invariant for a (suitable) maximal
compact sbgp K , a better estimate holds, namely∥∥∥∥π(βt )f −

∫
X

fdµ
∥∥∥∥

L2(X)

≤ Cθ (mG(Bt ))−θ ‖f‖2 ,

for all 0 < θ <
1

p+(π0
X )
.

We now turn to consider our first application of the effective
mean ergodic theorem for averages on simple algebraic groups,
namely the solution of the lattice point counting problem in
domains Bt in G.
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The lattice point counting problem

Let G be an lcsc group and Γ ⊂ G a discrete lattice subgroup,
namely a closed countable subgroup such that G/Γ has a
G-invariant probability measure.

The lattice point counting problem in domains Bt ⊂ G calls for
obtaining an asymptotic for the number of lattice points of Γ in Bt ,
namely |Γ ∩ Bt |, ideally so that

1) Haar measure m(Bt ) is the main term in the asymptotic,

2) There is an error estimate of the form

|Γ ∩ Bt |
m(Bt )

= 1 + O
(
m(Bt )

−δ)
where δ > 0 and is as large as possible, and is given in an
explicit form,
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3) the solution applies to general families of sets Bt in a general
family of groups, to allow for a wide variety of counting problems
which arise in applications,

4) the solution should establish whether the error estimate can
be taken as uniform over all (or some) finite index subgroups
Λ ⊂ Γ, and over all their cosets, namely:

|γΛ ∩ BT |
m(BT )

=
1

[Γ : Λ]
+ O

(
m(BT )−δ

)
with δ and the implied constant independent of the finite index
subgroup Λ, and the coset representative γ.

Main point: A general solution obeying the 4 requirements above
can be given for lattices in simple algebraic groups and general
domains Bt , using a method based on the effective mean ergodic
theorem for G.
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Admissible sets for the counting problem

Some stability and regularity assumptions on the sets Bt are
necessary for the lattice point counting problem.

Assume G is a simple Lie group, fix any left-invariant Riemannian
metric on G, and let

Oε = {g ∈ G : d(g,e) < ε}.

An increasing family of bounded Borel subset Bt , t > 0, of G will
be called admissible if there exists c > 0, t0 and ε0 such that for
all t ≥ t0 and ε < ε0 we have :

Oε · Bt · Oε ⊂ Bt+cε, (1)
mG(Bt+ε) ≤ (1 + cε) ·mG(Bt ). (2)

When Bt are admissible, pointwise almost sure convergence
holds for the averages βt , with a prescribed rate of convergence
(N. ’98, Margulis+N+Stein ’99, N. ’04, Gorodnik+N, ’06)
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The effective mean ergodic theorem : First application

Thm. E. Lattice point counting. Gorodnik+N, 2006.

G a connected Lie group, Γ ⊂ G a lattice, Bt ⊂ G admissible.

1) Assume the mean ergodic theorem holds for βt in L2(mG/Γ) :∥∥∥∥π(βt )f −
∫

X
f dmG/Γ

∥∥∥∥
L2

→ 0 , (mG/Γ(G/Γ) = 1 ).

Then
|Γ ∩ Bt | = |Γt | ∼ mG(Bt ) as t →∞.

Assume that the error term in the mean ergodic theorem for βt in
L2(mG/Γ) satisfies∥∥∥∥∥π(βt )f −

∫
G/Γ

f dmG/Γ

∥∥∥∥∥
L2

≤ Cm(Bt )
−θ ‖f‖L2

Then
|Γt |

mG(Bt )
= 1 + O

(
m(Bt )

−θ/(dim G+1)
)
.
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Proof of Theorem E.

Step 1 : Applying the mean ergodic theorem

Let Oε be a small neighborhood of e and

χε =
χOε

mG(Oε)

consider the Γ-periodization of χε

φε(gΓ) =
∑
γ∈Γ

χε(gγ).

Clearly φ is a bounded function on G/Γ with compact support,∫
G
χε dmG = 1, and

∫
G/Γ

φε dµG/Γ = 1.
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Let us apply the mean ergodic theorem to the function φε.
It follows from Chebycheff’s inequality that for every δ > 0,

mG/Γ({hΓ ∈ G/Γ : |πG/Γ(βt )φε(hΓ)− 1| > δ}) −→ 0

In particular, for sufficiently large t , the measure of the deviation
set is smaller than mG/Γ(Oε), and so there exists gt ∈ Oε such
that

|πG/Γ(βt )φε(gt Γ)− 1| ≤ δ

and we can conclude the following

Claim I. Given ε, δ > 0, for t sufficiently large, there exists
gt ∈ Oε satisfying

1− δ ≤ 1
mG(Bt )

∫
Bt

φε(g−1gt Γ)dmG ≤ 1 + δ .

Representation Theory and effective ergodic theorems



Let us apply the mean ergodic theorem to the function φε.
It follows from Chebycheff’s inequality that for every δ > 0,

mG/Γ({hΓ ∈ G/Γ : |πG/Γ(βt )φε(hΓ)− 1| > δ}) −→ 0

In particular, for sufficiently large t , the measure of the deviation
set is smaller than mG/Γ(Oε), and so there exists gt ∈ Oε such
that

|πG/Γ(βt )φε(gt Γ)− 1| ≤ δ

and we can conclude the following

Claim I. Given ε, δ > 0, for t sufficiently large, there exists
gt ∈ Oε satisfying

1− δ ≤ 1
mG(Bt )

∫
Bt

φε(g−1gt Γ)dmG ≤ 1 + δ .

Representation Theory and effective ergodic theorems



Let us apply the mean ergodic theorem to the function φε.
It follows from Chebycheff’s inequality that for every δ > 0,

mG/Γ({hΓ ∈ G/Γ : |πG/Γ(βt )φε(hΓ)− 1| > δ}) −→ 0

In particular, for sufficiently large t , the measure of the deviation
set is smaller than mG/Γ(Oε), and so there exists gt ∈ Oε such
that

|πG/Γ(βt )φε(gt Γ)− 1| ≤ δ

and we can conclude the following

Claim I. Given ε, δ > 0, for t sufficiently large, there exists
gt ∈ Oε satisfying

1− δ ≤ 1
mG(Bt )

∫
Bt

φε(g−1gt Γ)dmG ≤ 1 + δ .

Representation Theory and effective ergodic theorems
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Step 2 : Basic comparison argument

Claim II. For sufficiently large t and any h ∈ Oε,∫
Bt−cε

φε(g−1hΓ) dmG(g) ≤ |Γt | ≤
∫

Bt+cε

φε(g−1hΓ) dmG(g).

Proof. If χε(g−1hγ) 6= 0 for some g ∈ Bt−cε and h ∈ Oε, then
clearly g−1hγ ∈ supp χε, and so

γ ∈ h−1 · Bt−cε · (supp χε) ⊂ Bt .

by admissibility.

Hence, ∫
Bt−cε

φε(g−1hΓ) dmG(g) ≤

≤
∑
γ∈Γt

∫
Bt
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On the other hand, for γ ∈ Γt and h ∈ Oε,

supp(g 7→ χε(g−1hγ)) = hγ(supp χε)
−1 ⊂ Bt+cε

again by admissibility,

and since χε ≥ 0 and
∫

G χεdm = 1 :∫
Bt+cε

φε(g−1hΓ) dmG(g) ≥

≥
∑
γ∈Γt

∫
Bt+cε

χε(g−1hγ) dmG(g) ≥ |Γt |.

Now taking t sufficiently large, h = gt and using Claims I and II

|Γt | ≤ (1 + δ)m(Bt+ε) ≤

≤ (1 + δ)(1 + cε)m(Bt ),

by admissibility. The lower estimate is proved similarly.
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Step 3 : Counting with an error term

Assuming ∥∥∥∥∥π(βt )f −
∫

G/Γ

fdµ

∥∥∥∥∥
L2

≤ Cm(Bt )
−θ ‖f‖L2

we must show

|Γt |
mG(Bt )

= 1 + O
(

m(Bt )
−θ

dim G+1

)
.

Proof. Clearly for ε small, mG(Oε) ∼ εn .
and thus also ‖χε‖2

2 ∼ ε−n, where n = dim G.

By the mean ergodic theorem and Chebycheff’s inequality :

mG/Γ({x ∈ G/Γ : |πG/Γ(βt )φε(x)− 1| > δ})

≤ Cδ−2ε−nm(Bt )
−2θ.
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Thus here the measure of the set of deviation decreases in t with
a prescribed rate determined by the effectve ergodic Thm.

As we saw above, points x in its complement give us an
approximation to our counting problem with quality δ, so we must
require that the measure be smaller than mG(Oε) ∼ εn.

The estimate of the measure of the deviation set holds for all t , ε
and δ, since the mean ergodic theorem with error term is a
statement about the rate of convergence in operator norm, and is
thus uniform over all functions.

Our upper error estimate in the counting problem is, as before

|Γt | ≤ (1 + δ)m(Bt+ε) ≤

≤ (1 + δ)(1 + cε)m(Bt ),

Taking δ ∼ ε ∼ m(Bt )
−θ/(n+1) to balance the two significant parts

of the error appearing in the estimate (1 + δ)(1 + cε), the result
follows.
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Uniformity in the lattice point counting problem

Note that in the ergodic theoretic approach we have taken, the
important feature of uniformity of counting lattice points in finite
index subgroups Λ is apparent.

Indeed all that is needed is that the averaging operators π(βt )
satisfy the same norm decay estimate in the space L2(G/Λ).

This holds when the set of finite index subgroups satisfy property
τ , namely when the spectral gap appearing in the
representations L2

0(G/Λ) has a positive lower bound.

Property τ has been shown to hold for the set of congruence
subgroups of any arithmetic lattice in a semisimple Lie group
(Burger-Sarnak, Lubotzky, Clozel..... generalizing the Selberg
property)

.
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Counting unimodular integral matrices

• As an example, consider the lattice subgroup SLn(Z) ⊂ SLn(R),
n ≥ 2.

• Denote by NT the number of unimodular integral (n × n)-matrices of
norm bounded by T .

• Denote by N ′T the number of such matrices satisfying
all the matrix entries are non-zero,
all the principal minors do not vanish,
all the eigenvalues are distinct,
all the singular values (eigenvalues of AtA) are distinct.

• Then :

N ′T = CnT n2−n + On

(
T n2−n− 1

2n(n+1)2

)
= NT

(
1 + On

(
T−

1
2n(n+1)2

))
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Some previous results

The classical non-Euclidean counting problem asks for the
number of lattice points in a Riemannian ball in hyperbolic space
Hd . For this specific case, the best known bound is still the one
due to Selberg (1940’s) or Lax-Phillips (1970’s). Bruggeman,
Gruenwald and Miatello have established similar quality results
for lattice points in Riemannian balls in products of SL2(R)’s
(2008).

Riemannian balls in certain higher rank simple Lie groups were
considered by Duke-Rudnik-Sarnak (1991). In this case, they
have obtained the best error estimate to date, which is matched
by Thm. E, when adjusted for radial averages.

Eskin-McMullen (1990) devised the mixing method, which
applies to general (well-rounded) sets, but have not produced an
error estimate. Maucourant (2005) has obtained an error
estimate using an effective form of the mixing method, and so
have Benoist-Oh in the S-algebraic case (2012). The resulting
estimates are weaker than those of Thm. E.
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Counting rational points

Counting rational points on algebraic varieties homogeneous
under a simple algebraic group G defined over Q has been
considered by Shalika, Takloo-Bighash and Tschinkel (2000’s).
They used direct spectral expansion of the height zeta function in
the automorphic representation (using, in particular,
regularization estimates for Eisenstein series).

Gorodnik, Maucourant and Oh (2008) have used the mixing
method in the problem of counting rational points.

It is possible to consider the corresponding group G over the ring
of adéles, in which the group of rational points is embedded as a
lattice. Generalizing the operators norm estimates from G(F ) for
all field completions F to the group of adéles, it is possible to use
the method based on the effective mean ergodic theorem here
too. The error estimate of Thm. E is better that the estimate that
both other methods produce.
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