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This is an overview of a project which I and others have

been working on for the last 30 years. I was introduced to

most of the basic ideas by my advisor:

Sandro Figà-Talamanca (Roma 1)

who had developed those ideas during a collaboration with:

Massimo Picardello (Roma 2)

Besides Sandro, my principal collaborator on this project

has been:

Gabriella Kuhn (Milano Bicocca)
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Other collaborators include:

Chris Bishop (NYU, Stony Brook)

Michael Cowling (UNSW, Sydney)

Waldek Hebisch (Wroc law)

Alessandra Iozzi (ETH, Zürich)

Sandra Saliani (Potenza)

Of course, relevant work has been done by people who

aren’t my direct collaborators, for example:

Bill Paschke (Kansas)
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• Most of our work has been done in the case where Γ is

a non-abelian free group with finitely many generators;

A ⊆ Γ is some set of free generators together with their

inverses.

• One expects that many of the results generalize to the

case where Γ is a finitely generated, discrete,

non-elementary Gromov hyperbolic group; A ⊆ Γ is

any finite set of generators, closed under inverse.

[Ohshika, 1998, Chapter 2] is an excellent, concise

exposition of lots of basic material about Gromov

hyperbolic groups.
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Let Ω denote the boundary of Γ. When Γ is free, this is the

usual boundary of the tree which is the Cayley graph

of (Γ, A). For more general hyperbolic groups, there is a

definition of Ω which generalizes this.

• Ω is a second-countable compact Hausdorff space.

• Γ ∪ Ω has a topology which makes it a compactification

of the discrete space Γ.

• There is a Γ-action on Ω, which fits together with the

left action of Γ on itself to give a Γ-action on Γ ∪ Ω.
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Our basic object of interest is a tempered irreducible

unitary representation of Γ:

π : Γ → U(H)

where H = Hπ. Irreducible means that the only Γ-invariant

subspaces of H are zero and H itself. Tempered means

that π is weakly contained in the regular representation:

πreg : Γ → U(ℓ2(Γ))

According to a little result in [Cecchini–Figà-Talamanca,

1974], π cannot be both irreducible and strongly contained

in ℓ2(Γ). This depends only on |Γ| = ∞.
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Since Γ is a type II group, the usual program of classifying

all tempered irreducible representations up to equivalence is

hopeless!

Our goals are more modest:

• Construct concrete examples of tempered irreducible

unitary representations.

• Find uniform constructions which produce large families

of tempered irreducible unitary representations.

• Prove that the representations constructed are

irreducible.

• Establish the equivalence/inequivalence of any two of

the examples.
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The other (and sexier) theme is the study of how a

tempered unitary representation π can be realized in a nice

way as acting on a space of the form L2(Ω). Here:

• The measure on Ω is deliberately omitted; any

quasi-invariant measure is acceptable.

• The L2-functions might be scalar valued, but they

might be vector-valued, even vector-valued with values

in an infinite-dimensional Hilbert space. All these

possibilities are considered equally acceptable.

• The action of π(x) must be made up of (1) simple

translation by x followed by (2) application of a

multiplier, depending on x, which is a function of ω ∈ Ω,

and which is operator-valued if the L2-functions are

vector-valued.
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Let C(Ω) be the commutative C∗-algebra of continuous,

complex-valued functions on Ω. Given an identification of

some Hilbert space H with some L2(Ω), as above, we get a

multiplication representation:

C(Ω) → L(H)

Vice versa, the spectral theorem says that any such

representation gives rise to an identification of H with some

L2(Ω). (By sloppiness, I omit the possibility that the

L2-space is vector-valued, with the vectors lying in spaces of

variable dimension.) Moreover, any two identifications

corresponding to the same representation of C(Ω) are

equivalent in an obvious way.

Moral: Identification with some L2(Ω) corresponds to an

action of C(Ω).
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Now suppose H = Hπ. If we want to identify H with

some L2(Ω) and if we want the action of π(Γ) to be nice,

then a certain relationship has to hold between the actions

of Γ and of C(Ω) on H.

• For convenience, use π to denote the action of C(Ω) as

well as the action of Γ.

• Define the left translation action of Γ on C(Ω) by

(λ(x)F )(ω) = F (x−1ω)

• The necessary relationship between the actions of Γ

and C(Ω) is:

π(x)π(F )π(x−1) = π(λ(x)F ) (1)

This corresponds to some of Mackey’s big ideas, and is not

that hard to see in the case of discrete groups.
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Summary: a representation π of Γ on H, together with

some nice identification of H with some L2(Ω), corresponds

to a pair made up of

1. The original representation π : Γ → U(H);

2. another representation π : C(Ω) → L(H);

and this pair of representations must satisfy (1).

There is a certain C∗-algebra, not difficult to construct, and

denoted Γ⋉λ C(Ω) whose representations correspond

precisely to pairs of representations satisfying (1). This

algebra is called a crossed-product C∗-algebra.

I often use the phrase boundary representation to refer to

a representation of Γ⋉ C(Ω). A boundary representation

corresponds to some representation of Γ on H together with

some identification of H with some L2(Ω).
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Proposition: If π′ is a representation of Γ⋉ C(Ω) on H′,

then the Γ-representation

π′ : Γ → U(H′)

is tempered.

The proof is in two references: [Adams, 1994] establishes

that the action of Γ on Ω is topologically amenable for any

hyperbolic group Γ and its (hyperbolic group) boundary.

Moreover, he observes that topological amenability implies

Zimmer amenability for any quasi-invariant measure on Ω.

[Kuhn, 1994] shows that this universal Zimmer amenability

implies that all nice representations of Γ on spaces L2(Ω) are

tempered, i.e. weakly contained in the regular

representation.
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Proposition: If π is a tempered irreducible representation

of Γ on HΓ, then there exists some representation π′

of Γ⋉ C(Ω) on H′ and some isometric Γ-inclusion

ι : Hπ → Hπ′ .

In other words, every tempered irreducible representation

of Γ is a subrepresentation of some boundary

representation. This proposition says nothing about the

uniqueness of π′ and ι.

Proof: Choose any unit vector u ∈ HΓ. By irreducibility, u is

cyclic. Let φ be the matrix coefficient of u:

φ(x) = 〈u, π(x)u〉

Then φ is positive-definite. Starting with φ, the

Gelfand–Naimark construction reproduces the triple

(π,Hπ, u).
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Since π is weakly contained in the regular representation,

we can find vectors un ∈ ℓ2(Γ) so that the positive definite

functions

φn(x) = 〈un, πreg(x)un〉

tend to φ pointwise.

Since Γ ⊂ Γ ∪ Ω, ℓ2(Γ) has a natural extension to a

representation of Γ⋉ C(Γ ∪ Ω). Consequently, each un gives

rise to a positive definite functional (or state):

ψn : Γ⋉ C(Γ ∪ Ω) → C

Passing to a subsequence, we may assume that ψn → ψ

weakly for some ψ. The “restriction” of ψn to Γ is φn, so

the “restriction” of ψ to Γ is φ.
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Let π′ be the representation of Γ⋉C(Γ ∪Ω) obtained from ψ

by the Gelfand–Naimark construction, and let u′ be the

corresponding special vector. The matrix coefficient of u′ is

ψ|Γ = φ, while φ is the matrix coefficient of u. Consequently

there exists a Γ-isometry ι : Hπ → Hπ′ determined

by ι(u) = u′.

Finally, by irreducibility, all of Hπ′ must lie over Γ, or all of it

must lie over Ω. The first possibility is excluded by

irreducibility and the aforementioned result from

[Cecchini–Figà-Talamanca, 1974].
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Actually, a similar but simpler proof proves a much more

general result:

Proposition: Let Γ be any finitely generated discrete

group, let π be any tempered unitary representation of Γ,

and let Ω be any non-empty second countable compact

space on which we have a Γ-action. Then there exists a

representation π′ of Γ⋉ C(Ω) and an isometric Γ-inclusion

ι : Hπ → Hπ′ .

Proof: Fix some ω ∈ Ω, and let Γ0 be its stabilizer. The

orbit of ω is a copy of Γ/Γ0. One can identify ℓ2(Γ), the

representation space of the regular representation, with a

representation of Γ⋉ C(Γ/Γ0), hence with a representation

of Γ⋉ C(Ω). Now use the limit procedure as above to pass

from the regular representation to any representation

weakly contained in the regular representation.
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These rather general considerations show that an irreducible

unitary representation π of Γ can be expressed as a

subrepresentation of a boundary representation if and only if

it is tempered. So suppose that it is tempered.

Big Question: In how many different ways can it be so

expressed?

One could always add extra, irrelevant terms to the

boundary representation π′. To avoid that, assume we are

looking for:

• a boundary representation π′ : Γ⋉ C(Ω) → L(H′),

• an isometric Γ-map ι : Hπ → Hπ′ ,

so that

• π′(C(Ω))ι(Hπ) is dense in Hπ′ .
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Based on the study of many examples and families of

examples, we have found that at least three things can

happen, depending on which tempered irreducible

representation π we are working with:

• There is (up to the obvious equivalence) only one

possibility for (π′, ι). Moreover, ι : Hπ → Hπ′ is bijective.

— “Monotony”

• There are precisely two possibilities for (π′, ι), and for

each possibility ι is bijective. — “Duplicity”

• There is only one possibility for (π′, ι), but ι is not

bijective. Instead, Hπ′ breaks up into two irreducible

Γ-stable subspaces, which are inequivalent

as Γ-representations. Evidently these two subspaces

are ι(Hπ) and the orthogonal complement of ι(Hπ). —

“Oddity”
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Even for a single example, one must identify one or two

possibilities for (π′, ι) and then prove that there are no

others. Most of the examples for which this has been

carried through are for the free group.

Another doable case arises when Γ is a lattice subgroup of a

rank 1 Lie group G, and π is the restriction of an irreducible

representation of G. All three possibilities can arise when G

is, for example, SL(2,R).

Based solely upon the study of examples, we

Conjecture: For any tempered irreducible representation π

of Γ, the possibilities for (π′, ι) conform to one of the three

cases on the last slide.
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How does one construct tempered irreducible

representations of Γ? Often one constructs irreducible

representations of Γ⋉ C(Ω).

These are automatically tempered. They are not

automatically irreducible as representations of Γ. However

there are various circumstances under which the

irreducibility as a representation of Γ⋉ C(Ω) can be

leveraged to prove irreducibility as a representation of Γ.

Beyond this general observation, there are certainly many

possibilities. For instance one, can construct some

quasi-invariant measure ν on Ω and consider the

quasi-regular representation on L2(Ω, dν).
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In [Kuhn–Steger, 2004] we present another rather general

construction for the case of the free group. In ongoing work

(Iozzi, Kuhn and Steger), we have generalized that

construction to arbitrary hyperbolic groups, but much,

much less has been proved. Indeed, merely the construction

of the representation presents all sorts of new difficulties.

Here is an outline of the method:

• One fixes a certain finite collection of finite matrices.

These are parameters for the entire construction.

• Based on the parameters, one constructs a collection of

“elementary” functions on Γ. The collection of

“elementary” functions is stable under left translation.

• One lets H∞ be the space of finite linear combinations

of “elementary” functions.
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Note that the “elementary” functions take their values in a

certain finite vector space, as do the functions in H∞.

Sadly, I must omit entirely any discussion of what the

“elementary” functions are.

We wish to put a translation-invariant positive semidefinite

inner product on H∞. One uses the definition:

〈f1, f2〉 = lim
ǫ→0+

ǫ
∑

x∈Γ

e−ǫd(e,x)〈f1(x), f2(x)〉

In order for these limits to exist and not be identically zero,

one needs the functions in H∞ to be almost, but not quite,

in ℓ2(Γ). Given the form of our “elementary” functions, it

turns out that this will be true so long as the parameters

satisfy a single real-valued condition. Specifically a certain

Perron–Frobenius eigenvalue must equal 1.
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Suppose we left-translate f1 and f2 by z ∈ Γ. The only

change in the above formula is e−ǫd(e,x)
 e−ǫd(e,zx). Since

e−ǫd(e,z) ≤
e−ǫd(e,zx)

e−ǫd(e,x)
≤ eǫd(e,z)

the inner product 〈f1, f2〉 remains the same.

Now define H = Hπ as the quotient-completion of H∞, and

define π as the extension by continuity of the

left-translation action of Γ on H∞.
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How do we define the action of C(Ω) on H?

• First consider a function of the form e−ǫd(e,x)/2f(x) for

f ∈ H∞. This belongs to ℓ2(Γ).

• As such, it is part of a representation on which ℓ∞(Γ)

acts by multiplication. In particular, that representation

admits an action by C(Γ ∪ Ω).

• For each ǫ, this enables us to find a positive definite

functional ψǫ on the C∗-algebra Γ⋉ C(Γ ∪ Ω).

24



• One can find a subsequence (ǫj)j tending to zero so

that ψǫj converges weakly to some ψ.

• After considerable work, one verifies that

– The representation corresponding to the limit

positive definite function ψ factors through the

quotient map Γ⋉ C(Γ ∪ Ω) → Γ⋉ C(Ω).

– The Γ-part of the limit representation is canonically

identified with the representation π constructed

above.

– The limit is actually independent of the choice of

subsequence (ǫj)j.

The action of C(Ω) which comes from the limit

representation is the one we are looking for.
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