Persistent homology and minimum spanning acycle for

random simplicial complexes

Tomoyuki Shirai *

IMI, Kyushu University

July 3, 2015

! Joint work with Yasuaki Hiraoka (AIMR, Tohoku University), Group
Representations in Dynamical Systems and Geometry@CIRM, Jun. 29-Jul. 3,
2015.

Tomoyuki Shirai  (IMI, Kyushu University) Random simplicial complex July 3, 2015 1/37



Persistent homology

e Homology theory first appeared around 1900 (Poincaré).

@ Persistent homology theory appeared around 2000 independently by
o Frosini, Ferri et al. in Bologna, ltaly.
e Robins, Colorado, Boulder,
o Edelsbrunner, at Duke, North Carolina.

@ Software for computing persistent homology has also been developed
and used for data analysis such as material science, biology etc.

Persistent homology

~ time-dependent version of homology

Persistent homology for random object

~ Stochastic process in homology theory
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Filtration and persistent homology

@ Input 1: \Point cloud data\

I via Cech or Rips-Vietoris complex etc.

@ Input 2: ‘Filtration = increasing sequence of simplicial complex

Y

e Output: ‘Persistence diagram‘

1 1 1 1 1
z< “ z<>4 Z<P4 zq>4 zq>4
=0 t=1 t=2 t=3 t=4
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Random filtrations
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Figure: 20 Poisson points and its filtration {X(t),t > 0}

Figure: Erdés-Rényi random graph process {X(t),t > 0} for n =16

@ Homology vs. Persistent homology:

Ho(X(t)) = connected components of X(t).

Hi(X(t)) = cycles of X(t).

PHo({X(t)}¢>0) = "death” of connected components.
PH1({X(t)}+>0) = “birth and death” of cycles.
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Atomic configuration of SiO2

Atomic Configuration of SiO2

Note: they are
obtained by MD
simulations

Figure: T. Nakamura, Y. Hiraoka, A. Hirata, et al.
http://arxiv.org/abs/1501.03611 and http://arxiv.org/abs/1502.07445
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1-dim. Persistence diagram

I-dim Persistence diagrams of SiO2
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Figure: T. Nakamura, Y. Hiraoka, A. Hirata, et al.
http://arxiv.org/abs/1501.03611 and http://arxiv.org/abs/1502.07445
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Minimum spanning tree (MST)
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Figure: Weighted graph K,
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Minimum spanning tree (MST)

Figure: All possible 16 spanning trees on K,
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Minimum spanning tree (MST)

/!//\ .

Figure: Minimum spanning tree (MST) on a weighted graph K,
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Frieze' result on MST

o Let K, = (Vy, E,) be the complete graph with n vertices, and for
each edge e € E,, a uniform random variable t(e) on [0, 1] is assigned

independently.
@ Minimum spanning tree is the spanning tree T which minimizes the

weight
wt(T) = Z t(e), W,:= min wt(T),
eeT
where S, is the set of spanning trees in K,. Remark that

‘Sn‘ — nn—2
by Cayley's theorem (1889).
o Frieze (1985): As n — o0,
E[W,] — ¢(3) = 1.20206.. ...

@ Janson (1995): the CLT:
n(W, — ((3)) = N(0.0%). 0% =6((4) —4((3) ~ 1.68571....

10 / 37
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A generalization of the problem of MST

@ The purpose of this talk is to extend Frieze's result to higher
dimensions.
o (random) graph = (random) simplicial complex
@ spanning tree = spanning acycle

@ We interpret the weight of the minimum spanning tree in terms of
persistent homology.

o Kruskal's algorithm of finding MST = Erdos-Rényi graph process.

Figure: Erdos-Rényi random graph process for n =6
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Simplicial complex

V . a finite set
X : a collection of non-empty subsets of V.

X is said to be a (n abstract) simplicial complex on V' if
Q {viCXforallveV.
@ X is closed under the operation of taking nonempty subsets, i.e.,

ceX,0#AT1Co=rT1€X.

@ 0 C V with |o] = k+ 1 is called k-simplex or k-face.
e We write dim(o) = k if o is a k-face.

@ When d = max,ck dim(o), we say that X is a d-dimensional
simplicial complex or just d-complex.
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Example of simplicial complex

1

o X =1{1,2,3,4,12,13,14,23, 34,123}
is a 2-dimensional simplicial complex.

@ X is determined by facets
{14,34,123}, i.e. maximal faces w.r.t.
inclusion.

X ={1,2,3,4,12,13,14,23,34, 123}
—_—— — ————
Xo X1 X2

X@): a graph

o X) = {o € X :dim(c) < i} : i-skeleton.
e X; ={o e X:dim(og) =i} : i-faces of X.
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Homology group

@ Chain group: for oriented i-faces (o) = (vovy ... v;), we set

G(X,z):={ Z a,(0) - a, € Z}

o:i-faces of X

e Boundary operator: 0; : Gi(X,Z) — Ci_1(X,Z)

Oi(vovy ... vj) := Z(—l)i<vov1 Ce Vi1Vl - V).
=0

@ Chain complex: d; 0o d;+1 =0 and
0; 0; O 0i—
e .z Bex ) S
@ Structure theorem for homology groups:
P
Hi(X,Z) := Zi(X, Z)/ Bi(X, Z) = ker 0;/Tmdj 11 = Z & EP Z-;,

j=1
where 8; = §;(X) is the i-th Betti number.
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Matrix representation of boundary operator

1

Xo\ X1 12 13 14 23 34 Xi\ Xz 1i3

S e o |
2 1 0 0 -1 0

h= 0 1 0 1 -1| 2= ;;& (lJ
4 0 0 1 0 1

24 0
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Filtration

o X = (X(t))e=00 an increasing sequence of simplicial complexes.

1 1 1 1 1 1

2.<: . 2.<>.4 2.<I>.4 2.<I>.4 2.<I>.4 2.<I>.4 .......
3 3 3 3 3 3
t=0 t=1 t=2 t=3 t=4 t=5

o X(0) = {1,2,3,4,12,23}, T(1)=---=T(23)=0
o X(1) ={1,2,3,4,12,23, 14,34} T(14) = T(34) =1
o X(2) ={1,2,3,4,12,23,14,34,13} T(13) =2,
o X(3) ={1,2,3,4,12,23,14,34,13,123} T(123) =3,
o X(4) ={1,2,3,4,12,23,14,34,13,123, 134} T(134) =4

e T (o) denotes the birth time of o.
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Persistent homology group (1)

@ Given a filtration X := {X(t)}+>0, and then the birth times { T(c)}.
Suppose that the filtration is saturated in the sense that

Ir>0st X(t)=X(r) Vt>r7

@ (-th chain group as a graded module on the polynomial ring F[x]:

) = €D CuX(2).F) = {(ct)ez0 : e € Cu(X(2),F)}

t>0

with the right-shift actions

Xs-(Co,Cl,...)ZI (0,...70,C0,C1,...)

s-times

l
A (vova - vel) =Y (1Y xTOTED (vovr L viigvigr - ve)).
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Matrix representation of boundary operator
1 1 1 1 1 1
2-<: o4 2<:>.4 2<I>.4 2<I>.4 2<I>4 2<I>4 -------
3 3 3 3 3 3
t=0 t=1 t=2 t=3 t=4 t=5

3
1 -1 —x2 —x 0 0 12 fx )?2
2 1 0 0 -1 0 _ T3
a =, 0 X 0 1 —x | %)= N X03 o
4 0 0 x 0 x 34 0 53

e We can see that 9y(x) o 9p41(x) =0 and

1?)

Opi2 -1
—) P

- G (0™ ) G (X)
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Persistent homology group (II)

@ Structure theorem for persistent homology for X = {X(t)}+>o0:

s s+r
PHK(X) := Zk(X)/Bi(X) = P(x")/(x) & P (x")
i=1 i=s+1

o (xP)/(x9) <= persistent interval [b;, d;) for an i-th homology class
@ b; : birth time, d; : death time, ¢; := d; — b; : lifetime.

e For simplicity, we suppose r =0, i.e.,
finite lifetimes.

@ The sum of lifetimes of k-dimensional
homology classes:

S
Figure: Persistence L= Zﬁ,-,
diagram i=1
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Persistent homology for random s.c.

deterministic
o X = (X(t))r>0 = k-th persistence diagram = the sum of lifetimes L

stochastic
o Let X = (X(t))t>0 be an increasing stochastic process of simplicial
complexes, e.g., the Erdos-Rényi graph process

X = (X(t))t=0 = random k-th persistence diagram, k =0, 1,2, ...

<= point process £ on A = {(x,y) € R? : x < y}
= the sum of lifetimes L,(&)

Proposition

When X = (X(t))o<t<1 is the Erdés-Rényi graph process,

Lo(&) = the weight of the minimum spanning tree
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Persistence diagram

pd1_1000_40
)
400
350
300
12
250
% 10
[J]
© 200
8
150
6
100
4
50 2
12
0 50 100 150 200 250 300 350 400
birth

Figure: Persistence diagram for Erdos-Rényi clique complex n = 40
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¢-Linial-Meshulam process

e [n]={1,2,...,n}
o Fy:= (£[+]1) the set of /-faces or (¢ + 1)-subsets of [n].
o {t(o):0 € Fy}: iid. uniform r.v.'s on [0,1]0 birth times.

/—1
xOty= JF U {oeF:to)<t}.

/

= (-faces born before t
all j(< £)-faces

o (£ =1) X(MW(t) is the Erdds-Rényi graph process (X1)(t) g G(n,t)).

R

o (¢ =2) X@(t) starts from K, at time 0, a 2-face is attached at
random birth time, and ends up with complete 2-skeleton.

R EPEPEPEPEDED
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Threshold for connectivity for Erdos-Rényi graph
((t): Erdos-Rényi graph.

o (¢ = 1) Erdés-Rényi (1960)
0 t= log n—wp

P(G(n, t) is connected) = P(Ho(XM(t)) = 0) — {1 ,_log e

o (¢ =1) Pittel (1988)
P(G(n, t) has no cycle) = P(Hy (XY () = 0)
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Threshold for connectivity for the Linial-Meshulam process

o (¢ =1) Erdds-Rényi (1960)

0 t= log n—wp

P(G(n, t) is connected) = P(Ho(XM (1)) = 0) — {1 _ log s,

n

e (¢ =2, p=2) Linial-Meshulam(2006)
(¢ > 2,Vp) Meshulam-Wallach (2009)

© 0 t= /log n—wp
P(HK 1(X ( ) P) = 0) - 1 t= élog’:ﬂrwn

o Remark that the threshold for H,_1(X()(t),7) = 0 is still open.
Hoffman-Kahle-Paquette obtained a partial result.

o They obtained the same threshold for “71(X(?)(t)) has property (T)".
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Betti number 3;(X®)(t)) in the case ¢ = 2

. . n
0.2 0.4 0.6 08 10

Figure: B1(X®(t)) for 2-Linial-Meshulam process when n = 15.

Tomoyuki Shirai  (IMI, Kyushu University) Random simplicial complex July 3, 2015 25 /37



Spanning (-acycle

@ Spanning tree T in the complete graph K|, satisfies the following:
@ [TI=n-1=("7").
@ Ho(T) =0 <= connected.
Q Hi(T)=0 < no cycle.

Definition

A subset T of (-faces is a spanning (-acycle over [n] if
@ |T|=("").
@ Hy_1(X1) = finite group
Q@ Hy(X7)=0 < no (-dim. cycles.
Xr=A"PuT

@ This definition was given by G. Kalai(1983).

@ Any two of the above three conditions implies the third.
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Spanning (-acycle in general simplicial complex

Let X be a simplicial complex. For ¢ < dim X, a subset T of £-faces in X
is a spanning {-acycle if

Q Hy_1(X7) = finite group
Q@ Hy(X7)=0 < no (-dim. cycles.

where
X =XED T,

In this case, | T| = | Xg| — Bo(X).

@ Any two of the above three conditions implies the third.
o k-spanning acycle exists only if |[Hx_1(X*))| < oo.

© A triangulation of 2-sphere minus one 2-face is a spanning 2-acycle.
@ For a triangulation X of a compact oriented surface of g > 1, since
Hi(Xg) = 2g, there is no spanning 2-acycle in our definition.
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Extension of Cayley's theorem

Theorem (Kalai '83)

Let S®)(n) be the set of spanning (-acycle with (£ — 1)-complete skeleton
on n-vertices. Then,

> (TR = nl).

TeS®(n)

o For ¢ =2, since Hy(T) is trivial for n = 4,5,
5@ @) = 4(%) =4, 15@(5)] = 5(27) = 125
@ For / =2 and n = 6, since Fll(T) & 7, for 12 spanning 2-acycles,
S@)(6)] = 46620 # 6("27) = 6° = 46656
Such a 2-complex is a triangulation of the projective plane.

e.g. {123,124,135,146, 156,236,245, 256,345,346}
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Determinantal formula

X: a simplicial complex with Hy_»(X(~1)) =
@ L: an (¢ — 1)-acycle, S: (-faces with |S| = |K].

Xzfl\Xz Xy Xefl\Xz S Se
K |: 8K :| K |: (9;(5 * :|
8@ pr— pr—
L * L * *

@ detdks # 0 iff S is an f-acycle.

Proposition (Matrix-Tree type theorem)
Let L € SU=1) and set K = Xy_1 \ L. Then,

det(O k) = Y (detdks)? Z |Hp_1(Xs)[?
Ses®) Sest

When ¢ =1, |H;_1(Xs)| = 1, this gives us det(dxd}f) = [SM)].
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Sum of lifetimes of homology generators

) (f,’),‘ = d; — b;: lifetimes.
o Ly_1:=) 4

Q Let By 1(t) be the (reduced) Betti number at time t. Then,

Ly = /OOO Be—1(t)dt.

0 - .
Q Let T, ;. be the minimum spanning {-acycle. Then,

Loy = wt(TY) — we(X_q \ TV D),

min min
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Betti number (1(t) in the case ¢ = 2

@ For the 2-Linial-Meshulam process, L1 = ZAGT@) t(A).
m\\
sl \
R
1
201 \
LY
L \k\b— It 4
0.2 04 0.6 0.8 1.0

Figure: f1(t) for 2-Linial-Meshulam process when n = 15.

Ly _/ B1(t)dt = wit( T,Sﬁ,)])

Tomoyuki Shirai

(IMI, Kyushu University)

Random simplicial complex July 3, 2015
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Main result

Theorem (Y.Hiraoka-T.S.)

Let Ly_1(n) be the lifetime sum of (¢ — 1)-st persistent homology for the
{-Linial-Meshulam process on n vertices,

E[Le-1(n)] = E[Tefg(ig(n) wt(T)] = O(n" 1)

as n — oo, where

oeT

See http://arxiv.org/abs/1503.05669

e Remark: For £ =1, E[Lo(n)] — ¢(3).
We will give a remark on the limiting value
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Conjecture for the limiting values

Let Ly—1(n) be the sum of lifetimes of (¢ — 1)-th persistent homology for
the ¢-Linial-Meshulam process on n vertices,

E[Ly—1(n)] = E[Terg(ig(n) wt(T)] = O(n*"1) as n— cc.

. 1 1 [
lim o E[Ly_y ()] = —/ he_1(c)de = Ip_1,
0

where
hg(c) = cte(1 — t)? + L(1 — P e — <
d+1 d+1

o o o ong o d
and t. is the minimum positive solution to t = e (1=t for ¢ > c; and
te =1 forc < cj.

@ Remark. For £ =1, Iy = ((3), which recovers Frieze's result.
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Clique (Flag) complex process

@ The clique complex CI(G) associated with a graph G is the maximal
simplicial complex having G as a 1-dimensional skeleton.
o X(W(t): Erdés-Rényi graph process

c(t) =CxW(r), o<t<1,

@ The process starts from the 0-skeleton, i.e., n isolated vertices, and
ends up with A,_1. Namely,

AY =c(o)ce(t)ce)= A,

@ The main difference from the Linial-Meshulam case is absence of
monotonicity of Betti numbers.

N e e e e W

L]
Figure: Clique complex process on 5-vertices

O
3

3

3

o o o
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Partial result for clique complex process

Let Ly_1(n) be the lifetime sum for the clique complex process on
n-vertices. Then, for{ =1,2,

cn’™! < E[L,_1(n)] < Cn*tlogn

and for £ > 3,
(Z+2)(l 1)

cn < E[Li—1(n)] < Cn*t

@ When £ =1, Ly is equal to the lifetime sum of the Erdos-Rényi graph
process. Since E[Lg] = O(1), the lower bound is correct.

@ When ¢ = 2, the upper bound seems to be more appropriate than the
lower one by simulation.
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Further directions

Prove the conjecture for E[L,_1(n)] as n — oc.
Give an asymptotic expansion of E[Ly_1(n)].
Give the exact asymptotics of E[Ly;_1(n)] for clique complex.

Limit theorem for scaled persistence diagrams (or barcodes, persistent
landspaces etc. ).

@ Random geometric graph version of this problems.
Point process on RY = k-persistence diagram

@ Anatomy of /-Linial-Meshulam complex as was done for the original
Erdos-Rényi random graph. (cf. recent results by Linial-Peled.)

@ Extension of Wilson's algorithm of generating a uniform spanning tree.
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Filtration and persistent homology

I via Cech or Rips-Vietoris complex etc.

@ Input 2: ‘Random FiItration‘

Y

o Output: ‘Random persistence diagram as point process

1 1 1 1 1
z< . z<>4 Z<P4 zq>4 zq>4
t=0 t=1 t=2 t=3 t=4
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