
Tensor representations and isotypic decompositions
Main results

Methods
Entropy of Beta Random Matrix Ensembles

The Entropy of Schur-Weyl measures

Sevak Mkrtchyan

University of Rochester

July 1, 2015



Tensor representations and isotypic decompositions
Main results

Methods
Entropy of Beta Random Matrix Ensembles

Tensor representations
Irreducible representations of symmetric groups
Isotypic decomposition of tensor representations

Asymptotic representation theory

Goal: Study the asymptotic behavior of classical groups and their representations
when the rank of the group goes to infinity.

The groups of interest: Sn, GL(N,C), GL(N,Fq), U(N), etc.

Types of questions asked:
I Study the befavior of representations of Sn when n → ∞.
I Consider S∞ - the inductive limit of Sn when n → ∞. Study representation

theory of S∞.
I Study connections between the representation theory of the finite rank objects

and the representation theory of the limiting objects.
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Tensor representations

Tensor representations of Sn

Group: Sn - group of permutations of n symbols.

Vector Space: V = (Cm)⊗n.

Action: Sn acts by permuting the factors in the tensor product : if π ∈ Sn

then
π · (v1 ⊗ v2 ⊗ . . .⊗ vn) = vπ−1(1) ⊗ vπ−1(2) ⊗ . . .⊗ vπ−1(n).

Example: if n = 4 and
π = (1342) ,

then
π · (v1 ⊗ v2 ⊗ v3 ⊗ v4) = v2 ⊗ v4 ⊗ v1 ⊗ v3.



Tensor representations and isotypic decompositions
Main results

Methods
Entropy of Beta Random Matrix Ensembles

Tensor representations
Irreducible representations of symmetric groups
Isotypic decomposition of tensor representations

Isotypic decomposition

Consider a decomposition of a representation into a direct sum of irreducibles
and collect isomorphic representations together:

V = (V1,1 ⊕ V1,2 ⊕ · · · ⊕ V1,m1)⊕ · · · ⊕ (Vk,1 ⊕ Vk,2 ⊕ · · · ⊕ Vk,mk
)

where Vi,j are all irreducible, Vi1,j1 ' Vi2,j2 iff i1 = i2.

The components (Vl,1 ⊕ Vl,2 ⊕ · · · ⊕ Vl,il ) are called isotypic components.

While the decomposition is not unique, the multiplicities mi and the isotypic
components (up to permutations) are unique.

Question

What does the isotypic decomposition of (Cm)⊗n look like?
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Irreducible representations of Sn and Young diagrams

The number of irreducible representations of a finite group is the same as the
number of conjugacy classes.

For Sn there is an explicit bijaction between irreducible representations and
conjugacy classes (integer partitions of n).

Integer partitions of n can be represented as Young diagrams λ ∈ Yn with n
cells.

Figure : The Young diagram of the partition λ = (8, 5, 4, 2, 1) of 20.
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Isotypic decomposition

Question

What does the isotypic decomposition of (Cm)⊗n look like?

(Cm)⊗n =
⊕

Some Young diagrams λ

Eλ.
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Isotypic decomposition

Question

What does the isotypic decomposition of (Cm)⊗n look like?

(Cm)⊗n =
⊕

Some Young diagrams λ

Eλ.

Question
What can we say about the index set and the isotypic components Eλ?



Tensor representations and isotypic decompositions
Main results

Methods
Entropy of Beta Random Matrix Ensembles

Tensor representations
Irreducible representations of symmetric groups
Isotypic decomposition of tensor representations

Schur–Weyl duality.

(Cm)⊗n is naturally a representation of GL(m,C) : if A ∈ GL(m,C),

A · (v1 ⊗ v2 ⊗ . . .⊗ vn) = Av1 ⊗ Av2 ⊗ . . . ,Avn.

The actions of Sn and GL(m,C) commute and are dual.

It follows from the duality that the isotypic decomposition of (Cm)⊗n with
respect to GL(m,C) coincides with the isotypic decomposition with respect
to Sn.

Irreducible representations of GL(m,C) that appear in the decomposition are
polynomial, so they are parametrized by Young diagrams with at most m
rows.
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Isotypic components

Decompose the tensor representations of Sn into isotypic components:

(Cm)⊗n =
⊕
λ∈Yn

m

Eλ.

The index set Yn
m is the set of all Young diagrams with n cells and at most m

rows.

As a consequence of Schur–Weyl duality the isotypic components Eλ are of
the form Eλ = Vλ ⊗Wλ, where Vλ and Wλ are the irreducible
representations of Sn and GL(m,C) corresponding to λ.

(Cm)⊗n =
⊕
λ∈Yn

m

Vλ ⊗Wλ,
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Questions

What is the behavior of the isotypic decomposition when n,m→∞? More
simply, how do dimensions of isotypic components grow when n,m→∞?
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Questions

What is the behavior of the isotypic decomposition when n,m→∞? More
simply, how do dimensions of isotypic components grow when n,m→∞?

We will consider the limit n,m→∞ when

√
n

m
→ c ≥ 0.

Question 1: How do the maximal dimensions of isotypic components grow?

Consider the measure Pn
m on Yn

m given by the relative dimensions of the
isotypic components in the Schur-Weyl decomposition:

(Cm)⊗n =
⊕
λ∈Yn

m

Eλ.

Pm
n (λ) :=

dim(Eλ)

mn
.

These measures are called Schur-Weyl measures. supp(Pn
m) = Yn

m.
Question 2: How do the dimensions of typical (with respect to Pm

n ) isotypic
components grow?
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Main theorems

Theorem (M.)

There exists β > 0 and for any c ≥ 0, αc > 0 such that for large enough

n,m ∈ N, if c =
√
n

m , then

max
λ∈Yn

m

dim Eλ
mn

Theorem (M.)

There exists β > 0 and for any c ≥ 0, αc > 0 such that if lim
n→∞

√
n

m
= c, then

lim
n→∞

Pn
m

{
λ ∈ Yn

m : αc < −
1√
n

ln
dim Eλ

mn
< β

}
= 1.
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Main theorems

Theorem (M.)

For any c > 0, c 6= 1 there exists a positive number Hc such that for any ε > 0
we have

lim
n→∞
m→∞√

n
m →c

Pn
m

{
λ ∈ Yn

m :

∣∣∣∣− 1√
n

ln
dim Eλ

mn
− Hc

∣∣∣∣ < ε

}
= 1.

Note
The theorems were conjectured by Grigori Olshanski.

Note
By analogy with the Shannon-McMillan-Breiman theorem, Hc should be
interpreted as the entropy of the family of Schur-Weyl measures Pn

m,
√

n = cm.
Hc is the amount of information encoded in a Young diagram from Yn

m.
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Dimensions of irreducible representations

Consider the groups Sn. How do dimensions of irreducible representations grow
when n→∞?

Question 1: How does the dimension of the highest dimensional irreducible
representations grow?

Question 2: How do the dimensions of typical irreducible representations
grow?

Vershik and Kerov [1985] gave two sided, logarithmically order-sharp asymptotic
bounds for both the maximal and the typical dimensions.

Bufetov [2010] proved that after appropriate scaling, the typical dimensions
converge to a constant.

Note: Typical here is with respect to the Plancherel measure.



Tensor representations and isotypic decompositions
Main results

Methods
Entropy of Beta Random Matrix Ensembles

Questions
Theorems
The Plancherel measure
The lower bound for dimensions

The Plancherel measure

The theorems above are related to the theorems of Vershik and Kerov, and
Bufetov regarding the irreducible representations of Sn.

The regular representation of Sn decomposes into irreducibles as follows:

CSn =
∑
λ∈Yn

Vλ ⊗ V ∗λ

Looking at dimensions gives

n! =
∑
λ∈Yn

(dim Vλ)2

The Plancherel measure is the probability measure on Young diagrams

Pln(λ) =
(dim Vλ)2

n!
.

Pln(λ) is the relative dimension of the isotypic component in the regular
representation of Sn corresponding to λ .
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Dimensions of irreducible representations of Sn

Theorem (Vershik-Kerov, 1985)

There exist positive constants α, β such that for all n ∈ Z>0

α < − 1√
n

ln

(
max
λ∈Yn

(dim Vλ)2

n!

)
< β.

and

lim
n→∞

Pln
{
λ ∈ Yn : α < − 1√

n
ln

(dim Vλ)2

n!
< β

}
= 1.

Theorem (Bufetov, 2010)

There exists a constant H > 0 such that for any ε > 0 we have

lim
n→∞

Pln
{
λ ∈ Yn :

∣∣∣∣− lnPln(λ)√
n

− H

∣∣∣∣ ≤ ε} = 1.

These correspond to the case c = 0 in the theorems above.
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The lower bound for dimensions

The upper estimate β, which corresponds to a lower bound on the
dimensions is easy to obtain.

The Hardy-Ramanujan asymptotic formula for the number of Young
diagrams gives:

|Yn| ≈ 1

4
√

3n
e

2π√
6

√
n
.

“There are not enough Young diagrams for the typical measure to be too
small”:

Pn
m

{
λ : −

ln dim Eλ

mn√
n

> β

}
= Pn

m

{
λ : Pn

m(λ) < e−β
√
n
}
≤ e−β

√
n e

2π√
6

√
n

4
√

3n
.

Setting β = 2π√
6

gives

lim
n→∞

Pn
m

{
λ ∈ Yn

m : − 1√
n

ln
dim Eλ

mn
< β

}
= 1

The lower bound for the maximal dimension follows trivially.
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Hook formula

Given a cell in a Young diagram its hook length is defined to be the number
of cells above and to the right of it, including the cell itself.

6

Let C(λ) be the set of cells in the Young diagram λ and let h(c) denote the
hook length of c ∈ C(λ).

If the cell c is in the i ’th row and j ’th column, the content of the cell is
defined to be C(c) := j − i , i.e. the signed distance from the diagonal.
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Dimension formula for the isotypic component

Hook formula for the dimensions of irreducible representations of Sn:

dim Vλ =
n!∏

c∈C(λ)
h(c)

.

Formula for the dimensions of irreducible representations of GL(m,C):

dim Wλ =

∏
c∈C(λ)

(m + C(c))∏
c∈C(λ)

h(c)
.

Dimensions of isotypic components:

dim Eλ =

n!
∏

c∈C(λ)
(m + C(c))∏

c∈C(λ)
h(c)2

.

We are interested in ln dim Eλ.
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The boundary function

Rotate the diagrams by 45◦ and scale down by
√

n/2 in both directions.

X

D

L

Denote the function giving the top boundary by Lλ(x).

Lλ(x) is a piecewise linear function with slopes ±1 such that Lλ(x) = |x | for
|x | � 1.
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Continuous hook length

Continuous analogue of hook length:

Let L(x) be a Lipschitz function with Lipschitz constant 1 and such that
L(x) = |x | for |x | large enough.

Denote by DL the region bounded between the graphs of the functions |x |
and L(x).

Given a point (x , y) ∈ DL define its hook length:
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The variational formula for the Schur-Weyl Measures

Proposition (M.)

− lnPn
m(λ)√
n

=
√

n(θ(Lλ)− ρ(Lλ)) + θ̂(λ)− ρ̂(λ)− εn

where

θ(L) = 1 + 2

∫∫
(x,y)∈DL

ln hL(x , y)dxdy

is the so called Hook integral,

ρ(L) = 2

∫∫
(x,y)∈DL

ln

(
1 +

√
2n

m
(x − y)

)
dxdy ,

εn = o
(

ln n√
n

)
is independent of λ, and θ̂(λ) and ρ̂(λ) are as follows:
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The variational formula for the Schur-Weyl Measures cont.

θ̂(λ) =
1√
n

∑
c∈C(λ)

M(h(c)),

ρ̂(λ) =
1

2
√

n

∑
c∈C(λ)

M(m + C(c)).

M(x) =
∞∑
k=1

1

k(k + 1)(2k + 1)

1

x2k
.

As before, C(λ) is the set of cells in the Young diagram λ, h(c) is the hook length
of the cell c and C(c) ∈ Z is the content of the cell c.
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The variational problem

We prove that the functional θ(L)− ρ(L) has a unique minimizer.

We give an explicit formula for the quadratic variation.

The Young diagrams in Yn
m converge to a limit shape when n,m→∞ and√

n

m
→ c ≥ 0, and the minimizer is the limit shape.

X
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The limit shape

Theorem (Biane, 2001)

Let m = m(n) be such that limn→∞
√
n

m = c. Then, for any fixed ε > 0

lim
n→∞

Pn
m(λ ∈ Yn

m : |Lλ(x)− Ωc(x)| < ε) = 1,

where Ωc(x) is a differentiable function such that Ωc(x) = |x | for |x | large enough
and

Ω′c(x) =

{
2
π arcsin

(
c+x

2
√
1+xc

)
, x ∈ [c − 2, c + 2]

±1 x /∈ [c − 2, c + 2]
.

Note
Biane’s proof is by methods of free probability. By showing that the limit shape is
the solution of our variational problem, we obtain a new proof of Biane’s theorem.
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The Vershik-Kerov, Logan-Shepp Limit shape

Ωc(X ) is a deformation (depending on c) of the limit shape found by Vershik and
Kerov and simultaneously and independently by Logan and Shepp in 1977.
limc→0 Ωc(x) = Ω(x).

Theorem (Vershik-Kerov77, Logan-Shepp77)

For any fixed ε > 0

lim
n→∞

Pln(λ ∈ Yn : |Lλ(x)− Ω(x)| < ε) = 1,

where Ω(x) is a differentiable function such that Ω(x) = |x | for |x | large enough
and

Ω′(x) =

{
2
πArcSin(x), |x | ≤ 1

Sign(x), |x | ≥ 1
.
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The limit shape

The graphs of the functions Ωc(x) intersect |x | at two points. All the
intersections are tangential except the intersections on the left side for c ≥ 1. At
the left intersection point Ω1(x) has slope 0, while Ωc(x) when c > 1 has slope 1.

c=0.0
c=0.5
c=1.0
c=2.5
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The solution of the variational problem

Proposition (M.)

Let c =
√
n

m > 0. We have

− lnPn
m(λ)√
n

=

√
n

8
‖fλ‖21

2
+

√
n

2

∫
|x−c|>2

Gc(x)fλ(x)dx + θ̂(λ)− ρ̂(λ)− εn,

where fλ(x) = Lλ(x)− Ωc(x),

‖f ‖21
2

=

∫∫ (
f (s)− f (t)

s − t

)2

dsdt

is the 1
2–Sobolev norm in the space of piecewise-smooth functions, and

Gc(x) =

(
arccosh

∣∣∣∣x − c

2

∣∣∣∣+ sign(1− c) arccosh

∣∣∣∣3c − c3 + (1 + c2)x

2(1 + cx)

∣∣∣∣) .
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The associated point process

Associate with each λ = (λ1, λ2, . . . , λm) ∈ Zm the point configuration

P(λ) := {λ1 − 1, λ2 − 2, . . . , λm −m} ⊂ Z.

Under this correspondence the pushforward of Pn
m is a random m-point process on

Z.

é é é é é é é é èèèèè éèè
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

Figure : Black dots are particles in the configuration while white dots are empty.

Given an integer vector ~m = (m1, . . . ,mr ) and a subset X ⊂ Z, let c~m(λ) be

c~m(λ) = δmi∈P(λ),∀i .
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Express the logarithm of the measure in terms of local
patterns

We express the terms in − ln Pn
m(λ)√
n

in terms of local patterns. For example

θ̂(λ) =
∞∑
k=1

hk(λ)√
n

M(k),

where hk(λ) is the number of cells in λ with hook length k, and we have

hk(λ) =
∞∑

i=−∞

(ci (λ)− ci (λ)ci−k(λ)) =
∞∑

i=−∞

(ci (λ)− ci,i−k(λ)).

All the other terms in − ln Pn
m(λ)√
n

can be expressed in terms of weighted sums

of the local statistics c~m(λ).
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Structure of the proof

We need to understand properties of Schur-Weyl-random Young diagrams at
the microscopic scale.

Poissonize.

Show that you obtain a determinantal point process.

Take the limit of the process and show it converges to the sine process.

Depoissonize using the technique of Borodin, Okounkov, Olshanski.
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Beta Random Matrix Ensembles

Consider probability distributions on RN with density w.r.t. Leb of the form

PV ,β
N (λ1, λ2, . . . , λN) =

1

ZN(β)

∏
i<j

|λi − λj |β
N∏
i=1

e−βNV (λi )/2,

where the potential V is a real analytic function satisfying some growth condition
at infinity.
Hermite beta ensemble: Take quadratic potential V :

PHer ,β
N (λ1, λ2, . . . , λN) =

1

ZHer
N (β)

∏
i<j

|λi − λj |β
N∏
i=1

e−
βN
4 λ

2
i .

For β = 1, 2, and 4, this is the distribution of the eigenvalues of a random matrix
from the Gaussian Orthogonal Ensemble (GOE), Gaussian Unitary Ensemble
(GUE), and Gaussian Symplectic Ensemble (GSE) respectively.
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Entropy of Beta Random Matrix Ensembles

Theorem (Bufetov,M.,Scherbina,Soshnikov)

(Asymptotic equipartition property) If the potential V is ”nice”, the random
variables

−
ln PV ,β

N (λ̄N)

N

converge almost surely to a constant Eβ(V ).

Theorem (Bufetov,M.,Scherbina,Soshnikov)

(Central Limit Theorem) If the potential V is ”nice”, the random variables

ln PV ,β
N (λ̄) + NEβ(V )

N1/2

converge in distribution as N →∞ to the Gaussian random variable with

expected value 0 and variance β
2 −

β2

4 ψ
′
(

1 + β
2

)
, where ψ(x) = d

dx log Γ(x).
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Circular, Laguerre, and Jacobi ensemble

Our results also hold for the following classical ensembles.

Circular beta: λ1, . . . , λN ∈ [0, 2π] with joint density w.r.t Leb:

PCir ,β
N (λ1, λ2, . . . , λN) =

1

ZCir
N (β)

∏
k<j

|e iλk − e iλj |β .

Laguerre beta: α > 0, λ1, . . . , λN ∈ [0,∞) with joint density w.r.t. Leb:

PLag ,β
N (λ1, λ2, . . . , λN) =

1

ZLag
N (β)

∏
i<j

|λi − λj |β
N∏
j=1

λα−1j e−βNλj .

Jacobi beta: µ, ν > 0, λ1, . . . , λN ∈ [−1, 1] with joint density w.r.t. Leb:

PJac,β
N (λ1, λ2, . . . , λN) =

1

Z Jac
N (β)

∏
i<j

|λi − λj |β
N∏
j=1

(1− λj)µ−1(1 + λj)
ν−1.

These ensembles do not formally belong to the class described above since the
particles are distributed, respectively, on the unit circle, positive half-line, and the
interval [−1, 1].
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The entropy

Combining the various estimates, we obtain the following formula for the entropy:

Hc =
∞∑
k=1

(
m(k)

∫ c+2

c−2
ES(φa)c{0} − ES(φa)c{0,k}da

)

+
1

4

c+2∫
c−2

1∫
0

∞∫
0

ES(φa)

(
Lλ(s + h)− Lλ(s)

h
− 2

π
arcsin

(
c + a

2
√

1 + ac

))2

dhdsda.



Tensor representations and isotypic decompositions
Main results

Methods
Entropy of Beta Random Matrix Ensembles

Thank you for your attention.
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