
On matrix coefficients

of unitary representations
of semisimple Lie groups

Michael G Cowling
University of New South Wales, Australia

June 25, 2015

1 / 24



Thanks

It is nice to be in Marseille!

2 / 24



Thanks

It is nice to be in Marseille! Où sont les blancs moutons ?
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Introduction

◮ Structure of semisimple Lie groups

◮ Representations of semisimple Lie groups

◮ Decay of matrix coefficients of irreducible representations

◮ Better control of the decay of matrix coefficients.
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Semisimple Lie groups

For me, “semisimple Lie group” means a connected real Lie group
G whose Lie algebra g is a sum of simple ideals, such as SL(n,R),
SL(n,C), SO(p, q), SU(p, q), Sp(p, q), E8. However, because the
methods are quite abstract, many of the ideas should also apply in
the p-adic case.
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Semisimple Lie groups

For me, “semisimple Lie group” means a connected real Lie group
G whose Lie algebra g is a sum of simple ideals, such as SL(n,R),
SL(n,C), SO(p, q), SU(p, q), Sp(p, q), E8. However, because the
methods are quite abstract, many of the ideas should also apply in
the p-adic case.

Every such G has
◮ a maximal compact subgroup K ,
◮ a maximal simply connected abelian subgroup A,
◮ a Cartan decomposition G = KA+K , where A+ is a cone in A.

The Lie algebra a is a vector space with a canonical inner product,
and it is possible to identify a and a

∗.

An element λ of a∗ or a∗
C
gives a homomorphism from A to C:

expH 7→ exp(λH).
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Roots

We may write

g = g0 ⊕
∑

α∈Σ

gα,

where [H,X ] = α(H)X for all H ∈ a and all X ∈ gα. The hyper-
planes {H ∈ a : α(H) = 0}, where α ∈ Σ, divide a into cones. We
call one of these the positive cone, a+.

We order a∗: β ≤ γ ⇐⇒ β(H) ≤ γ(H) ∀H ∈ a
+.

Let ρ = 1
2

∑

α∈Σ+ dim(gα)α; then ρ ∈ (a∗)+, the cone in a
∗

corresponding to a
+ under the identification of a and a

∗.
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We may write

g = g0 ⊕
∑

α∈Σ

gα,

where [H,X ] = α(H)X for all H ∈ a and all X ∈ gα. The hyper-
planes {H ∈ a : α(H) = 0}, where α ∈ Σ, divide a into cones. We
call one of these the positive cone, a+.

We order a∗: β ≤ γ ⇐⇒ β(H) ≤ γ(H) ∀H ∈ a
+.

Let ρ = 1
2

∑

α∈Σ+ dim(gα)α; then ρ ∈ (a∗)+, the cone in a
∗

corresponding to a
+ under the identification of a and a

∗.

The Weyl group W is the group of transformations of a generated
by the reflections in the hyperplanes {H ∈ a : α(H) = 0}.
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Haar measure on G

∫

G

f (x) dx =

∫

K

∫

a+

∫

K

f (k exp(H)k ′)w(H) dk dH dk ′,

where w(H) =
∑

j exp(βjH): the dominant term is exp(2ρH).
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A special function on G , and L
q+(G ) decay.

Suppose that β ∈ a
∗. Define Bβ : G → R

+ by

Bβ(k exp(H)k ′) = (1 + |H|)N exp((β − ρ)H)

for all k , k ′ ∈ K and all H ∈ a
+, where N ∈ N depends on G .
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Bβ(k exp(H)k ′) = (1 + |H|)N exp((β − ρ)H)

for all k , k ′ ∈ K and all H ∈ a
+, where N ∈ N depends on G . Then

‖Bβ‖
q
q
=

∫

a+

(1 + |H|)Nq exp(q(β − ρ)H) exp(2ρH) dH < ∞

if and only if q(β − ρ) < −2ρ, that is, if and only if q > q0, say.
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A special function on G , and L
q+(G ) decay.

Suppose that β ∈ a
∗. Define Bβ : G → R

+ by

Bβ(k exp(H)k ′) = (1 + |H|)N exp((β − ρ)H)

for all k , k ′ ∈ K and all H ∈ a
+, where N ∈ N depends on G . Then

‖Bβ‖
q
q
=

∫

a+

(1 + |H|)Nq exp(q(β − ρ)H) exp(2ρH) dH < ∞

if and only if q(β − ρ) < −2ρ, that is, if and only if q > q0, say.

Write f ∈ Lq+(G ) if f ∈ Lq+ε(G ) for all ε ∈ R
+. The statement

f ∈ Lq+(G ) gives information about the decay of f , and finding
the minimal q gives sharper information.

Note that, when the rank of G is more than 1, different β give rise
to the same q.
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Unitary representations and B(G )

Write Ḡ for the “set of all continuous unitary representations π of
G on Hilbert spaces Hπ”, and Ĝ for the subset of Ḡ consisting of
irreducible representations.

8 / 24



Unitary representations and B(G )
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the same function u may arise in different ways.

8 / 24



Unitary representations and B(G )

Write Ḡ for the “set of all continuous unitary representations π of
G on Hilbert spaces Hπ”, and Ĝ for the subset of Ḡ consisting of
irreducible representations.

A matrix entry is a function u of the form 〈π(·)ξ, η〉, that is,

u(x) = 〈π(x)ξ, η〉 ∀x ∈ G ,

where π ∈ Ḡ and ξ, η ∈ Hπ. Next

B(G ) = {u ∈ C (G ) : u = 〈π(·)ξ, η〉 , π ∈ Ḡ , ξ, η ∈ Hπ};

the same function u may arise in different ways. For u ∈ B(G ),

‖u‖B = inf{‖ξ‖ ‖η‖ : u = 〈π(·)ξ, η〉 , π ∈ Ḡ , ξ, η ∈ Hπ}.
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Restricting unitary representations to K

If π ∈ Ḡ , then π
∣

∣

K
=

⊕

τ∈K̂ nττ , and Hπ =
⊕

τ∈K̂ nτHτ .

Let Pτ be the orthogonal projection of Hπ onto nτHτ . We say
that ξ ∈ Hπ is τ -isotypic if Pτξ = ξ, and K -finite if it is a finite
linear combination of isotypic vectors.
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Restricting unitary representations to K

If π ∈ Ḡ , then π
∣

∣

K
=

⊕

τ∈K̂ nττ , and Hπ =
⊕

τ∈K̂ nτHτ .

Let Pτ be the orthogonal projection of Hπ onto nτHτ . We say
that ξ ∈ Hπ is τ -isotypic if Pτξ = ξ, and K -finite if it is a finite
linear combination of isotypic vectors.

Theorem
For all π ∈ Ĝ and all τ ∈ K̂ ,

nτ ≤ dim(Hτ ).
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Restricting attention to A

Let π ∈ Ḡ , σ, τ ∈ K̂ . Define Φ in C (A+,Hom(σ, τ)) by

Φ(a) = Pτπ(a)Pσ ∀a ∈ A.

Note that Φ depends on π, σ, and τ .
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〈

π(kak ′)ξ, η
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Restricting attention to A

Let π ∈ Ḡ , σ, τ ∈ K̂ . Define Φ in C (A+,Hom(σ, τ)) by

Φ(a) = Pτπ(a)Pσ ∀a ∈ A.

Note that Φ depends on π, σ, and τ .

If ξ is σ-isotypic and η is τ -isotypic, then

〈

π(kak ′)ξ, η
〉

=
〈

π(a)π(k ′)ξ, π(k)∗η
〉

=
〈

Φ(a)π(k ′)ξ, π(k−1)η
〉

for all k , k ′ ∈ K and all a ∈ A. Thus the matrix-valued functions Φ
encapsulate the behaviour of π.

If π ∈ Ĝ , then Φ(a) is finite-dimensional.
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Asymptotic behaviour of matrix coefficients

Theorem (Harish-Chandra)

Suppose that π ∈ Ĝ , and σ, τ ∈ K̂ . Then Φ =
∑

j Φj , and for

each j there exist αj ∈ a
∗

C
and a polynomial pj , independent of σ

and τ , and ϕj ∈ Hom(σ, τ) such that

Φj(exp(H)) ≍ pj(H) exp((αj − ρ)H)ϕj as H → ∞ ∈ a
+.

The indices j may be chosen such that Reα1 ≥ Reαj when j 6= 1,
and deg pj ≤ N; the integer N depends only on G. The number of

terms in the sum is bounded by |W |.

11 / 24



Asymptotic behaviour of matrix coefficients

Theorem (Harish-Chandra)

Suppose that π ∈ Ĝ , and σ, τ ∈ K̂ . Then Φ =
∑

j Φj , and for

each j there exist αj ∈ a
∗

C
and a polynomial pj , independent of σ

and τ , and ϕj ∈ Hom(σ, τ) such that

Φj(exp(H)) ≍ pj(H) exp((αj − ρ)H)ϕj as H → ∞ ∈ a
+.

The indices j may be chosen such that Reα1 ≥ Reαj when j 6= 1,
and deg pj ≤ N; the integer N depends only on G. The number of

terms in the sum is bounded by |W |.

Corollary

If π ∈ Ĝ , then there exists β ∈ a
∗, such that for all K-finite vectors

ξ, η ∈ Hπ,

|〈π(·)ξ, η〉| ≤ C (π, ξ, η) Bβ .
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Classification of irreducible unitary representations

The description of all irreducible unitary representations is a hard
problem. It may be divided into the classification of the elements
of Ĝred, the representations that appear in the Plancherel formula,
and the representation of the other representations, the so-called
complementary series.

Two essentially equivalent classifications, due to Langlands and to
Vogan, describe the complementary series representations by two
parameters. One is the index α1, which controls the decay at
infinity, and the other is either a representation of a reductive
subgroup M (not necessarily compact) of G or a minimal K -type.
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Examples

◮ if π ∈ Ĝdisc, then |〈π(·)ξ, η〉| ≤ C (π, ξ, η) Bβ , where β < 0,
and the matrix coefficients lie in Lq+(G ) for some q < 2.
However, not all matrix coefficients lie in Lq+(G ).

◮ if π ∈ Ĝred, then |〈π(·)ξ, η〉| ≤ C (π, ξ, η) B0, and the matrix
coefficients lie in L2+(G ). Actually, all matrix coefficients lie
in L2+(G ).

◮ if π ∈ Ĝcomp, then |〈π(·)ξ, η〉| ≤ C (π, ξ, η) Bβ , where β > 0,
and the matrix coefficients lie in Lq+(G ) for some q > 2. In
every case that we know about, all matrix coefficients lie in
Lq+(G ).
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Decay of general matrix coefficients

Even if π is not irreducible, we can often show that

|〈π(·)ξ, η〉| ≤ C (π, ξ, η) Bβ

for all ξ and η in a dense subset H0
π of Hπ, for instance,

◮ if π is the quasi-regular representation of G on L2(G/H),
where H is a closed subgroup of G ;

◮ if π = υ
∣

∣

G
, where G ⊂ H and υ ∈ Ĥ .

The second follows because we have estimates for the decay of υ
on H. The first, for reductive H, is essentially in recent work of
Benoist and Kobayashi, who show that

|〈π(expY )ξ, η〉| ≤ C (π, ξ, η) exp(−ρmin

q (Y ))

for many vectors ξ and η, and that this is best possible. They then
deduce Lq+ estimates for all matrix coefficients of π, where q is an
even integer.
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It would be nice to do better

If
|〈π(·)ξ, η〉| ≤ C (π, ξ, η) Bβ

for all ξ and η in a dense subset H0
π of Hπ, and we also knew that

C (π, ξ, η) ≤ C ‖〈π(·)ξ, η〉‖B ,

then we could extend the inequality to all vectors in Hπ by density.
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It would be nice to do better

If
|〈π(·)ξ, η〉| ≤ C (π, ξ, η) Bβ

for all ξ and η in a dense subset H0
π of Hπ, and we also knew that

C (π, ξ, η) ≤ C ‖〈π(·)ξ, η〉‖B ,

then we could extend the inequality to all vectors in Hπ by density.

If χ � π, then the matrix entries 〈χθ, ζ〉 of χ are limits, uniformly
on compacta, of nets of matrix entries 〈π(·)ξn, ηn〉 of π, with

‖〈π(·)ξn, ηn〉‖B ≤ ‖〈χθ, ζ〉‖B ;

estimates for π would pass to χ. This would give us information
about the direct integral decomposition of π.
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Can we do better?

Unfortunately, estimates of the form

|〈π(·)ξ, η〉| ≤ C ‖〈π(·)ξ, η〉‖B Bβ

are impossible—just consider translates.
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Can we do better?

Unfortunately, estimates of the form

|〈π(·)ξ, η〉| ≤ C ‖〈π(·)ξ, η〉‖B Bβ

are impossible—just consider translates.

We know that Lq+ estimates are translation-invariant. Moreover,
we have the following result.

Theorem (CHH)

Suppose that π ∈ Ḡ and 〈π(·)ξ, η〉 ∈ Lq+(G ) for all ξ and η in a

dense subset in Hπ, where q > 0. If k = ⌈q/2⌉, then

‖〈π(·)ξ, η〉‖2k+ε ≤ C (ε) ‖〈π(·)ξ, η〉‖B

for all matrix entries 〈π(·)ξ, η〉 of π.
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Strengths and weaknesses

Fortunately, Lq+ estimates pass to component representations.
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2⌈q/2⌉, and don’t see different decay rates in different directions.
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Strengths and weaknesses

Fortunately, Lq+ estimates pass to component representations.

Unfortunately, with Lq+ estimates, we lose in going from q to
2⌈q/2⌉, and don’t see different decay rates in different directions.

To do better, we let

Au(x) =

(
∫

K

∫

K

∣

∣u(kxk ′)
∣

∣

2
dk dk ′

)1/2

.
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Good news

I can show in many cases that, if

A〈π(·)ξ, η〉 ≤ C (π, ξ, η) Bβ

for all ξ and η in a dense subspace of Hπ, then

A〈π(·)ξ, η〉 ≤ C ‖〈π(·)ξ, η〉‖B Bβ

for all ξ and η in Hπ, and believe this holds in general.
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Good news

I can show in many cases that, if

A〈π(·)ξ, η〉 ≤ C (π, ξ, η) Bβ

for all ξ and η in a dense subspace of Hπ, then

A〈π(·)ξ, η〉 ≤ C ‖〈π(·)ξ, η〉‖B Bβ

for all ξ and η in Hπ, and believe this holds in general.

I can also show that, if

A〈π(·)ξ, η〉 ≤ C (π, σ, τ) ‖ξ‖ ‖η‖ Bβ

for all ξ in a dense subspace of Hσ and all η in a dense subspace of
Hτ , and all σ, τ ∈ K̂ , then

A〈π(·)ξ, η〉 ≤ C ‖〈π(·)ξ, η〉‖B Bβ

for all ξ in a dense subspace of Hσ and all η in a dense subspace of
Hτ , and all σ, τ ∈ K̂ , which is nearly as useful.
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Positive results

Theorem
Suppose that π ∈ Ḡ , and H is a dense subspace of Hπ. If β ≥ 0
and

|〈π(x)ξ, η〉| ≤ C (π, ξ, η) Bβ(x) ∀x ∈ G

for all ξ, η ∈ H, then

|〈π(x)ξ, η〉| ≤ C ‖〈π(·)ξ, η〉‖B Bβ(x) ∀x ∈ G

for all ξ, η ∈ HK
π .
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Sketch of proof

We work with positive definite functions, that is, take ξ = η.

The main fact is that, for all χ ∈ Ĝ \ Ĝred , and all θ ∈ HK
χ ,

〈χ(expH)θ, θ〉 ≍ p(H) ‖θ‖2 exp((α− ρ)H) as H → ∞ in a
+,

where p is positive.
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Sketch of proof

We work with positive definite functions, that is, take ξ = η.

The main fact is that, for all χ ∈ Ĝ \ Ĝred , and all θ ∈ HK
χ ,

〈χ(expH)θ, θ〉 ≍ p(H) ‖θ‖2 exp((α− ρ)H) as H → ∞ in a
+,

where p is positive.

The positive definite K -biinvariant matrix entries of π are integrals
of positive definite K -biinvariant matrix entries of χ as above,
where the parameter α varies over some set. For any H in a

+, if
Reα(H) > 0, then α(H) is real; this stops cancellation. The
biggest α must be “seen” by some K -biinvariant matrix entry
〈π(·)ξ, ξ〉 where ξ ∈ H. �
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Corollary

Corollary

Suppose that 1
2ρ ≤ β ≤ ρ. If

A〈π(·)ξ, η〉 ≤ C (π, ξ, η) Bβ

for all ξ and η in a dense subspace of Hπ, then

A〈π(·)ξ, η〉 ≤ C ‖〈π(·)ξ, η〉‖B Bβ

for all ξ and η in Hπ.
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Proof of Corollary

Observe that

v : x 7→

∫

K

∫

K

∣

∣

〈

π(kxk ′)ξ, η
〉
∣

∣

2
dk dk ′

is a matrix coefficient of π ⊗ π̄, and is K -invariant on both the left
and the right.
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Proof of Corollary

Observe that

v : x 7→

∫

K

∫

K

∣

∣

〈

π(kxk ′)ξ, η
〉
∣

∣

2
dk dk ′

is a matrix coefficient of π ⊗ π̄, and is K -invariant on both the left
and the right.

From the hypotheses on 〈π(·)ξ, η〉, there is a dense subspace H of
HK

π⊗π̄, the space of K -invariant vectors in Hπ⊗π̄, such that

|〈π(x)θ, ζ〉| ≤ C (π, θ, ζ) B2
β(x) ∀x ∈ G .

We apply the theorem and use the information of the theorem
about v to deduce the desired information about 〈π(·)ξ, η〉.
�
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Another corollary

Corollary

Suppose that G acts on a measure space X , and π is the

“quasi-regular” representation of G on L2(X ). If

∣

∣

〈

π(kxk ′)ξ, η
〉
∣

∣ ≤ C (π, ξ, η) Bβ(x)

for all x in G , and all ξ and η in a dense subspace of HK
π , then

A〈π(·)ξ, η〉 ≤ C ‖〈π(·)ξ, η〉‖B Bβ

for all ξ and η in Hπ.
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Another corollary

Corollary

Suppose that G acts on a measure space X , and π is the

“quasi-regular” representation of G on L2(X ). If

∣

∣

〈

π(kxk ′)ξ, η
〉
∣

∣ ≤ C (π, ξ, η) Bβ(x)

for all x in G , and all ξ and η in a dense subspace of HK
π , then

A〈π(·)ξ, η〉 ≤ C ‖〈π(·)ξ, η〉‖B Bβ

for all ξ and η in Hπ.

The proof uses a generalisation of an inequality of Herz. �
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