On matrix coefficients of unitary representations of semisimple Lie groups

Michael G Cowling University of New South Wales, Australia

June 25, 2015

(日) (圖) (E) (E) (E)

1/24

Thanks

It is nice to be in Marseille!

Thanks

It is nice to be in Marseille! Où sont les blancs moutons ?

Introduction

- Structure of semisimple Lie groups
- Representations of semisimple Lie groups
- Decay of matrix coefficients of irreducible representations
- Better control of the decay of matrix coefficients.

Semisimple Lie groups

For me, "semisimple Lie group" means a connected real Lie group G whose Lie algebra \mathfrak{g} is a sum of simple ideals, such as $SL(n, \mathbb{R})$, $SL(n, \mathbb{C})$, SO(p, q), SU(p, q), Sp(p, q), E_8 . However, because the methods are quite abstract, many of the ideas should also apply in the *p*-adic case.

Semisimple Lie groups

For me, "semisimple Lie group" means a connected real Lie group G whose Lie algebra \mathfrak{g} is a sum of simple ideals, such as $SL(n,\mathbb{R})$, $SL(n,\mathbb{C})$, SO(p,q), SU(p,q), Sp(p,q), E_8 . However, because the methods are quite abstract, many of the ideas should also apply in the *p*-adic case.

Every such G has

- ▶ a maximal compact subgroup K,
- ► a maximal simply connected abelian subgroup A,
- ▶ a Cartan decomposition $G = KA^+K$, where A^+ is a cone in A.

Semisimple Lie groups

For me, "semisimple Lie group" means a connected real Lie group G whose Lie algebra \mathfrak{g} is a sum of simple ideals, such as $SL(n,\mathbb{R})$, $SL(n,\mathbb{C})$, SO(p,q), SU(p,q), Sp(p,q), E_8 . However, because the methods are quite abstract, many of the ideas should also apply in the *p*-adic case.

Every such G has

- ▶ a maximal compact subgroup K,
- ► a maximal simply connected abelian subgroup A,
- ▶ a Cartan decomposition $G = KA^+K$, where A^+ is a cone in A.

The Lie algebra \mathfrak{a} is a vector space with a canonical inner product, and it is possible to identify \mathfrak{a} and \mathfrak{a}^* .

An element λ of \mathfrak{a}^* or $\mathfrak{a}^*_{\mathbb{C}}$ gives a homomorphism from A to \mathbb{C} :

 $\exp H \mapsto \exp(\lambda H).$

Roots

We may write

$$\mathfrak{g} = \mathfrak{g}_0 \oplus \sum_{lpha \in \Sigma} \mathfrak{g}_{lpha},$$

where $[H, X] = \alpha(H)X$ for all $H \in \mathfrak{a}$ and all $X \in \mathfrak{g}_{\alpha}$. The hyperplanes $\{H \in \mathfrak{a} : \alpha(H) = 0\}$, where $\alpha \in \Sigma$, divide \mathfrak{a} into cones. We call one of these the positive cone, \mathfrak{a}^+ .

We order
$$\mathfrak{a}^*$$
: $\beta \leq \gamma \iff \beta(H) \leq \gamma(H) \quad \forall H \in \mathfrak{a}^+.$

Let $\rho = \frac{1}{2} \sum_{\alpha \in \Sigma^+} \dim(\mathfrak{g}_{\alpha}) \alpha$; then $\rho \in (\mathfrak{a}^*)^+$, the cone in \mathfrak{a}^* corresponding to \mathfrak{a}^+ under the identification of \mathfrak{a} and \mathfrak{a}^* .

Roots

We may write

$$\mathfrak{g} = \mathfrak{g}_0 \oplus \sum_{\alpha \in \Sigma} \mathfrak{g}_{\alpha},$$

where $[H, X] = \alpha(H)X$ for all $H \in \mathfrak{a}$ and all $X \in \mathfrak{g}_{\alpha}$. The hyperplanes $\{H \in \mathfrak{a} : \alpha(H) = 0\}$, where $\alpha \in \Sigma$, divide \mathfrak{a} into cones. We call one of these the positive cone, \mathfrak{a}^+ .

We order
$$\mathfrak{a}^*$$
: $\beta \leq \gamma \iff \beta(H) \leq \gamma(H) \quad \forall H \in \mathfrak{a}^+.$

Let $\rho = \frac{1}{2} \sum_{\alpha \in \Sigma^+} \dim(\mathfrak{g}_{\alpha}) \alpha$; then $\rho \in (\mathfrak{a}^*)^+$, the cone in \mathfrak{a}^* corresponding to \mathfrak{a}^+ under the identification of \mathfrak{a} and \mathfrak{a}^* .

The Weyl group W is the group of transformations of \mathfrak{a} generated by the reflections in the hyperplanes $\{H \in \mathfrak{a} : \alpha(H) = 0\}$.

Haar measure on G

$$\int_G f(x) \, dx = \int_K \int_{\mathfrak{a}^+} \int_K f(k \exp(H)k') \, w(H) \, dk \, dH \, dk',$$

where $w(H) = \sum_{j} \exp(\beta_{j} H)$: the dominant term is $\exp(2\rho H)$.

A special function on G, and $L^{q+}(G)$ decay.

Suppose that $\beta \in \mathfrak{a}^*$. Define $\mathsf{B}_{\beta} : \mathcal{G} \to \mathbb{R}^+$ by

$$\mathsf{B}_{\beta}(k\exp(H)k') = (1+|H|)^N \exp((\beta-\rho)H)$$

for all $k, k' \in K$ and all $H \in \mathfrak{a}^+$, where $N \in \mathbb{N}$ depends on G.

A special function on G, and $L^{q+}(G)$ decay.

Suppose that $\beta \in \mathfrak{a}^*$. Define $\mathsf{B}_{\beta} : \mathcal{G} \to \mathbb{R}^+$ by

$$\mathsf{B}_{\beta}(k\exp(H)k') = (1+|H|)^N \exp((\beta-\rho)H)$$

for all $k, k' \in K$ and all $H \in \mathfrak{a}^+$, where $N \in \mathbb{N}$ depends on G. Then

$$\|\mathsf{B}_{\beta}\|_{q}^{q} = \int_{\mathfrak{a}^{+}} (1+|H|)^{Nq} \exp(q(\beta-
ho)H) \exp(2
ho H) \, dH < \infty$$

if and only if q(etaho)<-2
ho, that is, if and only if $q>q_0$, say.

A special function on G, and $L^{q+}(G)$ decay.

Suppose that $\beta \in \mathfrak{a}^*$. Define $\mathsf{B}_{\beta} : \mathcal{G} \to \mathbb{R}^+$ by

$$\mathsf{B}_{\beta}(k\exp(H)k') = (1+|H|)^N \exp((\beta-\rho)H)$$

for all $k, k' \in K$ and all $H \in \mathfrak{a}^+$, where $N \in \mathbb{N}$ depends on G. Then

$$\|\mathsf{B}_{\beta}\|_{q}^{q} = \int_{\mathfrak{a}^{+}} (1+|H|)^{Nq} \exp(q(\beta-
ho)H) \exp(2
ho H) \, dH < \infty$$

if and only if q(etaho)<-2
ho, that is, if and only if $q>q_0$, say.

Write $f \in L^{q+}(G)$ if $f \in L^{q+\varepsilon}(G)$ for all $\varepsilon \in \mathbb{R}^+$. The statement $f \in L^{q+}(G)$ gives information about the decay of f, and finding the minimal q gives sharper information.

Note that, when the rank of G is more than 1, different β give rise to the same q.

Write \overline{G} for the "set of all continuous unitary representations π of G on Hilbert spaces \mathcal{H}_{π} ", and \hat{G} for the subset of \overline{G} consisting of irreducible representations.

Write \overline{G} for the "set of all continuous unitary representations π of G on Hilbert spaces \mathcal{H}_{π} ", and \hat{G} for the subset of \overline{G} consisting of irreducible representations.

A matrix entry is a function u of the form $\langle \pi(\cdot)\xi,\eta\rangle$, that is,

$$u(x) = \langle \pi(x)\xi, \eta \rangle \quad \forall x \in G,$$

where $\pi \in \overline{G}$ and $\xi, \eta \in \mathcal{H}_{\pi}$.

Write \overline{G} for the "set of all continuous unitary representations π of G on Hilbert spaces \mathcal{H}_{π} ", and \hat{G} for the subset of \overline{G} consisting of irreducible representations.

A matrix entry is a function u of the form $\langle \pi(\cdot)\xi,\eta\rangle$, that is,

$$u(x) = \langle \pi(x)\xi, \eta \rangle \quad \forall x \in G,$$

where $\pi \in \overline{G}$ and $\xi, \eta \in \mathcal{H}_{\pi}$. Next

$$B(G) = \{ u \in C(G) : u = \langle \pi(\cdot)\xi, \eta \rangle, \ \pi \in \overline{G}, \ \xi, \eta \in \mathcal{H}_{\pi} \};$$

the same function *u* may arise in different ways.

Write \overline{G} for the "set of all continuous unitary representations π of G on Hilbert spaces \mathcal{H}_{π} ", and \hat{G} for the subset of \overline{G} consisting of irreducible representations.

A matrix entry is a function u of the form $\langle \pi(\cdot)\xi,\eta\rangle$, that is,

$$u(x) = \langle \pi(x)\xi, \eta \rangle \quad \forall x \in G,$$

where $\pi \in \overline{G}$ and $\xi, \eta \in \mathcal{H}_{\pi}$. Next

$$B(G) = \{ u \in C(G) : u = \langle \pi(\cdot)\xi, \eta \rangle, \ \pi \in \overline{G}, \ \xi, \eta \in \mathcal{H}_{\pi} \};$$

the same function u may arise in different ways. For $u \in B(G)$,

$$\|u\|_B = \inf\{\|\xi\| \|\eta\| : u = \langle \pi(\cdot)\xi, \eta
angle, \ \pi \in \overline{\mathcal{G}}, \ \xi, \eta \in \mathcal{H}_\pi\}.$$

Restricting unitary representations to K

If
$$\pi \in \overline{G}$$
, then $\pi \big|_{\mathcal{K}} = \bigoplus_{\tau \in \widehat{\mathcal{K}}} n_{\tau} \tau$, and $\mathcal{H}_{\pi} = \bigoplus_{\tau \in \widehat{\mathcal{K}}} n_{\tau} \mathcal{H}_{\tau}$.

Let P_{τ} be the orthogonal projection of \mathcal{H}_{π} onto $n_{\tau}\mathcal{H}_{\tau}$. We say that $\xi \in \mathcal{H}_{\pi}$ is τ -isotypic if $P_{\tau}\xi = \xi$, and *K*-finite if it is a finite linear combination of isotypic vectors.

Restricting unitary representations to K

If
$$\pi \in \overline{G}$$
, then $\pi \big|_{\mathcal{K}} = \bigoplus_{\tau \in \widehat{\mathcal{K}}} n_{\tau} \tau$, and $\mathcal{H}_{\pi} = \bigoplus_{\tau \in \widehat{\mathcal{K}}} n_{\tau} \mathcal{H}_{\tau}$.

Let P_{τ} be the orthogonal projection of \mathcal{H}_{π} onto $n_{\tau}\mathcal{H}_{\tau}$. We say that $\xi \in \mathcal{H}_{\pi}$ is τ -isotypic if $P_{\tau}\xi = \xi$, and *K*-finite if it is a finite linear combination of isotypic vectors.

Theorem For all $\pi \in \hat{G}$ and all $\tau \in \hat{K}$,

 $n_{ au} \leq \dim(\mathcal{H}_{ au}).$

イロト イポト イヨト イヨト 三日

9/24

Restricting attention to A

Let
$$\pi \in \overline{G}$$
, $\sigma, \tau \in \hat{K}$. Define Φ in $C(A^+, \operatorname{Hom}(\sigma, \tau))$ by
 $\Phi(a) = P_{\tau}\pi(a)P_{\sigma} \quad \forall a \in A.$

Note that Φ depends on π , σ , and τ .

Restricting attention to A

Let $\pi \in \overline{G}$, $\sigma, \tau \in \widehat{K}$. Define Φ in $C(A^+, \operatorname{Hom}(\sigma, \tau))$ by $\Phi(a) = P_{\tau}\pi(a)P_{\sigma} \quad \forall a \in A.$

Note that Φ depends on π , σ , and τ .

If ξ is $\sigma\text{-isotypic}$ and η is $\tau\text{-isotypic},$ then

$$egin{aligned} &\left\langle \pi(\textit{kak}')\xi,\eta
ight
angle &=\left\langle \pi(\textit{a})\pi(k')\xi,\pi(k)^*\eta
ight
angle \ &=\left\langle \Phi(\textit{a})\pi(k')\xi,\pi(k^{-1})\eta
ight
angle \end{aligned}$$

for all $k, k' \in K$ and all $a \in A$. Thus the matrix-valued functions Φ encapsulate the behaviour of π .

Restricting attention to A

Let $\pi \in \overline{G}$, $\sigma, \tau \in \widehat{K}$. Define Φ in $C(A^+, \operatorname{Hom}(\sigma, \tau))$ by $\Phi(a) = P_{\tau}\pi(a)P_{\sigma} \quad \forall a \in A.$

Note that Φ depends on π , σ , and τ .

If ξ is $\sigma\text{-isotypic}$ and η is $\tau\text{-isotypic},$ then

$$egin{aligned} &\left\langle \pi(\textit{kak}')\xi,\eta
ight
angle &=\left\langle \pi(\textit{a})\pi(k')\xi,\pi(k)^*\eta
ight
angle \ &=\left\langle \Phi(\textit{a})\pi(k')\xi,\pi(k^{-1})\eta
ight
angle \end{aligned}$$

for all $k, k' \in K$ and all $a \in A$. Thus the matrix-valued functions Φ encapsulate the behaviour of π .

If $\pi \in \hat{G}$, then $\Phi(a)$ is finite-dimensional.

Asymptotic behaviour of matrix coefficients

Theorem (Harish-Chandra)

Suppose that $\pi \in \hat{G}$, and $\sigma, \tau \in \hat{K}$. Then $\Phi = \sum_j \Phi_j$, and for each j there exist $\alpha_j \in \mathfrak{a}^*_{\mathbb{C}}$ and a polynomial p_j , independent of σ and τ , and $\varphi_j \in \operatorname{Hom}(\sigma, \tau)$ such that

 $\Phi_j(\exp(H)) \asymp p_j(H) \exp((\alpha_j - \rho)H) \varphi_j$ as $H \to \infty \in \mathfrak{a}^+$.

The indices j may be chosen such that $\operatorname{Re} \alpha_1 \ge \operatorname{Re} \alpha_j$ when $j \ne 1$, and deg $p_j \le N$; the integer N depends only on G. The number of terms in the sum is bounded by |W|.

Asymptotic behaviour of matrix coefficients

Theorem (Harish-Chandra)

Suppose that $\pi \in \hat{G}$, and $\sigma, \tau \in \hat{K}$. Then $\Phi = \sum_j \Phi_j$, and for each j there exist $\alpha_j \in \mathfrak{a}^*_{\mathbb{C}}$ and a polynomial p_j , independent of σ and τ , and $\varphi_j \in \text{Hom}(\sigma, \tau)$ such that

 $\Phi_j(\exp(H)) \asymp p_j(H) \exp((\alpha_j - \rho)H) \varphi_j$ as $H \to \infty \in \mathfrak{a}^+$.

The indices j may be chosen such that $\operatorname{Re} \alpha_1 \ge \operatorname{Re} \alpha_j$ when $j \ne 1$, and deg $p_j \le N$; the integer N depends only on G. The number of terms in the sum is bounded by |W|.

Corollary

If $\pi \in \hat{G}$, then there exists $\beta \in \mathfrak{a}^*$, such that for all K-finite vectors $\xi, \eta \in \mathcal{H}_{\pi}$, $|/\pi(\cdot) \xi |_{n} | \leq C(\pi, \xi, n) B_{\alpha}$

$$\langle \pi(\cdot)\xi,\eta\rangle|\leq C(\pi,\xi,\eta)\,\mathsf{B}_{\beta}$$

イロン イロン イヨン イヨン 三日

Classification of irreducible unitary representations

The description of all irreducible unitary representations is a hard problem. It may be divided into the classification of the elements of $\hat{G}_{\rm red}$, the representations that appear in the Plancherel formula, and the representation of the other representations, the so-called complementary series.

Two essentially equivalent classifications, due to Langlands and to Vogan, describe the complementary series representations by two parameters. One is the index α_1 , which controls the decay at infinity, and the other is either a representation of a reductive subgroup M (not necessarily compact) of G or a minimal K-type.

Examples

- if π ∈ Ĝ_{disc}, then |⟨π(·)ξ, η⟩| ≤ C(π, ξ, η) B_β, where β < 0, and the matrix coefficients lie in L^{q+}(G) for some q < 2. However, not all matrix coefficients lie in L^{q+}(G).
- if π ∈ Ĝ_{red}, then |⟨π(·)ξ,η⟩| ≤ C(π, ξ, η) B₀, and the matrix coefficients lie in L²⁺(G). Actually, all matrix coefficients lie in L²⁺(G).
- if π ∈ Ĝ_{comp}, then |⟨π(·)ξ, η⟩| ≤ C(π, ξ, η) B_β, where β > 0, and the matrix coefficients lie in L^{q+}(G) for some q > 2. In every case that we know about, all matrix coefficients lie in L^{q+}(G).

Decay of general matrix coefficients

Even if π is not irreducible, we can often show that

 $|\langle \pi(\cdot)\xi,\eta\rangle| \leq C(\pi,\xi,\eta) \mathsf{B}_{\beta}$

for all ξ and η in a dense subset $\mathcal{H}^{\rm 0}_{\pi}$ of $\mathcal{H}_{\pi},$ for instance,

If π is the quasi-regular representation of G on L²(G/H), where H is a closed subgroup of G;

• if
$$\pi = v|_{G}$$
, where $G \subset H$ and $v \in \hat{H}$.

The second follows because we have estimates for the decay of v on H. The first, for reductive H, is essentially in recent work of Benoist and Kobayashi, who show that

$$|\langle \pi(\exp Y)\xi,\eta
angle|\leq C(\pi,\xi,\eta)\exp(-
ho_\mathfrak{q}^{\min}(Y))$$

for many vectors ξ and η , and that this is best possible. They then deduce L^{q+} estimates for all matrix coefficients of π , where q is an even integer.

It would be nice to do better

lf

 $|\langle \pi(\cdot)\xi,\eta\rangle| \leq C(\pi,\xi,\eta) \mathsf{B}_{\beta}$

for all ξ and η in a dense subset \mathcal{H}^0_π of $\mathcal{H}_\pi,$ and we also knew that

 $C(\pi,\xi,\eta) \leq C \|\langle \pi(\cdot)\xi,\eta\rangle\|_{B},$

then we could extend the inequality to all vectors in \mathcal{H}_{π} by density.

It would be nice to do better

lf

 $|\langle \pi(\cdot)\xi,\eta\rangle| \leq C(\pi,\xi,\eta) \mathsf{B}_{\beta}$

for all ξ and η in a dense subset \mathcal{H}^0_{π} of \mathcal{H}_{π} , and we also knew that

 $C(\pi,\xi,\eta) \leq C \|\langle \pi(\cdot)\xi,\eta\rangle\|_{B},$

then we could extend the inequality to all vectors in \mathcal{H}_{π} by density.

If $\chi \leq \pi$, then the matrix entries $\langle \chi \theta, \zeta \rangle$ of χ are limits, uniformly on compacta, of nets of matrix entries $\langle \pi(\cdot)\xi_n, \eta_n \rangle$ of π , with

 $\|\langle \pi(\cdot)\xi_n,\eta_n\rangle\|_B \leq \|\langle \chi\theta,\zeta\rangle\|_B;$

estimates for π would pass to χ . This would give us information about the direct integral decomposition of π .

Can we do better?

Unfortunately, estimates of the form

 $|\langle \pi(\cdot)\xi,\eta\rangle| \leq C \, \|\langle \pi(\cdot)\xi,\eta\rangle\|_B \, \mathsf{B}_{\beta}$

are impossible—just consider translates.

Can we do better?

Unfortunately, estimates of the form

 $|\langle \pi(\cdot)\xi,\eta
angle| \leq C \, \|\langle \pi(\cdot)\xi,\eta
angle\|_B \, \mathsf{B}_{eta}$

are impossible—just consider translates.

We know that L^{q+} estimates are translation-invariant. Moreover, we have the following result.

Theorem (CHH)

Suppose that $\pi \in \overline{G}$ and $\langle \pi(\cdot)\xi, \eta \rangle \in L^{q+}(G)$ for all ξ and η in a dense subset in \mathcal{H}_{π} , where q > 0. If $k = \lceil q/2 \rceil$, then

$$\|\langle \pi(\cdot)\xi,\eta\rangle\|_{2k+\varepsilon} \leq C(\varepsilon) \|\langle \pi(\cdot)\xi,\eta\rangle\|_{B}$$

for all matrix entries $\langle \pi(\cdot)\xi,\eta\rangle$ of π .

Strengths and weaknesses

Fortunately, L^{q+} estimates pass to component representations.

Strengths and weaknesses

Fortunately, L^{q+} estimates pass to component representations.

Unfortunately, with L^{q+} estimates, we lose in going from q to $2\lceil q/2 \rceil$, and don't see different decay rates in different directions.

Strengths and weaknesses

Fortunately, L^{q+} estimates pass to component representations.

Unfortunately, with L^{q+} estimates, we lose in going from q to $2\lceil q/2 \rceil$, and don't see different decay rates in different directions.

To do better, we let

$$\mathcal{A}u(x) = \left(\int_{K}\int_{K}\left|u(kxk')\right|^{2}\,dk\,dk'\right)^{1/2}$$

Good news

I can show in many cases that, if

 $\mathcal{A} \langle \pi(\cdot)\xi,\eta \rangle \leq \mathcal{C}(\pi,\xi,\eta) \, \mathsf{B}_{\beta}$

for all ξ and η in a dense subspace of \mathcal{H}_{π} , then

 $\mathcal{A} \langle \pi(\cdot)\xi,\eta\rangle \leq C \|\langle \pi(\cdot)\xi,\eta\rangle\|_{B} \mathsf{B}_{\beta}$

for all ξ and η in \mathcal{H}_{π} , and believe this holds in general.

Good news

I can show in many cases that, if

 $\mathcal{A}\langle \pi(\cdot)\xi,\eta\rangle \leq C(\pi,\xi,\eta)\,\mathsf{B}_{\beta}$

for all ξ and η in a dense subspace of \mathcal{H}_{π} , then

$$\mathcal{A} \langle \pi(\cdot)\xi,\eta \rangle \leq C \|\langle \pi(\cdot)\xi,\eta \rangle\|_{B} \mathsf{B}_{\beta}$$

for all ξ and η in \mathcal{H}_{π} , and believe this holds in general.

I can also show that, if

$$\mathcal{A} \left\langle \pi(\cdot)\xi,\eta\right\rangle \leq C(\pi,\sigma,\tau) \left\|\xi\right\| \left\|\eta\right\| \,\mathsf{B}_{\beta}$$

for all ξ in a dense subspace of \mathcal{H}_{σ} and all η in a dense subspace of \mathcal{H}_{τ} , and all $\sigma, \tau \in \hat{K}$, then

$$\mathcal{A} \langle \pi(\cdot)\xi,\eta \rangle \leq C \|\langle \pi(\cdot)\xi,\eta \rangle\|_{B} \mathsf{B}_{\beta}$$

for all ξ in a dense subspace of \mathcal{H}_{σ} and all η in a dense subspace of \mathcal{H}_{τ} , and all $\sigma, \tau \in \hat{K}$, which is nearly as useful.

Positive results

Theorem

Suppose that $\pi \in \overline{G}$, and \mathcal{H} is a dense subspace of \mathcal{H}_{π} . If $\beta \geq 0$ and

 $|\langle \pi(x)\xi,\eta
angle|\leq C(\pi,\xi,\eta)\,\mathsf{B}_eta(x)\quad orall x\in G$

for all $\xi, \eta \in \mathcal{H}$, then

 $|\langle \pi(x)\xi,\eta
angle|\leq C\,\|\langle \pi(\cdot)\xi,\eta
angle\|_B\,\mathsf{B}_eta(x)\quadorall x\in G$

for all $\xi, \eta \in \mathcal{H}_{\pi}^{K}$.

Sketch of proof

We work with positive definite functions, that is, take $\xi = \eta$.

The main fact is that, for all $\chi \in \hat{G} \setminus \hat{G}_{red}$, and all $\theta \in \mathcal{H}_{\chi}^{K}$,

 $\langle \chi(\exp H) heta, heta
angle times p(H) \| heta\|^2 \exp((lpha -
ho)H) \quad ext{as } H o \infty ext{ in } \mathfrak{a}^+,$

where p is positive.

Sketch of proof

We work with positive definite functions, that is, take $\xi = \eta$.

The main fact is that, for all $\chi \in \hat{G} \setminus \hat{G}_{red}$, and all $\theta \in \mathcal{H}_{\chi}^{K}$,

 $\langle \chi(\exp H) heta, heta
angle times p(H) \left\| heta
ight\|^2 \exp((lphaho)H) \quad ext{as } H o\infty ext{ in } \mathfrak{a}^+,$

where p is positive.

The positive definite K-biinvariant matrix entries of π are integrals of positive definite K-biinvariant matrix entries of χ as above, where the parameter α varies over some set. For any H in \mathfrak{a}^+ , if $\operatorname{Re} \alpha(H) > 0$, then $\alpha(H)$ is real; this stops cancellation. The biggest α must be "seen" by some K-biinvariant matrix entry $\langle \pi(\cdot)\xi,\xi \rangle$ where $\xi \in \mathcal{H}$.

Corollary

Corollary Suppose that $\frac{1}{2}\rho \leq \beta \leq \rho$. If $\mathcal{A} \langle \pi(\cdot)\xi, \eta \rangle \leq C(\pi, \xi, \eta) \mathsf{B}_{\beta}$ for all ξ and η in a dense subspace of \mathcal{H}_{π} , then $\mathcal{A} \langle \pi(\cdot)\xi, \eta \rangle \leq C \|\langle \pi(\cdot)\xi, \eta \rangle\|_{B} \mathsf{B}_{\beta}$

for all ξ and η in \mathcal{H}_{π} .

Proof of Corollary

Observe that

$$\mathsf{v}:\mathsf{x}\mapsto \int_{\mathcal{K}}\int_{\mathcal{K}}\left|\left\langle \pi(\mathsf{k}\mathsf{x}\mathsf{k}')\xi,\eta
ight
angle
ight|^{2}\,\mathsf{d}\mathsf{k}\,\mathsf{d}\mathsf{k}'$$

is a matrix coefficient of $\pi\otimes \bar{\pi}$, and is K-invariant on both the left and the right.

Proof of Corollary

Observe that

$$\mathbf{v}: \mathbf{x} \mapsto \int_{K} \int_{K} \left| \left\langle \pi(\mathbf{k} \mathbf{x} \mathbf{k}') \xi, \eta \right\rangle \right|^{2} \, d\mathbf{k} \, d\mathbf{k}'$$

is a matrix coefficient of $\pi\otimes \bar{\pi}$, and is K-invariant on both the left and the right.

From the hypotheses on $\langle \pi(\cdot)\xi,\eta\rangle$, there is a dense subspace \mathcal{H} of $\mathcal{H}_{\pi\otimes\bar{\pi}}^{K}$, the space of K-invariant vectors in $\mathcal{H}_{\pi\otimes\bar{\pi}}$, such that

$$|\langle \pi(x) heta,\zeta
angle|\leq C(\pi, heta,\zeta)\,\mathsf{B}^2_eta(x)\quad orall x\in \mathcal{G}.$$

Proof of Corollary

Observe that

$$\mathbf{v}: \mathbf{x} \mapsto \int_{K} \int_{K} \left| \left\langle \pi(\mathbf{k} \mathbf{x} \mathbf{k}') \xi, \eta \right\rangle \right|^{2} \, d\mathbf{k} \, d\mathbf{k}'$$

is a matrix coefficient of $\pi\otimes \bar{\pi}$, and is K-invariant on both the left and the right.

From the hypotheses on $\langle \pi(\cdot)\xi,\eta\rangle$, there is a dense subspace \mathcal{H} of $\mathcal{H}_{\pi\otimes\bar{\pi}}^{K}$, the space of K-invariant vectors in $\mathcal{H}_{\pi\otimes\bar{\pi}}$, such that

$$|\langle \pi(x) heta,\zeta
angle|\leq C(\pi, heta,\zeta)\,\mathsf{B}^2_eta(x)\quad orall x\in \mathcal{G}.$$

We apply the theorem and use the information of the theorem about ν to deduce the desired information about $\langle \pi(\cdot)\xi,\eta\rangle$.

Another corollary

Corollary

Suppose that G acts on a measure space X, and π is the "quasi-regular" representation of G on $L^2(X)$. If

 $|\langle \pi(kxk')\xi,\eta\rangle| \leq C(\pi,\xi,\eta) \mathsf{B}_{\beta}(x)$

for all x in G, and all ξ and η in a dense subspace of \mathcal{H}_{π}^{K} , then

 $\mathcal{A} \langle \pi(\cdot)\xi,\eta\rangle \leq C \|\langle \pi(\cdot)\xi,\eta\rangle\|_{B} \mathsf{B}_{\beta}$

for all ξ and η in \mathcal{H}_{π} .

Another corollary

Corollary

Suppose that G acts on a measure space X, and π is the "quasi-regular" representation of G on $L^2(X)$. If

$$\left|\left\langle \pi(kxk')\xi,\eta
ight
angle
ight|\leq C(\pi,\xi,\eta)\,\mathsf{B}_{eta}(x)$$

for all x in G, and all ξ and η in a dense subspace of \mathcal{H}_{π}^{K} , then

$$\mathcal{A} \langle \pi(\cdot)\xi,\eta \rangle \leq C \|\langle \pi(\cdot)\xi,\eta \rangle\|_{B} \mathsf{B}_{\beta}$$

for all ξ and η in \mathcal{H}_{π} .

The proof uses a generalisation of an inequality of Herz.

References

Benoist–Kobayashi, J. Eur. Math. Soc., to appear.
Cowling, Haagerup, Howe, J. reine angew. Math., 1988.
Harish-Chandra, Opera Omnia.
Herz, C. R. Acad. Sci. Paris, 1970.
Langlands, preprint, 1974.
Vogan, Thesis.