Convergence of pseudospectra, constant resolvent norm and Schrödinger operators with complex potentials

Petr Siegl

Mathematical Institute, University of Bern, Switzerland Nuclear Physics Institute ASCR, Řež, Czech Republic

http://gemma.ujf.cas.cz/~siegl/

Based on

- S. Bögli and P. Siegl: Remarks on the convergence of pseudospectra, Integral Equations and Operator Theory 80, 2014, 303-321, arXiv:1408.3431.
- [2] S. Bögli, P. Siegl, and C. Tretter: Approximations of spectra of Schrödinger operators with complex potentials on \mathbb{R}^d , 32 pp., arXiv:1512.01826

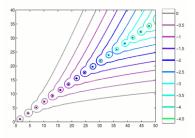
Outline

- 1. Motivation and introduction
- 2. Convergence of pseudospectra
- 3. Constant resolvent norm
- $4.\,$ Domain truncation for Schrödinger operators with complex potentials

Motivation - domain truncation for rotated (Davies) oscillator

Rotated oscillator¹: $A = -\partial_x^2 + ix^2$ in $L^2(\mathbb{R})$

• spectrum: $\sigma(A) = \left\{ e^{i\pi/4}(2k+1) : k = 0, 1, 2, \dots \right\}$



Domain truncation²

$$A_n = -\partial_x^2 + ix^2$$
 in $L^2((-n, n)) + Dirichlet BC at $\pm n$$

• does $\sigma(A_n) \to \sigma(A)$ or $\sigma_{\varepsilon}(A_n) \to \sigma_{\varepsilon}(A)$?

¹L. Boulton. J. Operator Theory 47 (2002), pp. 413–429; E. B. Davies. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999), pp. 585–599; P. Exner. J. Math. Phys. 24 (1983), pp. 1129–1135; K. Pravda-Starov. J. London Math. Soc. 73 (2006), pp. 745–761.

²K. Beauchard et al. ESAIM Control Optim. Calc. Var. 21 (2015), pp. 487–512.

Definition of pseudospectra³

Let A be a closed operator in a Banach space \mathcal{X} and let $\varepsilon > 0$. The ε -pseudospectrum of A is the set

$$\sigma_{\varepsilon}(A) := \sigma(A) \cup \left\{ z \in \mathbb{C} : \|(A-z)^{-1}\| > \frac{1}{\varepsilon} \right\}.$$

Brief history

- the notion (various names and approaches) introduced by several authors
 - 1972 Arnold, 1957 Vishik & Lyusternik: quasimodes in mathematical physics
 - 1967 Ph.D. thesis of Varah: r-approximate eigenvalues in "computer science"
 - 1975 H. Landau: ε-approximate eigenvalues
 - 1986 Wilkinson: spectral instability
 - 60-80's Godunov et. al. (numerical analysis), 80's Demmel, 80's Chatelin, ...
 - 90's Trefethen: ε-pseudospectrum
 - 1999 Davies: pseudospectra for differential operators, many generalizations

Why to study $\sigma_{\varepsilon}(A)$?

- high contrast in properties of normal and non-normal operators
- conclusions (stability, decay rates,...) based solely on spectrum can be misleading

³L. N. Trefethen and M. Embree. Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press, 2005.

Equivalent definitions and properties

Pseudomodes

 $z \in \sigma_{\varepsilon}(A) \iff z \in \sigma(A) \text{ or } z \text{ is a } \text{pseudoeigenvalue}$, i.e. there is $\psi \in \text{Dom}\,(A)$ such that

$$\|(A-z)\psi\| < \varepsilon\|\psi\|$$

Spectral (in)stability

$$\sigma_{\varepsilon}(A) = \bigcup_{\|B\| < \varepsilon} \sigma(A+B)$$

Some basic properties

- $\sigma_{\varepsilon}(A) \neq \emptyset$ for any $\varepsilon > 0$
- any bounded component of $\sigma_{\varepsilon}(A)$ contains some point of $\sigma(A)$
- $\cap_{\varepsilon>0}\sigma_{\varepsilon}(A) = \sigma(A)$

Pseudospectrum of normal operators

• if $AA^* = A^*A$ or $A = A^*$

$$\sigma_{\varepsilon}(A) = \{ z \in \mathbb{C} : \operatorname{dist}(z, \sigma(A)) < \varepsilon \}$$

since
$$||(A-z)^{-1}|| = dist(z, \sigma(A))^{-1}$$

otherwise only

$$\{z \in \mathbb{C} : \operatorname{dist}(z, \sigma(A)) < \varepsilon\} \subset \sigma_{\varepsilon}(A)$$

Pseudospectrum, similarity, basis properties

• if A is similar to a normal operator B, $A = \Omega^{-1}B\Omega$ with $\Omega, \Omega^{-1} \in \mathcal{B}(\mathcal{H})$, then

$$\sigma_{\varepsilon}(A) \subset \{z \in \mathbb{C} : \operatorname{dist}(z, \sigma(A)) < \kappa \varepsilon \}$$

for A with discrete spectrum:
 A is similar to a normal operator ⇔ eigenvectors of A form a Riesz basis

In general...

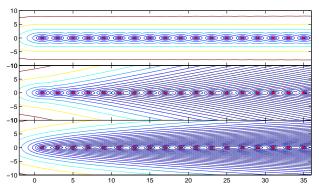
 $\sigma_{\varepsilon}(H)$ may be MUCH LARGER than ε -neighborhood of $\sigma(H)$

Rotated and shifted oscillator

•
$$H_{\theta} = e^{-i\theta}(-\partial_x^2 + e^{2i\theta}x^2)$$

$$H_{\rm s} = -\partial_x^2 + (x+i)^2$$

•
$$\sigma(H_{\theta}) = \sigma(H_{s}) = \sigma(H_{0}) = \{2n+1, n \in \mathbb{N}_{0}\}$$



• e.g. resolvent estimate⁴ for A_3 :

$$\|(H_{\rm s}-z)^{-1}\| \ge \frac{1}{C}e^{\sqrt{{\rm Re}\,z}/C}$$
 for z with $|{\rm Im}\,z| \le 2(1-\varepsilon)\sqrt{{\rm Re}\,z}$

⁴D. Krejčiřík et al. *J. Math. Phys.* 56 (2015), p. 103513.

A restriction on the behavior pseudospectrum⁵

Let A be the generator of a one-parameter semigroup e^{tA} on $\mathcal X$ with

$$||e^{tA}|| \le Me^{at}$$
 for all $t \ge 0$.

Then $\sigma(A) \subset \{z \in \mathbb{C} : \operatorname{Re} z \leq a\}$ and

$$\|(A-z)^{-1}\| \leq \frac{M}{\operatorname{Re} z - a} \quad \text{ for all } z \text{ with } \operatorname{Re} z > a.$$

Long time behavior (Gearhart-Prüss thm⁶)

Let A be a densely defined closed operator in \mathcal{H} such that -A generates a contraction semigroup. Then

$$\lim_{t \to \infty} \frac{\log \|e^{-tA}\|}{t} = -\lim_{\varepsilon \to 0+} \inf_{z \in \sigma_{\varepsilon}(A)} \operatorname{Re} z$$

 $^{^{5}\}mathrm{E.~B.}$ Davies. Linear operators and their spectra. Cambridge University Press, 2007.

 $^{^6\}mathrm{B}.$ Helffer. Spectral theory and its applications. Cambridge University Press, 2013.

Theorem [S. Bögli & PS, 2014]

Let

- \mathcal{H} and \mathcal{H}_n , $n \in \mathbb{N}$, subspaces of a Hilbert space \mathcal{H}_0
- $A \in \mathcal{C}(\mathcal{H}), A_n \in \mathcal{C}(\mathcal{H}_n)$ densely defined
- $K \subset \mathbb{C}$ compact and $\varepsilon > 0$

If

(a) $\exists z_0 \in \cap_{n \in \mathbb{N}} \rho(A_n) \cap \rho(A)$:

$$\|(A_n - z_0)^{-1} P_{\mathcal{H}_n} - (A - z_0)^{-1} P_{\mathcal{H}}\| \to 0$$

- (b) $z \mapsto \|(A-z)^{-1}\|$ is non-constant on any open subset of $\rho(A)$
- (c) $\overline{\sigma_{\varepsilon}(A) \cap K} = \overline{\sigma_{\varepsilon}(A)} \cap K \neq \emptyset$

then

$$d_{\mathrm{H}}\left(\overline{\sigma_{\varepsilon}(A_n)}\cap K, \overline{\sigma_{\varepsilon}(A)}\cap K\right)\to 0, \quad n\to\infty$$

Remarks

• Hausdorff distance: $M, N \subset \mathbb{C}$ non-empty and compact

$$d_{\mathbf{H}}(M,N) := \max \Big\{ \max_{z \in M} \mathrm{dist}(z,N), \max_{w \in N} \mathrm{dist}(w,M) \Big\}$$

Theorem [S. Bögli & PS, 2014]

Let

- \mathcal{H} and \mathcal{H}_n , $n \in \mathbb{N}$, subspaces of a Hilbert space \mathcal{H}_0
- $A \in \mathcal{C}(\mathcal{H}), A_n \in \mathcal{C}(\mathcal{H}_n)$ densely defined
- $K \subset \mathbb{C}$ compact and $\varepsilon > 0$

If

(a) $\exists z_0 \in \cap_{n \in \mathbb{N}} \rho(A_n) \cap \rho(A)$:

$$\|(A_n - z_0)^{-1} P_{\mathcal{H}_n} - (A - z_0)^{-1} P_{\mathcal{H}}\| \to 0$$

(b) $z \mapsto \|(A-z)^{-1}\|$ is non-constant on any open subset of $\rho(A)$

(c)
$$\overline{\sigma_{\varepsilon}(A) \cap K} = \overline{\sigma_{\varepsilon}(A)} \cap K \neq \emptyset$$

then

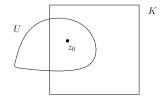
$$d_{\mathrm{H}}\left(\overline{\sigma_{\varepsilon}(A_n)}\cap K, \overline{\sigma_{\varepsilon}(A)}\cap K\right) \to 0, \quad n \to \infty.$$

Remarks

- previous results by Hansen (PhD thesis, 2008), problems on ∂K
- assumption (c) can be avoided by using a different distance (suitable for unbounded sets)
- assumption (b) cannot be omitted

Example

- A such that $||(A-z)^{-1}|| = M$ for $z \in U$, U open
- $A_n = \left(1 \frac{1}{n}\right)A, n \in \mathbb{N}$; take $z_0 \in U$



$$\|(A_n - z_0)^{-1}\| = \frac{n}{n-1} \left\| \left(A_n - \frac{n}{n-1} z_0 \right)^{-1} \right\| = \frac{n}{n-1} M > M, \text{ for all } n > n_0$$

• so $z_0 \in \sigma_{\frac{1}{M}}(A_n)$ and $U \cap \sigma_{\frac{1}{M}}(A) = \emptyset$

No convergence for $\sigma_{\frac{1}{M}}$

$$d_{\mathrm{H}}\left(\overline{\sigma_{\frac{1}{M}}(A_{n})}\cap K, \overline{\sigma_{\frac{1}{M}}(A)}\cap K\right) \geq \mathrm{dist}(z_{0}, K\setminus U) > 0$$

• Banach space \mathcal{X} , $A \in \mathcal{C}(\mathcal{X})$, M > 0

Can
$$\{z \in \rho(A) : ||(A-z)^{-1}|| = M\}$$
 have an open subset in \mathbb{C} ?

Pseudospectrum (two definitions)

$$\sigma_{\varepsilon}(A) := \sigma(A) \cup \left\{ z \in \mathbb{C} : \|(A - z)^{-1}\| > \frac{1}{\varepsilon} \right\}$$
$$\Sigma_{\varepsilon}(A) := \sigma(A) \cup \left\{ z \in \mathbb{C} : \|(A - z)^{-1}\| \ge \frac{1}{\varepsilon} \right\}$$

• does $\Sigma_{\varepsilon}(A) = \overline{\sigma_{\varepsilon}(A)}$ hold?

Resolvent as a holomorphic function

- $(A-z)^{-1}$ is a holomorphic function on $\rho(A)$
- maximum modulus principle?

Holomorphic matrix-valued function⁷

A(z) =
$$\begin{pmatrix} z & 0 \\ 0 & 1 \end{pmatrix}$$
 • $\|A(z)\| = 1$ for $|z| \le 1$ • but $(A-z)^{-1}$ is a very special function

⁷E. Shargorodsky. Bull. Lond. Math. Soc. 40 (2008), pp. 493–504.

A remark on the geometry of Banach spaces

Uniformly convex Banach space

A Banach space \mathcal{X} is uniformly convex, if for every $\varepsilon > 0$ exists $\delta > 0$ such that for all $x, y \in \mathcal{X}$ with ||x|| = ||y|| = 1:

$$||x - y|| \ge \varepsilon \implies \left\| \frac{1}{2} (x + y) \right\| \le 1 - \delta$$

- geometrically: the unit ball is "uniformly round"
- Hilbert spaces are uniformly convex, L^p spaces, 1 are uniformly convex⁸

Various other convexities



⁸J. A. Clarkson. Trans. Amer. Math. Soc. 40 (1936), pp. 396-414.

Known results

- \mathcal{X} a Banach space and $A \in \mathcal{C}(\mathcal{X})$
- $z \mapsto \|(A-z)^{-1}\|$ cannot be constant on an open subset $U \subset \rho(A)$ if
 - i) (1976) Globevnik
9: $A\in \mathscr{B}(\mathcal{X})$ and U belongs to unbounded component of
 $\rho(A)$
 - ii) $A \in \mathcal{B}(\mathcal{X})$
 - (1976) Globevnik⁸ if X is complex uniformly convex (e.q. Hilbert space, L^p-space with 1
 - (1994) Daniluk for Hilbert spaces
 - (1997) Böttcher-Grudsky-Silbermann 10 for L^p -spaces with 1
 - (1998) $\operatorname{Harrabi}^{11}$ if \mathcal{X} finite-dimensional
 - (2008) Shargorodsky 12 if ${\mathcal X}$ or ${\mathcal X}^*$ is complex uniformly convex (covers also $p=\infty$)
 - iii) A generates a C_0 semigroup
 - (2010) Shargorodsky 13 if $\mathcal X$ or $\mathcal X^*$ is complex uniformly convex
 - iv) A has compact resolvent
 - (2015) Davies-Shargorodsky 14 if $\mathcal X$ or $\mathcal X^*$ is complex strictly convex

⁹J. Globevnik, *Illinois J. Math.* 20 (1976), pp. 503–506.

¹⁰A. Böttcher, S. M. Grudsky, and B. Silbermann. New York J. Math. 3 (1997), pp. 1–31.

¹¹A. Harrabi. RAIRO Modél. Math. Anal. Numér. 32 (1998), pp. 671–680.

¹²E. Shargorodsky. Bull. Lond. Math. Soc. 40 (2008), pp. 493–504.

¹³E. Shargorodsky. Bull. Lond. Math. Soc. 42 (2010), pp. 1031–1034.

¹⁴E. B. Davies and E. Shargorodsky. *Mathematika* online first (2015).

Example with constant resolvent norm¹⁵

- $\alpha_k := k + 1$ and $\beta_k := 1 + 1/\alpha_k, k \in \mathbb{N}$
- 2×2 blocks

$$B_k := \begin{pmatrix} 0 & \alpha_k \\ \beta_k & 0 \end{pmatrix}, \quad k \in \mathbb{N},$$

- operator in $\ell^2(\mathbb{N})$: $A := \operatorname{diag}(B_1, B_2, B_3, \dots)$
- $\sigma(A) = \bigcup_{k \in \mathbb{N}} \sigma(B_k) = \{ \pm \sqrt{k+2} : k \in \mathbb{N} \}$
- inverse of the block

$$(B_k - z)^{-1} = \frac{1}{\alpha_k \beta_k - z^2} \begin{pmatrix} z & \alpha_k \\ \beta_k & z \end{pmatrix}$$

• for
$$|z| < 1$$
:
$$\lim_{k \to \infty} \|(B_k - z)^{-1}\| = \left\| \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\| = 1$$

• for
$$|z| < 1/2$$
:
 $||(B_k - z)^{-1}|| \le \frac{1}{\alpha_k \beta_k - |z|^2} \left(\left\| \begin{pmatrix} z & 0 \\ 0 & z \end{pmatrix} \right\| + \left\| \begin{pmatrix} 0 & \alpha_k \\ \beta_k & 0 \end{pmatrix} \right\| \right)$

$$= \frac{|z| + \alpha_k}{\alpha_k \beta_k - |z|^2} \le \frac{1/2 + \alpha_k}{\alpha_k \beta_k - 1/4} = \frac{1/2 + \alpha_k}{3/4 + \alpha_k} < 1$$

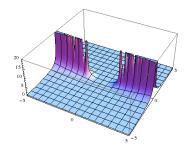
¹⁵E. Shargorodsky. Bull. Lond. Math. Soc. 40 (2008), pp. 493–504.

Example with constant resolvent norm

- operator in $\ell^2(\mathbb{N})$: $A = \operatorname{diag}(B_1, B_2, B_3, \dots)$
- for |z| < 1/2:

$$||A|| = \sup_{k \in \mathbb{N}} ||(B_k - z)^{-1}|| = 1$$

Numerics



• it seems that

$$\forall z \in \rho(A), \quad \|(A-z)^{-1}\| \ge 1$$

Theorem [S. Bögli & PS, 2014]

Let \mathcal{X} be a complex uniformly convex Banach space, $A \in \mathcal{C}(\mathcal{X})$. If there exist an open subset $U \subset \rho(A)$ and a constant M > 0 such that

$$||(A-z)^{-1}|| = M, z \in U,$$

then

$$\forall z \in \rho(A), \quad \|(A-z)^{-1}\| \ge M.$$

Sketch of the proof

- $F(z) := (A-z)^{-1}$ is analytic function with $||F(\cdot)|| \equiv M$ on U
- take $z_0 \in U$ and $\{e_k\}_k \subset \mathcal{H}$ with $||e_k|| = 1$ and $||(A z_0)^{-1} e_k|| \to M$.
- Globevnik & Vidav¹⁶: $||F'(z_0)e_k|| \to 0$
- the 1st resolvent identity twice:

$$(A-z)^{-1}e_k = (A-z_0)^{-1}e_k + (z-z_0)(I+(z-z_0)(A-z)^{-1})\underbrace{(A-z_0)^{-2}e_k}_{=F'(z_0)e_k\to 0}$$
 hence

hence

$$\|(A-z)^{-1}\| \ge \lim_{k\to\infty} \|(A-z)^{-1}e_k\| = \lim_{k\to\infty} \|(A-z_0)^{-1}e_k\| = M$$

 $^{^{16}\,\}mathrm{J}.$ Globevnik and I. Vidav. J. Funct. Anal. 15 (1974), pp. 394–403.

Corollaries

i) If there exists a path $\gamma:[0,\infty)\to\rho(A)$ such that

$$\lim_{s \to \infty} |\gamma(s)| = \infty, \quad \lim_{s \to \infty} \|(A - \gamma(s))^{-1}\| = 0,$$

then resolvent norm cannot be constant on any open subset of $\rho(A)$.

ii) This applies if $A \in \mathcal{B}(\mathcal{X})$ since

$$||(A-z)^{-1}|| \le (|z|-||A||)^{-1}, \quad |z| > ||A||.$$

iii) This applies if A generates a C_0 semigroup since, by Hille-Yosida Theorem,

$$\exists C > 0, \, \omega \in \mathbb{R} : \quad ||(A - z)^{-1}|| \le C(z - \omega)^{-1}, \quad z \in (\omega, +\infty).$$

Operator matrix¹⁷

$$T = \begin{pmatrix} 0 & f(A) \\ A & 0 \end{pmatrix}$$
 in $\mathcal{H} \oplus \mathcal{H}$

- $A = A^* > 0$ in \mathcal{H} (with discrete spectrum), $f : \mathbb{R} \to \mathbb{R}$ continuous
- a) $\lim_{x \to +\infty} f(x) = 0 \implies \rho(T) = \emptyset$
- b) $\lim_{x \to +\infty} f(x) = C > 0$ and $f(x) \ge C \implies \text{constant } \|(T-z)^{-1}\| \text{ on } \Omega \subset \rho(T)$
 - Shargorodsky's example: A = diag(2, 3, 4, ...) and f(x) = 1 + 1/x
- c) $f(x) = |x|^{\beta}, \ \beta \in (0,1) \implies \|(T re^{i\phi})^{-1}\| = \mathcal{O}(r^{-2\beta/(\beta+1)}) \text{ if } \phi \notin \{0,\pi\}.$
 - decay $\implies \|(T-z)^{-1}\|$ is not constant on any open set
 - decay not sufficient to generate a C_0 semigroup

¹⁷ A. V. Balakrishnan and R. Triggiani. Appl. Math. Lett. 6 (1993), pp. 33–37.

Domain truncation for Schrödinger operators

Operator

$$A = -\Delta + Q \quad \text{in} \quad L^2(\mathbb{R}^d)$$

• Q is complex valued and such that A has compact resolvent

Approximations

$$A_n = -\Delta + Q \quad \text{in} \quad L^2(\Omega_n)$$

• $\{\Omega_n\}_n$ are expanding bounded suff. regular domains that exhaust \mathbb{R}^d ; e.g.

$$\Omega_n = B_n(0), \quad n \in \mathbb{N}$$

- Dirichlet, Neumann or Robin BC are imposed on $\partial \Omega_n$
- if Robin BC: $\sup \|\gamma_n\|_{\infty} < \infty$, where $\partial_{\nu} f + \gamma_n f = 0$ at $\partial \Omega_n$

Questions

- Does $\sigma_{\varepsilon}(A_n)$ converge to $\sigma_{\varepsilon}(A)$?
- Does $\sigma(A_n)$ converge to $\sigma(A)$? In what sense?

m-sectorial case

- 1D example: $Q(x) = (1 + i)x^2 + i\delta(x)$
- decomposition: $Q = Q_0 + W$
 - $lackbox{0}$ sectoriality: $L^1_{\mathrm{loc}}(\mathbb{R}^d) \ni Q_0$ has values in a sector with semi-angle $<\pi/2$
 - 2 growth at ∞ : $|Q_0(x)| \to \infty$ as $|x| \to \infty$
 - **8** W: possibly singular, but $-\Delta$ -form bounded with bound < 1
- the operator A introduced via closed sectorial forms

non-m-sectorial case

- 1D example: $Q(x) = ix^3 x^2 + ix^{-1/4}$
- decomposition: $Q = Q_0 U + W$, $\operatorname{Re} Q_0 \ge 0$, $U \ge 0$, $U \operatorname{Re} Q_0 = 0$
 - \bullet regularity: $Q_0 \in W^{1,\infty}_{\mathrm{loc}}(\mathbb{R}^d),\, U \in L^\infty_{\mathrm{loc}}(\mathbb{R}^d)$ and

$$|\nabla Q_0|^2 \le a + b|Q_0|^2$$
, $U^2 \le a_U + b_U |\text{Im } Q_0|^2$ with $b_U < 1$

- 2 growth at ∞ : $|Q_0(x)| \to \infty$ as $|x| \to \infty$
- 8 W: possibly singular, but $-\Delta$ -bounded with bound < 1
- $\bullet\,$ operator A introduced via Kato's Thm. (m-accretive Schrödinger operators $^{18})$

¹⁸D. E. Edmunds and W. D. Evans. Spectral Theory and Differential Operators. Oxford University Press, 1987.

Norm resolvent and pseudospectral convergence

Theorem [S. Bögli, PS, C. Tretter]

Under assumptions on potential Q, boundary conditions and domains Ω_n above,

$$\|(A_n-z)^{-1}\chi_{\Omega_n}-(A-z)^{-1}\|\to 0$$
, $z\in\rho(A)$.

Steps in the proof

- detailed analysis of form-domains or domains of A, A_n
- strong resolvent convergence (form & operator approach)
- collective compactness¹⁹: for every $I \subset \mathbb{N}$ infinite, any sequence of $\phi_n \in \text{Dom}(A_n), n \in I$, such that $\{\|A_n\phi_n\| + \|\phi_n\|\}_{n \in I}$ is bounded, has a convergent subsequence in $L^2(\mathbb{R}^d)$.

Corollary: pseudospectral convergence

$$d_{\mathrm{H}}\left(\overline{\sigma_{\varepsilon}(A_n)}\cap K, \overline{\sigma_{\varepsilon}(A)}\cap K\right)\to 0, \quad n\to\infty.$$

• compact resolvent ⇒ resolvent is not constant on any open set

¹⁹P. M. Anselone and T. W. Palmer. Pacific J. Math. 25 (1968), pp. 417–422.

Convergence of eigenvalues

$$A := -\partial_x^2 + \mathrm{i} x^2$$
 in $L^2(\mathbb{R}), \quad \Omega_n = (-n, n) + \text{ Dirichlet BC at } \pm n$

N-s-a operators in general

norm resolvent convergence

convergence of spectra

Corollary: spectral exactness

- Every eigenvalue λ of A is approximated: there is $\{\lambda_n\}_n$, $\lambda_n \in \sigma(A_n)$, such that $\lambda_n \to \lambda$ as $n \to \infty$.
- **9** No pollution: every accumulation point of $\{\lambda_n\}_n$ is an eigenvalue of A: If $\{\lambda_n\}_n$, $\lambda_n \in \sigma(A_n)$, having an accumulation point λ , then $\lambda \in \sigma(A)$.

Theorem [S.Bögli, PS, C. Tretter]

Let assumptions on potential Q, boundary conditions and domains Ω_n hold.

- $\lambda \in \sigma(A)$ an eigenvalue of algebraic multiplicity m
- \mathcal{L}_{λ} the corresponding algebraic eigenspace
- $\{\lambda_{1,n},\ldots,\lambda_{m,n}\}\subset\sigma(A_n)$ be the eigenvalues of A_n converging to λ as $n\to\infty$

Then there is $C \geq 0$, independent of n, such that

$$\left|\lambda - \frac{1}{m} \sum_{j=1}^{m} \lambda_{j;n} \right| \le C \max_{\substack{\phi \in \mathcal{L}_{\lambda} \\ \|\phi\| = 1}} \left\| \phi \upharpoonright \mathbb{R}^{d} \setminus \Omega_{n} \right\|$$

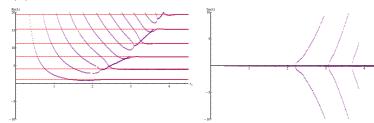
Remarks

- analogous for individual eigenvalues (no average), but with an additional power (if Jordan blocks)
- proof based on the norm resolvent convergence and paper of Osborn²⁰

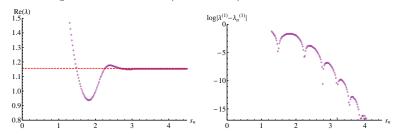
²⁰ J. E. Osborn. *Math. Comput.* 29 (1975), pp. 712–725.

$$A = -\partial_x^2 + ix^3$$
, $Dom(A) = W^{2,2}(\mathbb{R}) \cap Dom(x^3)$

• $\sigma(A) \subset \mathbb{R}$

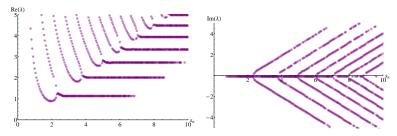


• the first eigenvalue and the rate (Dirichlet BC)



$$A = -\partial_x^2 + ix$$
, $Dom(A) = W^{2,2}(\mathbb{R}) \cap Dom(x)$

- $\sigma(A) = \emptyset$
- · all eigenvalues escape to infinity



• "approximation of the lowest" eigenvalue 21

$$\lim_{n \to \infty} (\inf \operatorname{Re} \sigma(A_n)) = \frac{|\mu_1|}{2}, \quad \mu_1 \approx -2.338$$

²¹K. Beauchard et al. ESAIM Control Optim. Calc. Var. 21 (2015), pp. 487–512.

Main results

- convergence of pseudospectrum in Hausdorff distance
 - · norm resolvent convergence
 - · resolvent norm not constant on any open set
- global minimum of the resolvent norm
 - · complex uniformly convex space

$$\|\left(A-z\right)^{-1}\|=M\quad \text{ on open }U\subset\mathbb{C}\Rightarrow \forall z\in\rho(A),\quad \|\left(A-z\right)^{-1}\|\geq M$$

- spectral and pseudospectral convergence for domain truncation of $-\Delta + Q$
 - various sectoriality and regularity assumptions on Q
 - norm resolvent convergence
 - pseudospectral convergence, spectral exactness, convergence rates

http://www.ujf.cas.cz/NSAatCIRM

CIRM conference on

Mathematical aspects of the physics with non-self-adjoint operators

Marseille, France, 5 - 9 June 2017

The conference is made possible by the kind financial support from and organised

Mathématiques, Marseille

Marseille, colonie grecque by Pierre Puvis de Chavannes (1869 Musée des beaux-arts de Marseille Studying non-self-adjoint operators is like being a vet rather than a doctor: one has to acquire a much wider range of knowledge, and to accept that one cannot expect to have as high a rate of success when confronted with particular cases.

A quotation from the preface to the 2007 book Linear operators and their spectra by E. B. Davies

Scientific board

- Guy Bouchitté (Toulon)
- Fritz Gesztesy (Columbia, USA)
- Alain Joye (Grenoble)
- Luis Vega (Bilbao)

Organizers

- David Krejčiřík (Prague)
- Petr Siegl (Bern)