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Motivation - domain truncation for rotated (Davies) oscillator

Rotated oscillator’: A = —92 +iz? in L%(R)
e spectrum: o(A) = {ei”/4(2k +1): k=0,1,2,...}

Interval (0.5, 0.5)
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Domain truncation?

Ay = =82 +i2% in L?((—n,n)) + Dirichlet BC at +n
e does o(Ap) = 0(A) or 0c(Ap) = 0-(A)?

1L. Boulton. J. Operator Theory 47 (2002), pp. 413-429; E. B. Davies. R. Soc. Lond. Proc.
Ser. A Math. Phys. Eng. Sci. 455 (1999), pp. 585-599; P. Exner. J. Math. Phys. 24 (1983),
pp. 1129-1135; K. Pravda-Starov. J. London Math. Soc. 73 (2006), pp. 745-761.

2K. Beauchard et al. ESAIM Control Optim. Cale. Var. 21 (2015), pp. 487-512.



Pseudospectrum

Definition of pseudospectra®
Let A be a closed operator in a Banach space X and let € > 0. The
e-pseudospectrum of A is the set

_ 1
oo (A) ::a(A)U{zE(C (A = 2) 1||>g}'

Brief history

e the notion (various names and approaches) introduced by several authors

e 1972 Arnold, 1957 Vishik & Lyusternik: quasimodes in mathematical physics
e 1967 Ph.D. thesis of Varah: r-approximate eigenvalues in “computer science”
1975 H. Landau: e-approximate eigenvalues

1986 Wilkinson: spectral instability

60-80’s Godunov et. al. (numerical analysis), 80’s Demmel, 80’s Chatelin, ...
90’s Trefethen: e-pseudospectrum

1999 Davies: pseudospectra for differential operators, many generalizations

Why to study o-(A)?

e high contrast in properties of normal and non-normal operators

o conclusions (stability, decay rates,...) based solely on spectrum can be
misleading

3L. N. Trefethen and M. Embree. Spectra and Pseudospectra: The Behavior of Nonnormal
Matrices and Operators. Princeton University Press, 2005.



Equivalent definitions and properties

Pseudomodes
z €0:(A) <= z € 0(A) or z is a pseudoeigenvalue , i.e. there is ¢ € Dom (A)
such that

(A = 2)| <<l

Spectral (in)stability

o:(A) = U a(A+ B)

I1Bl<e

Some basic properties

e 0-(A)#0D for any € > 0
e any bounded component of o-(A) contains some point of o(A)
L4 ﬂ5>005(A) = O'(A)



Pseudospectrum and normal operators

Pseudospectrum of normal operators
o if AA*=A*Aor A= A*
0e(A) ={z € C : dist(z,0(A)) < e}
since ||(A — 2)71|| = dist(z,0(A))"!

e otherwise only
{z € C : dist(z,0(A)) < e} Co:(A)

Pseudospectrum, similarity, basis properties

o if A is similar to a normal operator B, A = Q~1BQ with Q,Q~! € #(H),
then
0:(A) C{z € C : dist(z,0(A)) < ke }

e for A with discrete spectrum:
A is similar to a normal operator < eigenvectors of A form a Riesz basis

In general...

0:(H) may be MUCH LARGER than e-neighborhood of o(H)



Perturbations of harmonic oscillator

Rotated and shifted oscillator
o Hy=e 19(—82 4 &%942) Hs=—02+ (z +i)?
e 0(Hy) =0(Hs) =0(Hp) ={2n+1,n € No}

10
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o e.g. resolvent estimate? for As:

1
l(Hs — 2)~1 > 6e“‘“/C for z with [Im 2| < 2(1 — e)VRez




Pseudospectrum and time evolution

A restriction on the behavior pseudospectrum?®

Let A be the generator of a one-parameter semigroup et4 on X’ with
ef4]] < Me®  forall ¢t > 0.

Then 0(A) C{z € C : Rez <a} and

M
(A —2)"1 < ez —a for all z with Rez > a.

Long time behavior (Gearhart-Priiss thm6 )

Let A be a densely defined closed operator in H such that —A generates a
contraction semigroup. Then

1 —tA

i el g, inf  Rez

t— 00 t e—0+ @ el

5E. B. Davies. Linear operators and their spectra. Cambridge University Press, 2007.
6B. Helffer. Spectral theory and its applications. Cambridge University Press, 2013.



Convergence of pseudospectra

Theorem [S. Bégli & PS, 2014]
Let

e H and Hn, n € N, subspaces of a Hilbert space Ho

o AeC(H), An € C(Hn) densely defined

e K C C compact and € > 0
If
(8) 320 € Nnenp(An) N p(A);

I(An = 20) =" Pp,, — (A= 20) "' Pyl = 0

(b) z+ ||(A = 2)"!| is non-constant on any open subset of p(A)

(c) occ(A)NK=0(ANK#D
then
du (JE(An)ﬂK,JE(A)ﬁK) —0, n—oo.

Remarks

e Hausdorff distance: M, N C C non-empty and compact

dua (M, N) := max { grg\)dc dist(z, N), 1131:])\(] dist(w, M)}



Convergence of pseudospectra

Theorem [S. Bogli & PS, 2014]
Let

o H and Hn, n € N, subspaces of a Hilbert space Hg

o AeC(H), An € C(Hn) densely defined

e K C C compact and € >0
It
(a) 320 € Npenp(An) N p(A):

[|(An — 20) " Py, — (A —20) " tPy| — 0

(b) 2z~ ||(A—2)71|| is non-constant on any open subset of p(A)

(c) occ(A)NK=0(A)NK#D
then
dy (O'S(An)ﬁK,O'S(A)ﬁK) —0, n—oo.

Remarks

e previous results by Hansen (PhD thesis, 2008), problems on 0K

e assumption (c) can be avoided by using a different distance (suitable for
unbounded sets)

e assumption (b) cannot be omitted



Pseudosectral convergence, assumption (b)

Example

o A such that ||[(A —2)71|| = M for z € U, U open
. An:(l—%)A,nEN;takezer

K

n
-1

-1
n
(An T n— 1ZO>

©s020 €01 (An)and UNoa (A) =0
b7 7

[(An—20)"" =
n

=" M>M, foralln>no
n—1

No convergence for o 1
M

dy (O'L(An)ﬂK,O'L(A)ﬂK> > dist(z0, K \U) >0
M M



Constant resolvent norm

e Banach space X, A € C(X), M >0
Can {z € p(A) : ||(A—2)~!|| = M} have an open subset in C?

Pseudospectrum (two definitions)

oe(A)=o(Ayulzec ja—2" > é}

{
Se(A) = 0(A) U {ZG(C A=2)7Y = 1}

e does Y. (A) = o-(A) hold?
Resolvent as a holomorphic function

e (A —2z)~1is a holomorphic function on p(A)

e maximum modulus principle?

Holomorphic matrix-valued function”
z 0) e [[A(z)[| =1 for || <1

Alz) = (0 1

E. Shargorodsky. Bull. Lond. Math. Soc. 40 (2008), pp. 493-504.

e but (A — 2)~1 is a very special function




A remark on the geometry of Banach spaces

Uniformly convex Banach space

A Banach space X is uniformly convex, if for every € > 0 exists 6 > 0 such that for
all z,y € X with ||z]| = |ly|| = 1:

1
le—yl>e = |[S@+y|<1-96
e geometrically: the unit ball is “uniformly round”
e Hilbert spaces are uniformly convex, LP spaces, 1 < p < oo are uniformly

COl’lVeX8

Various other convexities

Uniform convexity

/ N\

Strict convexity Complex uniform convexity

\ /

Complex strict convexity

8J. A. Clarkson. Trans. Amer. Math. Soc. 40 (1936), pp. 396—414.



No constant resolvent norm

Known results

e X a Banach space and A € C(X)

e 2+ |[(A— 2)71|| cannot be constant on an open subset U C p(A) if

i) (1976) Globevnik®: A € #(X) and U belongs to unbounded component of
p(4A)
ii) Ae B(X)
e (1976) Globevnik® if X is complex uniformly convex
(e.g. Hilbert space, LP-space with 1 < p < o)
(1994) Daniluk for Hilbert spaces

(1997) Béttcher-Grudsky-Silbermann'® for LP-spaces with 1 < p < oo
(1998) Harrabil! if X finite-dimensional

(2008 )Shargorodsky12 if X or X* is complex uniformly convex (covers also
p=00)

iii) A generates a Cp semigroup
e (2010) Shargorodsky13 if X or X* is complex uniformly convex

iv) A has compact resolvent

e (2015) Davics—Shargorodsky14 if X or X* is complex strictly convex

9J. Globevnik. Illinois J. Math. 20 (1976), pp. 503-506.

10A. Bottcher, S. M. Grudsky, and B. Silbermann. New York J. Math. 3 (1997), pp. 1-31.
1A, Harrabi. RAIRO Modél. Math. Anal. Numér. 32 (1998), pp. 671-680.

12F. Shargorodsky. Bull. Lond. Math. Soc. 40 (2008), pp. 493-504.

135, Shargorodsky. Bull. Lond. Math. Soc. 42 (2010), pp. 1031-1034.

14E. B. Davies and E. Shargorodsky. Mathematika online first (2015).



Shargorodsky’s example
Example with constant resolvent norm!®
o ap:=k+1land B :=14+1/a), keN

e 2 X 2 blocks
B, = (0 ay

Bk O
e operator in ¢2(N): A := diag(B1, Be, Bs,...)
. O‘(A) = UkENU(Bk) = {:I:\/k‘-i-Q 1k € N}

inverse of the block
1 z 67
=)
(B —2) aBr — 22 Bk z

0 1
(o o)
for |z] < 1/2:

||(Bk_z)71||7m<H(g DG

|Z|+Otk < 1/2+O¢k _ 1/2+Ock
apfr — 212 T B —1/4  3/4+ oy

), keN,

for ‘Z' <1: (Bk _ Z)71II _ ‘

lim ||
k—o0

A

155, Shargorodsky. Bull. Lond. Math. Soc. 40 (2008), pp. 493-504.



Shargorodsky’s example

Example with constant resolvent norm
e operator in £2(N): A = diag(B1, B2, B3, ...)
o for |z| < 1/2:

Al = sup ||(Bx — =)'l =1
keN

Numerics

e it seems that
vz € p(4), (A-2)7>1



Constant resolvent norm result

Theorem [S. Bogli & PS, 2014]

Let X be a complex uniformly convex Banach space, A € C(X). If there exist an
open subset U C p(A) and a constant M > 0 such that

(A== =M =z€U,

then
vz € p(4), (A-2)"t=M.

Sketch of the proof
o F(z):= (A — 2)7! is analytic function with ||[F(:)|| = M on U
e take zo € U and {ej}r C H with |lex]| =1 and [|(A — z0) tex| — M .
e Globevnik & Vidav!6: ||F’(zo)ex|| — 0

e the 1st resolvent identity twice:
(A—2)"tey = (A—20)"ter + (2 — 20) (I +(z—20)(A— z)fl) (A — 2z0) " 2ep
~————

e hence =F’(z0)er—0

IA=2)712 lim [(A—2)"Texl = lim [(A—z0)"texll = M O
k—o0 k—oo

163, Globevnik and I. Vidav. J. Funct. Anal. 15 (1974), pp. 394-403.



Constant resolvent norm result

Corollaries
i) If there exists a path v : [0,00) — p(A) such that
lim |y(s)] = oo,  lim [(A=~(s))"| =0,
§— 00 §—> 00
then resolvent norm cannot be constant on any open subset of p(A).
ii) This applies if A € #(X) since
1A =2)7H < (2l = AT 21> (1Al
iii) This applies if A generates a Cp semigroup since, by Hille-Yosida Theorem,

IC>0,weR: [[(A-2)"Y<Clz-w)™!, ze(w,+o0).



Example - various resolvent norm behaviors

Operator matrix!?

T=(g f(é“)) n HoH

e A= A* >0 in H (with discrete spectrum), f : R — R continuous

a) lim f(z)=0 = p(T)=0

xr— 400

b) lim f(z) =C >0and f(z) > C = constant |[(T —2)71| on Q C p(T)

x— 400
e Shargorodsky’s example: A = diag(2,3,4,...) and f(z) =1+ 1/z
c) f&)=12l% B €(0,1) = |(T—rel®)~ | =020/ By if ¢ ¢ {0,m}.

e decay == ||(T — z)7 || is not constant on any open set
e decay not sufficient to generate a Cp semigroup

17A. V. Balakrishnan and R. Triggiani. Appl. Math. Lett. 6 (1993), pp. 33-37.



Domain truncation for Schrédinger operators

Operator

A=-A+Q in L*R?

e () is complex valued and such that A has compact resolvent

Approximations

Ap=—-A4Q in L%(Q)

o {Q,}, are expanding bounded suff. regular domains that exhaust R?; e.g.
Qn = Bn(0), neN

e Dirichlet, Neumann or Robin BC are imposed on 92y,
o if Robin BC: sup ||vn|lec < 00, where Oy f + ynf =0 at 0Qp

Questions

e Does o-(Ayn) converge to o-(A)?

e Does o(An) converge to o(A)? In what sense?



Assumptions on potential

m-sectorial case
e 1D example: Q(z) = (1 +i)2? +id(x)
e decomposition: Q = Qo + W

@ sectoriality: LL _(R?) 3 Qo has values in a sector with semi-angle < /2

® growth at co: |Qo(z)| — oo as |z| = oo
® W: possibly singular, but —A-form bounded with bound < 1

e the operator A introduced via closed sectorial forms

non-m-sectorial case
e 1D example: Q(z) = iz® — x2 + iz~ 1/4
e decomposition: @ =Qo —U+W,ReQp>0,U >0, UReQp=0
0 regularity: Qo € WU°(RY), U € L (RY) and

loc loc
IVQol2 <a+blQo)>, U?<ay+by[ImQo|*> with by <1

® growth at co: |Qo(z)| — oo as |z| — oo
® W: possibly singular, but —A-bounded with bound < 1

e operator A introduced via Kato’s Thm. (m-accretive Schrédinger operators!'®)

18D, E. Edmunds and W. D. Evans. Spectral Theory and Differential Operators. Oxford
University Press, 1987.



Norm resolvent and pseudospectral convergence

Theorem [S. Bégli, PS, C. Tretter]

Under assumptions on potential @, boundary conditions and domains £2,, above,

H(A" —2)71xq, — (A - z)_IH —0, z€pA).

Steps in the proof

e detailed analysis of form-domains or domains of A, A,
e strong resolvent convergence (form & operator approach)

e collective compactness!?: for every I C N infinite, any sequence of
¢n € Dom (An), n € I, such that {||Anon| + ||¢n||}ne[ is bounded, has a
convergent subsequence in L?(R%).

Corollary: pseudospectral convergence

dy (0c(Ap) NK,0c(A)NK) =0, n— oo

e compact resolvent = resolvent is not constant on any open set

19p. M. Anselone and T. W. Palmer. Pacific J. Math. 25 (1968), pp. 417-422.



Convergence of eigenvalues

A:=—-8% +i2% in L*(R), Q, = (—n,n) + Dirichlet BC at £n

Tnterval (0.5, 0.5)
Im
10,

N-s-a operators in general
norm resolvent convergence = =% convergence of spectra

Corollary: spectral exactness
@ Every eigenvalue A of A is approximated:
there is {An}n, An € 0(Ay), such that A\, = X as n — co.

® No pollution: every accumulation point of {\, }» is an eigenvalue of A :
If {\n}n, An € 0(Ay), having an accumulation point A, then A € o(A).



Convergence rate

Theorem [S .Bogli, PS, C. Tretter]
Let assumptions on potential @), boundary conditions and domains €2, hold.

e )\ € 0(A) an eigenvalue of algebraic multiplicity m

e L the corresponding algebraic eigenspace

o {Min,--s Amyn} C 0(Ay) be the eigenvalues of A,, converging to A as n — oo
Then there is C' > 0, independent of n, such that

p-E 3ol <0 e for e
j=1 lloll=1

Remarks

e analogous for individual eigenvalues (no average), but with an additional
power (if Jordan blocks)

o proof based on the norm resolvent convergence and paper of Osborn??

203, E. Osborn. Math. Comput. 29 (1975), pp. 712-725.



A= —-024ia3,

Examples

Dom (A) = W22(R) N Dom (%)

10

o the first eigenvalue and the rate (Dirichlet BC)

Re(A
1.56( ) . Iogl}t‘é’—/\n”’l
: VN
13 . : 2
: -5 AN
1.2] . ~
1.1 P %
. F _10l sl
1.0 % \j S
a
0.9 —15] t
08 Y
0 2 VR 0 2 3 s



Examples
A= -92+iz, Dom(A)=W?»%(R) N Dom ()
e g(A) =10

e all eigenvalues escape to infinity

Rsah)

. « 4oy p—
R EE TR Imay
T A R
4 R EE LY 4

LT T A U TR
SR % %
4 - 21k G e
S T
PR T
ok %
t %
1
*

o “approximation of the lowest” eigenvalue?!

lim (inf Reo(An)) = M, u1 ~ —2.338
n—»00 2

21K. Beauchard et al. ESAIM Control Optim. Calc. Var. 21 (2015), pp. 487-512.



Summary

Main results

e convergence of pseudospectrum in Hausdorff distance

e norm resolvent convergence
e resolvent norm not constant on any open set

e global mininum of the resolvent norm

e complex uniformly convex space
l(A—2)""|=M onopenUCC=Vzepld), [[(A-2)"'>M

e spectral and pseudospectral convergence for domain truncation of —A + Q
e various sectoriality and regularity assumptions on Q
e norm resolvent convergence
e pseudospectral convergence, spectral exactness, convergence rates
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