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Background

LDP for entropy production
or probability of violation of the 2™ Law
or how often does energy flow from cold to hot
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o Transient fluctuation relations [Evans—Morriss—Searles '94]
@ Steady state fluctuation relations [Gallavotti—-Cohen "95]

@ Stochastic dynamics [Kurchan 98, Lebowitz—Spohn '99]

[~ (including quantum dynamics).........c.ccc.cue...

o Experimental verifications [Ciliberto et al., '05 —"13, ...]

@ Reviews [Rondoni—Mejia-Monasterio '07, Seifert '12]

@ “Entropic regularity” [Jaksic—P—Rey-Bellet "11]
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Background

T

“Entropy Production”
' ®i(t)
St = Z T

i

®; = Energy flux from system to i reservoir
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Background

m i

“1st and 2" Law”

St CD steady state
Z<¢i>sleady state — 0, <T> - = Z mfly” Z O7
steady state i

i
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Background

T

Strange heat fluxes [Eckmann-Zabey ‘04]

<¢1 > steady state

<¢2 > steady state

T

+

T2

<0
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T

Instantaneous fluctuations can violate the 2" Law

Prob[S; < 0] # 0

(but expected to be small for large t)
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Fluctuation “Theorems”

PG =st] ot
]P[Gr = —St] -

(s eR, t = 0)
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Fluctuation “Theorems”

A functional &; of a dynamical/stochastic process satisfies a FT if:

.1 1 .
lim —logP [?6, € (9} = —Slgcf,) I(s) (1)

t—oo t

for all open sets O C R with a rate function satisfying

I(—=s) — I(s) = s, (s eR) @)

i.e.,Negative values of &; are exponentially suppressed as { — co
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t—oo t
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i.e.,Negative values of &; are exponentially suppressed as { — co

Gartner-Ellis theorem relates /(s) to the CGF of &;
—aGr]

I(s) = sup(as — e(—a)), e(a) = Jim 1? log E,.[e

FT (1) translates into Gallavotti-Cohen symmetry

e(1—a)=e(a), (a€cR) 3)
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Fluctuation “Theorems”

A functional &; of a dynamical/stochastic process satisfies a FT if:

.1 1 .
lim —logP [?@ € O} = fslg(fg I(s) (1)

t—oo t

for all open sets O C R with a rate function satisfying

I(=s) —I(s) =s, (seR) 2)

i.e.,Negative values of &; are exponentially suppressed as { — co

Gartner-Ellis theorem relates /(s) to the CGF of &;

I(S) = SUp(OéS — e(—a)), e(a) = t||m 1? |Og Eu[e—aGI]
FT (1) translates into Gallavotti-Cohen symmetry
6(1 - O‘) = e((‘y)~ (Oé S R) (3)

(a) steady state/transient FT « stationary/non-stationary process
(b) Local FT <+ (1) only holds for O C]s_, s+ J
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Positive Results

o [Gallavotti-Cohen "95, Ruelle '99] Global steady-state FT for strongly
chaotic dynamical systems.
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Positive Results

o [Gallavotti-Cohen "95, Ruelle '99] Global steady-state FT for strongly
chaotic dynamical systems.

o [Rey-Bellet-Thomas '02] For transient quasi-Markovian anharmonic
chains the symmetry holds on ] — §,1 + §[ for some § > 0. This yields a
local transient FT.

o [Jaksic—P-Shirikyan '15] For regular enough transient Gaussian
dynamical systems the symmetry holds on some open interval
] — 4,1+ 6] and yields a global transient FT for some natural entropy
production functional.
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Negative Results

@ [Farago, '02, van Zon-Cohen '03, Visco '06,...] In some linear stochastic
models one observes a breakdown of the symmetry leading to the
concept of extended fluctuation relations I(—s) — I(s) = s(s).

-3 -1
T

/”
r"’

' -
ZRa | .
1+ 1
<1> R c== v .
2 —= -2

p
P heat
@ P B e work
v
-3 1 1 3
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Negative Results

@ [Farago, ‘02, van Zon-Cohen 03, Visco '06,...] In some linear stochastic
models one observes a breakdown of the symmetry leading to the
concept of extended fluctuation relations I(—s) — I(s) = s(s).

-3 -1
T

i

o [Jaksic¢-P-Shirikyan "15] For stationary Gaussian dynamical systems the
symmetry only holds on some open interval | — 4, §[ (6 > 0). One can

cook up simple examples where § < 1/2 and where e(a) = 4o for
la| > 0.
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The Folklore

@ A CGF e(«) can be 400 outside a finite interval [a—, oy ].
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The Folklore

@ A CGF e(«) can be 400 outside a finite interval [a—, oy ].

@ For systems with compact phase space, adding a cocycle f(x;) — g(xo)
(also called boundary term) to the functional &; does not affect its CGF.
This is not so for non-compact phase space.

@ There should be a simple modification of the entropy production
functional S; (a cocycle) which yields the maximal interval of finiteness
of its CGF.

@ The Gartner-Ellis theorem only yields a global LDP if the maximal CGF
is steep, i.e., as a — a4 either e(«) or €' («) diverges.
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Model

1 1
R* &R > (p,q) = H(p.q) = 5l + 50 w*q.  w>0
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Model

1 1
R* &R > (p,q) = H(p.q) = 5l + 50 w*q.  w>0

G OH o oM 1
' op’ ' aq 2

0L CZ, o:R%5RT T:R% 5 R9%

o Vevyiup i€ dT L ,
(ou)i = { 0 ieTvor  (Wi=Tu

Ewi()] =0,  E[wi(s)w(t)] = 6;6(t —s)  (i,j € 9T)

Time reversal 6 : (p,q) — (—p, q)
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Non-selfadjoint ® Fokker-Planck operator

[ »p [ o1 [0 —w
18] o[ W] [0 %]

r=ar'e’,  B=Q@, A=0-.r

1

L:§V~BV—AX~V
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Non-selfadjoint ® Fokker-Planck operator

r=Qr'Q, B=QQ", A=Q-_.T

L= %V~BV—AX-V
Kalman Condition: (A, Q) is controllable

\/ Ran(A"Q TeRrR®

I

‘ L is hypoelliptic with unique "ground state” ‘

The process has an ergodic (even mixing) invariant measure
with a smooth strictly positive density
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Entropy (heat) dissipation

Work of Langevin forces

dH = LHdt+ Q"x - dw = > d¢;

i€edT
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Entropy (heat) dissipation

Work of Langevin forces

dH = LHdt + Q"x - dw = " d¢;

i€edT

doy = %(Q* Q)dt — %(T’”ZQ*X),?dt (@ x)dw,
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Entropy (heat) dissipation

Work of Langevin forces
dH = LHdt + Q"x - dw = " d¢;
i€edT
1

a6y = H(Q" Q)idt - %(T’”ZQ*X),?dt (@ x)dw,

Dissipated entropy

oy

icor !
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Entropy (heat) dissipation

Work of Langevin forces

dH = LHdt + Q"x - dw = " d¢;

i€edT
de; = %(o* Q)idt — %(T*‘/Za*x),?dt +(Q*x)idw;
Dissipated entropy
ooy
icor '

Entropy production (in NESS)

t t
S :/ 46 = —/ (T‘1Q*x-dw— %IT‘1O*x|2dt— %tr(QT“Q*)dt)
0 0
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A formal Girsanov formula

d(e™ "t f(xr)) = e~ *°1[(Laf)(x)dt
HaT Q" xf(x) + Q° (V) (x)) - dwi]

Lo =1V BV 4+ Aux-V — Ix- Cox + 2u(QT'Q")
A.=(1-a)A—aA", C.=ao(1-a)QT%Q"
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d(e™ "t f(xr)) = e~ *°1[(Laf)(x)dt
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A formal Girsanov formula
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Ao = max Re(spec(La))
b, ¥, left/right eigenvectors of L, to Ao
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A formal Girsanov formula

d(e™ "t f(xr)) = e~ *°1[(Laf)(x)dt
(aT Q X{f(Xt) + Q*(Vf)(Xp)) . th]

Lo =1V BV 4+ Aux-V — Ix- Cox + 2u(QT'Q")
A.=(1-a)A—aA", C.=ao(1-a)QT%Q"

Eufe™ "% = (ue"1) = €™ (100 )(Wa1) + Oe™" #ee79%7))

Ao = max Re(spec(La))
b, ¥, left/right eigenvectors of L, to Ao

&(a) = tILngo 1? log E,.[e™ %] = Aa
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Time Reversal

Time-reversal (©f)(p,q) = fo0(p,q) = f(—p,q)
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Time Reversal
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Time Reversal

Time-reversal (©f)(p,q) = fo0(p,q) = f(—p,q)
OL_.©® =L, = spec(Li_a) = spec(La)
yields Gallavotti-Cohen symmetry

e(1 —a) =e(a)
But "the Devil hides in the details”, unboundedness of the phase space raises
difficulties to:

@ justify Girsanov formula (martingale problem)
@ control the "prefactor” (u|®ao)(Wa|1)
@ What can we say about e(«) ?
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The Mother of GC-symmetry

The “Traditional” approach to FT

Choose your favorite physically relevant quantity (work performed on the
system, heat dissipated in the reservoirs, phase space contraction rate,...)
compute its CGF and show by some clever tricks that it satisfies/does not
satisfy the symmetry.
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The Mother of GC-symmetry

Choose your favorite physically relevant quantity (work performed on the
system, heat dissipated in the reservoirs, phase space contraction rate,...)
compute its CGF and show by some clever tricks that it satisfies/does not
satisfy the symmetry.

[Jaksic—P—Rey-Bellet '11]

Radically different philosophy: any system has canonical entropy production
functional Ep, which by construction satisfies the symmetry. Whether or not
a given physical quantity also satisfies the symmetry depends on how it is
related to Ep;,.
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The Mother of GC-symmetry

@ Probability space (2, P, P)
@ 6 measurable involution of Q st. P=Pof ~ P
@ Canonical entropy production

dP
p ngP P
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The Mother of GC-symmetry

@ Probability space (2, P, P)
@ 6 measurable involution of Q st. P=Pof ~ P
@ Canonical entropy production

dP
p ¢} i Y
o Expected value = -Relative entropy
/ EpdP = —Ent(P|P)

Ent(P|P) < 0 with equality iff P = P
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The Mother of GC-symmetry

©

Probability space (22, P, P)
6 measurable involution of Q st. P=Pof ~ P
Canonical entropy production

©

©

dP
p ngP P

©

Expected value = -Relative entropy
/ EpdP = —Ent(P|P)

Ent(P|P) < 0 with equality iff P = P
If the symmetry 6 is broken P #+ P then PP favors positive values of Ep
The CGF of Ep is Rényi’s relative a-entropy

e o

e(a) = log / e~ *SdP = Ent. (BIP)
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The Mother of GC-symmetry

Rényi relative a-entropy of two equivalent measures p ~ v is defined by

Entq (v|p) :Iog/(j—:) du.
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The Mother of GC-symmetry

Rényi relative a-entropy of two equivalent measures p ~ v is defined by

Entq (v|p) :Iog/ (j—:) du.

convex function of «
vanishing for « € {0,1}
non-positive for o €]0, 1]
non-negative for a ¢ [0, 1]

real-analytic on some interval / D]0, 1] and infinite on the complement of
its closure

© 6 6 0 o
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The Mother of GC-symmetry

Rényi relative a-entropy of two equivalent measures p ~ v is defined by

Entq (v|p) :Iog/ (j—:) du.

convex function of «
vanishing for « € {0,1}
non-positive for o €]0, 1]
non-negative for a ¢ [0, 1]

real-analytic on some interval / D]0, 1] and infinite on the complement of
its closure

© 6 6 0 o

o trivially satisfies
Enty_q (v|p) = Enta (p|v)

@ vanishes identically iff u = v
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The Mother of GC-symmetry

Rényi relative a-entropy of two equivalent measures p ~ v is defined by

Entq (v|p) :Iog/ (j—:) du.

convex function of «
vanishing for « € {0,1}
non-positive for o €]0, 1]
non-negative for a ¢ [0, 1]

real-analytic on some interval / D]0, 1] and infinite on the complement of
its closure

© 6 6 0 o

o trivially satisfies
Enty_q (v|p) = Enta (p|v)

@ vanishes identically iff u = v

e(a) = Enty (P|P) = Enty_o(P|P) = Ent;_o (P|P) = e(1 — «)
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The Mother of GC-symmetry

@ The laws P and P of S and — S satisfy the FT

dP

@(s): e
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The Mother of GC-symmetry

@ The laws P and P of S and — S satisfy the FT
ap
dP

@ In applications to dynamical processes, PP is the path-space measure for

a finite time interval [0, t] and 6 is time-reversal

(s)=¢€°
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Martingales

Path-space: C([0, 7], RZ & R¥)

Path-space measure: P,

Time-reversal: ©7 (x): = 0x-—¢

Time-reversed path-space measure: ﬁ; =Pl 007
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Martingales

Path-space: C([0, 7], RZ & R¥)

Path-space measure: P,

Time-reversal: ©7 (x): = 0x-—¢

Time-reversed path-space measure: ﬁ; =Pl 007

Theorem |

(i)

dP
dP

# du du
b _ g =2
=6, —log dX(t9x7)—|—log dx(XO)

-
o

P, ~P, and S, =log

(i) The limit

1 -
e(a) = t|_|)n;10 = log [ e~ *%dP],

exists foralla € R
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The maximal CGF

Let 8 € L(RT @ R”) be such that
03 = 36, BQ= QT
and set

dus(x) = e 2P%dx,  ap(x) = %X “Xpx,  Xp=1[Q,0]
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The maximal CGF
Let 8 € L(RT @ R”) be such that

68 = A9, BQ=QT™"
and set

dus(x) = e 2™dx,  o(x) =

2X'Zﬁxa zﬁ:[97ﬁ]

© S = [y os(xs)ds — log d“ (0x:) + Iog £ (x0)

0 E(v)=Q (A —iv) "E5(A+iv)”

'Q is independent of the choice of
e = min spec(E(v)) <0,

0<ey= max spec(E(v)) < 1
ve

1
:‘ic:;—

>

Nl=
SIE

[ logdet(/ — aE(v))$¢ | — 3| < ke
ela) =
+00

la — 1 > ke

Jaksi¢c—P—Shirikyan, CIRM 2015 Harmonic Networks 19/26



The maximal CGF

Let

o e(a) is continuous on Jc = [} — ke, 3 + k] and has an analytic
continuation to the cut plane (C \ R)U] — ke, 3 + fcl-
Either k¢ = oo and e(a) = 0, or ke < co and e(«)is strictly convex on J;

{ e(a) <0 |a—]

5| <
e(@) >0 |a—3|>

©

Nl= =

0 If ke < co then €'(1) = —€'(0) = ep > 0 and

lim €'(a) = -0, lim €'(a) =400
aj,%fnc O‘T%*”c

e(a) = J(QT'Q") =1 > [Rek|m

kespec(Ka)
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LDP for the canonical entropy production S;

I|m|nf7 log P, {St € C] > —inf I(s)
t seC
St
Ilmsup—log]P) € O| < —infl(s)
t— o0 t s€0
I(s) = sup(as — e(—a))
I(—s) —I(s) =
e(a) I(s)
broo —
1k, 1 i+k ! ep
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The Algebraic Riccati Equation

For o € 3, the matrix equation
XBX — XA, — A X —Co,=0

has a maximal symmetric solution X,, a real-analytic concave function of «
such that
<0 for a€]}—re,0[;
X =0 for a=0;
>0 for a€]0,}+kel;
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Cocycle perturbations of S;
Consider the CGF
gi(a) = 11. |Og/eSI+¢(Xt)*W(X0)dHDfm d(x) = %X cFx, W(x)= %X . Gx

where v is Gaussian with covariance N. Denote by N the Moore-Penrose
inverse of N and P, the projection on RanN.
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Cocycle perturbations of S;
Consider the CGF
gi(a) = 11. |Og/eSI+¢(Xt)*W(X0)dHDfm d(x) = %X cFx, W(x)= %X . Gx

where v is Gaussian with covariance N. Denote by N the Moore-Penrose
inverse of N and P, the projection on RanN.

@ gi(a) is finite on some interval Ja—(t), a4 (t)[ and infinite on the closure
of its complement.

o Either a_(t) = —ooorlim, o () gj(a) = —oc0
o Either a4 (t) = +oo or limyqq, (1) gf (@) = 400
o LetJ. =J_N7J, where
- ={a €3c|0Xi—_ab + a(Xi + F) > 0}
3y ={a €3c|N+ P,(Xo — (G + 0X16))|ray > O}
then lim;—, o gi(a) = e(a) for @ € Jo.
0 Leta_ =infJs, ar =supTJ. Then

lim a+(t) = a+, lim gi(a) = +oo, for a & [a—, ay]
t—oo t—o0

Jaksi¢c—P—Shirikyan, CIRM 2015 Harmonic Networks
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LDP for cocycle perturbations of S;

—00 ifa+:%+nc 400 ifa_:%f/-cc
n-= / P 1
e(a+) if g < 5 + Ke

@ Under the law PP, the functional S; + ®(x;) — V(xo) satisfies a global LDP
with rate function

—Sog —e(ay) ifs<n_
J(s) =4 I(s) ifn- <s<ny
—sa_ —e(a_) ifs>mny

0 J(—s) — J(s) < sfor s > max(—n—,n+)

Jis)

vl

"
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Example
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Open Problems

@ External forcing
@ LDP for fluctuations of individual fluxes
@ Develop the martingale approach to anharmonic networks
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