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the equation
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◮ Starting from the works of Yau, Donaldson-Uhlenbeck-Yau and others in the
last 40 years, the current belief is that the same relation between

algebraic geometry , differential geometry , PDE

will hold quite generally, albeit in a more sophisticated form: a “canonical
metric” characterizing the underlying algebraic structure should still exist,
possibly with singularities. The singularities reflect global constraints, and will
not occur iff if the structure is “stable” in a suitable algebraic geometric sense.

◮ “Canonical metrics” often arise as the minima of an energy functional, whose
more general critical points are then referred to as “extremal metrics”.
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◮ When dimX = 4, the Hodge ⋆ operator is an isomorphism of the space Λ2 of
2-forms on X , with eigenspaces Λ± of eigenvalues ±1 respectively. A
connection A is said to be self-dual or anti-self-dual if it satisfies the
corresponding condition below

⋆FA = FA, or ⋆ FA = −FA

◮ If we decompose FA = F+ + F−, with ⋆F± = ±F±, it is readily seen that
I (A) = ‖F+‖2 + ‖F−‖2, and c2(E) = ‖F+‖2 − ‖F−‖2, where c2(E) is the
second Chern class of E . It is then clear that the minimum of I (A) is achieved
at F either self-dual or anti-self-dual, depending on the sign of c2(E).
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◮ To find such a Hermitian-Einstein connection, we can also start from a
holomorphic vector bundle E , and find a metric Hᾱβ so that g j k̄Fk̄ j

α
β = 0,

where F is the curvature of the Chern unitary connection, ∇j̄ = ∂j̄ ,

Γα
jβ

= Hαγ̄∂jHγ̄β .

◮ The two points of view are equivalent, up to gauge transformations. This
equivalence between Hermitian-Einstein equations and minima for Yang-Mills
also generalizes to higher dimensions.
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representative which is a strictly positive (1, 1)-form.

◮ A central question in Kähler geometry is when c1(L) contains a metric ω of
constant scalar curvature R. Such metrics are minima of the Calabi functional
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∫
X
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Extremal metrics are critical points of this functional. Explicitly, their equation is

∇j̄∇k̄R = 0

which means that the gradient V j = ∇jR is a holomorphic vector field.

◮ A well-known special case is when L = K±
X
. In this case, the constant scalar

curvature is equivalent to the seemingly stronger Kähler-Einstein condition

Rk̄ j = ±gk̄ j

◮ A general conjecture, due to Yau, is the existence of a metric of constant scalar
curvature in c1(L) should be equivalent to the stability of L → X in the sense of
geometric invariant theory. A precise notion of stability, called K -stability, has
been proposed by G. Tian and S. Donaldson.

◮ The conjecture has been proved recently for the case L = K−1
X

by X.X. Chen, S.
Donaldson, and S. Sun. But it remains open in the general case.
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The equations that we just surveyed are all elliptic non-linear partial differential
equations. One prevalent method is the method of continuity. Say the equation is of
the form

F (uj k̄ , uj , u, z) = 0.

Schematically, the method of continuity would consist in introducing a one-parameter
family of equations

Ft(uj k̄ , uj , u, z) = 0, 0 ≤ t ≤ 1

with Ft = F when t = 1, and F0 manifestly admitting a solution u0. The goal is to
show that the set of parameters t for which Ft = 0 admits a solution u(t) is both open
and closed. Openness usually follows readily from the implicit function theorem. The
diffculty is usually closedness, which would follow from a priori estimates of the form

||u(t)||C2,α ≤ C

where C is a constant independent of t.
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the form

F (uj k̄ , uj , u, z) = 0.

Schematically, the method of continuity would consist in introducing a one-parameter
family of equations

Ft(uj k̄ , uj , u, z) = 0, 0 ≤ t ≤ 1

with Ft = F when t = 1, and F0 manifestly admitting a solution u0. The goal is to
show that the set of parameters t for which Ft = 0 admits a solution u(t) is both open
and closed. Openness usually follows readily from the implicit function theorem. The
diffculty is usually closedness, which would follow from a priori estimates of the form

||u(t)||C2,α ≤ C

where C is a constant independent of t.

For example, consider the Hermitian-Einstein equation

g j k̄Fk̄ j
α
β − µδαβ = 0.

The family of equations proposed by K. Uhlenbeck and S.T. Yau is

ΛF − µI = −t log h, h ≡ H−1
0 H.
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In the parabolic approach, one considers a flow where whose stationary points are
given precisely by the elliptic equations to be solved. The problem becomes the one of
establish the long-time existence, and convergence of the flow.

◮ For example, for the equation ∆u − R(x) + ceu = 0 of the two-dimensional
uniformization theorem, one may consider

u̇ = ∆u − R(x) + ceu , u(x , 0) = 0,

for a function u(t, x) depending on time.

◮ But there is a lot of arbitrariness in the choice of right hand side. For example,
one may also consider

u̇ = e−u(∆u − R(x) + ceu), u(x , 0) = 0,

◮ This other flow may be technically more difficult than the previous one, because
it no no longer uniformly parabolic. But it retains the geometric feature of the
problem, because it is equivalent to the Ricci flow for the metric
gij (t) ≡ eu(x,t)gij (x),

ġij (t) = −(Rij (g(t)) − cgij (t)), gij (0) = gij

◮ Because of their geometric origin, geometric flows may provide information even
when no stationary points exist: for example, they may converge with a jump in
the topology (“bubbling”) or complex structure of the underlying geometry
(“stability”), and/or detect a cyclic behavior (“soliton”).
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◮ The proof of Uhlenbeck and Yau gives even more, since it shows that the
existence of a HE metric is equivalent to a uniform bound

suptTrH
−1
0 H(t) <∞

along the approximating equation (ΛF − µI ) = −t logH−1
0 H(t),
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Hαγ̄ Ḣγ̄β = −(g j k̄Fk̄ j
α
β − µδαβ)

The stable case

Theorem 1 (Donaldson, Uhlenbeck and Yau) The holomorphic, irreducible vector
bundle E → X admits a Hermitian-Einstein metric (equivalently, a minimum of the
Yang-Mills functional) if and only if E → X is stable in the sense of
Mumford-Takemoto (i.e., for any sub sheaf E ′ ⊂ E , E ′ 6= E , we have µ(E ′) < µ(E),
where µ(E) =< TrF ∧ ωn−1 > /rankE .)

◮ In particular, when E is stable, the flows converge.

◮ The proof of Uhlenbeck and Yau gives even more, since it shows that the
existence of a HE metric is equivalent to a uniform bound

suptTrH
−1
0 H(t) <∞

along the approximating equation (ΛF − µI ) = −t logH−1
0 H(t),

◮ and how the failure of this estimate can produce a destabilizing weak
holomorphic sub bundle, and hence sheaf, E ′ when E is unstable.
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to a connection A∞ on a bundle E∞ over X \ Zan (dimZan ≤ 4).
(b) The bundle E∞ extends as a reflexive sheaf, still denoted E∞, over X .
(c) The sheaf E∞ over X can be identified with the double dual (Grhns (E))∗∗ of the
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(d) The limiting connection A∞ extends to the minimizing connection of
(Grhns (E))∗∗ over X .

◮ Parts (a) and (b) are due to Bando and Siu, who introduced the use of
admissible metrics (smooth away from a sub variety, with L2 curvature)

◮ (c) and (d) were conjectured by Bando and Siu, proved by G. Daskalopoulos
and Wentworth when dimX = 2, and subsequently and independently, by A.
Jacob and B. Sibley in general.

◮ The analytic set Zan arises as the set long which the curvature of the
connections blow up along the flow. It has been shown to coincide with the
algebraic set Zalg of singularities of Grhns (E) by Daskalopoulos and Wentworth
in dimension 2, and by Sibley and Wentworth in general.
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◮ Recall that [Ric(ω)] = c1(X ) for any Kähler metric ω. Due to this, in the more
specific case when c1(X ) is definite and [ω0] = ±c1(X ), or c1(X ) = 0 and [ω0]
is arbitrary, the flow is known to exist for all time.

◮ When c1(X ) < 0 or c1(X ) = 0, it is not difficult, as shown by H.D. Cao using
estimates of Yau and Aubin, to show that the flow converges to a
Kähler-Einstein metric. We shall concentrate henceforth on the case c1(X ) > 0.
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bound for the volume Br (z)/r2n (“non-collapse”).
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Major open questions

◮ A particularly important problem is to show the convergence of the flow directly
from a stability condition. There are partial results in this direction due to P., J.
Song, J. Sturm, B. Weinkove, G. Szekelyhidi, and V. Tosatti.

◮ An even more obscure issue is to determine the behavior of the flow in general,
even when the manifold X is unstable.

◮ As nothing is known in general, we shall examine the simplest case of the flow
when c1(X ) > 0, and when the complex structure can be stable, semistable, or
unstable. This is the case of S2 with conic singularities, which we describe next.



Riemann surfaces with conic singularities

◮ Let M be a Riemann surface. We say that a metric g(z) on M has a conic
singularity at a point p if g(z) is a smooth metric away from p, and satisfies
near p

g(z) = eu(z)|z − p|−2β |dz |2

where u(z) is a bounded function near p, and 0 < β < 1 is a fixed constant.
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singularity at a point p if g(z) is a smooth metric away from p, and satisfies
near p

g(z) = eu(z)|z − p|−2β |dz |2

where u(z) is a bounded function near p, and 0 < β < 1 is a fixed constant.

◮ Let p1, · · · , pk be k given points, with corresponding weights β1, · · · , βk ,
0 < βj < 1. We consider metrics g(z) with conic singularities at pj with weight
βj whose Ricci current is in c1(M). This is equivalent to

∫
M\β

Ric(g) = χ(M)−
k∑

j=1

βj ≡ χ(M, β).

We shall also normalize metrics so that
∫
M
g(z) = 2.

◮ A metric g(z) with conic singularities on (M, β) is said to be Kähler-Einstein if

Ric(g) =
1

2
χ(M, β)g(z) on M \ β

◮ It is said to be a soliton if there exists a holomorphic vector field V vanishing at
p1, · · · , pk so that

Ric(g) =
1

2
χ(M, β)g(z) + LV g(z) on M \ β

where LV denotes the Lie derivative with respect to V .



Classification of conic singularities on a Riemann surface
We consider a compact Riemann surface (M, β) with conic singularities

β =
∑k

j=1 βj [pj ], 0 < βj < 1. Recall that its Euler characteristic is defined by
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β =
∑k

j=1 βj [pj ], 0 < βj < 1. Recall that its Euler characteristic is defined by

χ(M, β) = χ(M) −
∑k

j=1 βj .

◮ When χ(M, β) ≤ 0, there exists a unique Kähler-Einstein metric with conic
singularities at β.

◮ Thus the difficult case is when χ(M, β) ≥ 0, or equivalently,

M = S2, and

k∑
j=1

βj < 2.

The situation in this last case has been described as follows by Troyanov (see also Luo
and Tian):

◮ k = 1: there exists a unique soliton (“tear drop”)

◮ k = 2, β1 = β2: there exists a unique Kähler-Einstein metric (“football”)

◮ k = 2, β1 6= β2: there exists a unique soliton

◮ k ≥ 3: there exists a unique Kähler-Einstein metric if and only if

2maxβj <
k∑

j=1

βj .

This last condition is now known as Troyanov’s condition.
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The Kähler-Ricci flow with conic singularities

Theorem 3 (P., J. Song, J. Sturm, X. Wang) Let (S2, β) be the sphere, and consider
initial metrics of the form

g0(z) = eu0(z)
k∏

j=1

(
1 + |z |2
|z − pj |2

)βj gFS (z)

where gFS (z) is the Fubini-Study metric on S2, and u0(z) is a smooth function on S2.
We also assume that g0(z) has been normalized to have area 2.
Then the Kähler-Ricci flow

ġ(z , t) = −Ric(g(z , t)) +
1

2
χ(S2, β)g(z , t) on S2 \ β, g(z , 0) = g0(z)

admits a unique solution for all time t ∈ [0,∞), satisfying

g(z , t) = eu(z,t)
∏k

j=1(
1+|z|2

|z−pj |
2 )

βj gFS (z), with

u ∈ L∞(S2), u ∈ C∞(S2 \ β).

Furthermore, the scalar curvature R(g(z , t)) as well as its derivatives ∆kR, ∇∆kR are
all bounded on S2 \ β.
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χ(S2, β)g(z , t) on S2 \ β, g(z , 0) = g0(z)

admits a unique solution for all time t ∈ [0,∞), satisfying

g(z , t) = eu(z,t)
∏k

j=1(
1+|z|2

|z−pj |
2 )

βj gFS (z), with

u ∈ L∞(S2), u ∈ C∞(S2 \ β).

Furthermore, the scalar curvature R(g(z , t)) as well as its derivatives ∆kR, ∇∆kR are
all bounded on S2 \ β.

◮ The long-time existence of the Kähler-Ricci flow with conic singularities had
been established before by H. Yin and Mazzeo, Rubinstein, and Sesum, for
different classes of initial data and functions.

◮ Yin’s results are for classes defined by the special Schauder spaces that he
introduced for conic singularities. Mazzeo, Rubinstein, and Sesum’s results are
for classes of polyhomogeneous metrics.
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∑k

j=1 βj < 2 or 2maxjβj =
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(c) (S2, β) is unstable if
∑k

j=1 βj < 2 or 2maxjβj >
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j=1 βj .

Theorem 4 (P., J. Song, J. Sturm, and X. Wang) Consider the Kähler-Ricci flow on
(S2, β) with initial data g0(z) as described in Theorem 3. To be specific, assume that
βk is the largest weight.
(a) If (S2, β) is stable, then the Kähler-Ricci flow converges in C∞(S2 \ β) to the
unique Kähler-Einstein metric on (S2, β).
(b) If (S2, β) is semistable, then the Kähler-Ricci flow converges in the
Gromov-Hausdorff sense to the Kähler-Einstein metric on (S2, β∞), where

β∞ = βk [p∞] + βk [q∞].

(c) If (S2, β) is unstable, then the Kähler-Ricci flow converges in the
Gromov-Hausdorff sense to the soliton on (S2, β∞), where

β∞ = βk [p∞] + (

k−1∑
j=1

βj )[q∞].

In both cases (b) and (c), the points p1, · · · , pk−1 converge in Gromov-Hausdorff
distance to the point q∞, while the point pk converges to the point p∞.
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and Sesum for their classes of metrics with conic singularities.

◮ We note that the sphere S2 with marked points p1, · · · , pk has a complex
structure that varies with the points p1, · · · , pk . In particular, in the semistable
and unstable cases, where the limiting space is the sphere with only 2 marked
points p∞ and q∞, we have the phenomenon of the complex structure jumping
in the limit.

◮ At any finite time, the conic singularities are the same as at the original time.
The reason that the jumping can occur in the limit is because
Gromov-Hausdorff convergence allows a reparametrization at each finite time,
and the reparametrizations may not converge.

◮ In this, the situation turns out then to be very similar to the Yang-Mills flow,
with reparametrizations playing the role of gauge transformations, and the
complex structure of the bundle also jumping in the limit.

◮ The proof of Theorems 3 and 4 requires several ingredients. The long-time
existence is proved by approximating the initial data and the flow by smooth
metrics with curvature uniformly bounded from below. The convergence requires
an extension to this setting of Perelman’s functionals, the compactness results
of Cheeger and Colding for manifolds with Ricci curvature bounded from below,
and the partial C0 estimate of Donaldson and Sun. A key step is to show that
the limiting manifold is the sphere with a finite number of conic singularities.
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Motivation and history

◮ Superstring theory is at the present time the only candidate for a unified theory
of all physical interactions, including quantum gravity. But it requires 10
space-time dimensions. To reconcile this with our experience, it is suggested
that this 10-dimensional space time is of the form of M3,1 × X , where M3,1 is
Minkowski 4-dimensional space, and X is a small 6-dimensional space.



Non-Kähler geometry and Strominger systems

Motivation and history

◮ Superstring theory is at the present time the only candidate for a unified theory
of all physical interactions, including quantum gravity. But it requires 10
space-time dimensions. To reconcile this with our experience, it is suggested
that this 10-dimensional space time is of the form of M3,1 × X , where M3,1 is
Minkowski 4-dimensional space, and X is a small 6-dimensional space.

◮ The effective theory on M3,1 depends on what X is. The consistency
constraints of superstrings, together with the requirement that the effective
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Witten to propose that X should be a Calabi-Yau manifold, that is, a compact
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space-time dimensions. To reconcile this with our experience, it is suggested
that this 10-dimensional space time is of the form of M3,1 × X , where M3,1 is
Minkowski 4-dimensional space, and X is a small 6-dimensional space.

◮ The effective theory on M3,1 depends on what X is. The consistency
constraints of superstrings, together with the requirement that the effective
theory be N = 1 supersymmetric, have led Candelas, Horowitz, Strominger, and
Witten to propose that X should be a Calabi-Yau manifold, that is, a compact
3-dimensional complex manifold which is Ricci-flat,

Rj̄k = 0.

◮ It was noted by Strominger that the ansatz introduced by Candelas, Horowitz,
Strominger, and Witten can be relaxed to metrics with torsion. The Strominger
system is a system of equations obtained by Strominger by allowing metrics with
torsion for compactifications of the heterotic string still admitting
supersymmetry. As such, they generalize the Ricci-flat condition above, and also
incorporate a Hermitian-Einstein condition for an associated holomorphic vector
bundle.



The Strominger system

The Strominger system is a system of equations for a compact, 3-dimensional complex
manifold X , equipped with a no-where vanishing holomorphic 3-form Ω, and a
holomorphic vector bundle E → X . The equations are for a Hermitian metric ω on X ,
and a Hermitian metric Hᾱβ on E , satisfying the following system

(1) F 2,0 = F 0,2 = 0, g j k̄Fk̄ j = 0

(2) i∂∂̄ω + α (Tr(Rm ∧ Rm)−Tr(F ∧ F )) = 0
(3) d†ω = i(∂̄ − ∂) ln ||Ω||ω

◮ Here F is the curvature of the bundle E with respect to the metric Hᾱβ ,
F = −∂̄(H−1∂H). F is viewed as a (1, 1)-form, valued in End(E). Similarly, the
Riemann curvature tensor Rm is viewed as a (1, 1)-form, valued in
End(T 1,0(X )).

◮ The expression ||Ω||ω is defined by ||Ω||2ω = |Ω|2ω−3.

◮ α > 0 is a parameter, called the string tension.

◮ It was pointed out by Jun Li and Yau that the third equation can be replaced by
(3’)

d(||Ω||ωω2) = 0

which is a variation of the condition that ω be “balanced”.

◮ The condition (2) shows clearly that, in general, ω is not Kähler.



A geometric construction of Goldstein and Prokushkin

Goldstein and Prokushkin have shown how to obtain a certain class of Calabi-Yau
3-folds which are toxic vibrations over a K3 surface. More precisely, let (S, ωS ) be a
K3 surface with Ricci flat Kähler metric ωS . Then to any pair κ1, κ2 ∈ H2(S,Z) of
anti-self-dual (1, 1)-forms on S, Goldstein and Prokushkin can associate a toric
vibration π : X → S, with nowhere vanishing holomorphic 3-form given by
Ω = θ ∧ π∗(ΩS ), for a (1, 0)-form θ. Then the form

ω0 = π∗(ωS ) + iθ ∧ θ̄

is a balanced Hermitian metric on X , i.e. dω2
0 = 0.
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A special solution of Fu and Yau

Fu and Yau found a solution of the Strominger system with X given by the
Goldstein-Prokushkin construction, and the following ansatz for the metric on X ,

ωu = π∗(euωS ) + iθ ∧ θ̄

where u is a function on S. This reduces the Strominger system to a two-dimensional
Monge-Ampère equation with gradient terms,

i∂∂̄(eu − fe−u) ∧ ω + αi∂∂̄u ∧ i∂∂̄u + µ = 0

where f ≥ 0 is a known function, and µ is a (2, 2)-form with average 0.



Explicitly, the above equation can be rewritten as

det g ′
k̄ j

det gk̄ j
= (eu + fe−u)2 − 2α(eu − αfe−u)|∇u|2 − 4α2e−u < ∇u,∇f > +2α2e−u∆f − 2αµ

where the Hermitian form g ′
k̄ j

is defined by

g ′
k̄ j

= (eu + fe−u)gk̄ j + 4α uk̄ j > 0

It is then natural to impose the ellipticity condition g ′
k̄ j
> 0.
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Theorem 5 (Fu and Yau) Consider the above complex Monge-Ampère equation in
dimension dim S = 2 with the above ellipticity condition. Then there exists a solution
u ∈ C∞(S) satisfying the above ellipticity condition. In particular, we obtain in this
way a solution of the Strominger system with X a toric fibration over the K3 surface S.
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◮ The C0 estimate is by Moser iteration, for both lower and upper bounds.
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Theorem 5 (Fu and Yau) Consider the above complex Monge-Ampère equation in
dimension dim S = 2 with the above ellipticity condition. Then there exists a solution
u ∈ C∞(S) satisfying the above ellipticity condition. In particular, we obtain in this
way a solution of the Strominger system with X a toric fibration over the K3 surface S.

◮ The C0 estimate is by Moser iteration, for both lower and upper bounds.

◮ A new, particularly difficult step is to show that, for ||e−u||L4 = A sufficiently
small, the quantity det g ′

k̄ j
/det gk̄ j is bounded from below, away from 0. Thus

the equation remains non-degenerate.



A generalization to n-dimensions of the Fu-Yau equation

As an n-dimensional analogue of the equation which they solved in dimension 2, Fu
and Yau proposed the study of the following complex Hessian equation

i∂∂̄(eu − fe−u) ∧ ωn−1 + αi∂∂̄u ∧ i∂∂̄u ∧ ωn−2 + µ = 0

under the following ellipticity condition

ω′ ≡ (eu + fe−u)ω + 2nαi∂∂̄u > 0
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Theorem 6 (P., S. Picard, X. Zhang) Assume that u ∈ C4(X ) is a solution of the
above equation satisfying the above ellipticity condition. Then we have the following a
priori estimates:
(a) Let ||e−u||

L4(n−1) = A. Then if A is sufficiently small, we have inf e−u ≤ C0A and

sup eu ≤ C1A
−1, for constants C0,C1 depending only on ω, f , and µ.

(b) We have ||∇u||C0 ≤ C .
(c) Assume that for any 0 < κ < 1, there is an A so that σ2(ω′) ≥ κ. Then there
exists a constant C > 0 so that C−1ω < ω′ < Cω.
(d) Assume that ||u||C2 ≤ C . Then there exists a constant C ′ so that ||u||C2,α ≤ C ′.
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Theorem 6 (P., S. Picard, X. Zhang) Assume that u ∈ C4(X ) is a solution of the
above equation satisfying the above ellipticity condition. Then we have the following a
priori estimates:
(a) Let ||e−u||

L4(n−1) = A. Then if A is sufficiently small, we have inf e−u ≤ C0A and

sup eu ≤ C1A
−1, for constants C0,C1 depending only on ω, f , and µ.

(b) We have ||∇u||C0 ≤ C .
(c) Assume that for any 0 < κ < 1, there is an A so that σ2(ω′) ≥ κ. Then there
exists a constant C > 0 so that C−1ω < ω′ < Cω.
(d) Assume that ||u||C2 ≤ C . Then there exists a constant C ′ so that ||u||C2,α ≤ C ′.

◮ The estimate in (c) makes use of some new techniques introduced for real
Hessian equations by P. Guan, Ren, and Wang.

◮ The estimate in (d) follows from results of Tosatti, Yu Wang, B. Weinkove, and
X. Yang, which is itself built on earlier work of Yu Wang.

◮ Unlike in dimension 2, it is not known if the hypothesis in (c) holds.



C2 estimates for Hessian equations with gradients
Let (X , ω) be a compact Kähler manifold. Let χ(u, z) be a (1, 1)-form on X , and
consider the following complex Hessian equation, which is a more general equation
than the Fu-Yau equation,

(χ(z , u) + i∂∂̄u)k ∧ ωn−k = ψ(z , u,Du)ωn

where ψ(z , u, p) is a given positive function, and the solution u is required to be
χ-plurisubharmonic, i.e. ω′ = χ(z , u) + i∂∂̄u > 0.
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Theorem 7 (P., S. Picard, X. Zhang) Assume that u is a C4 solution of the above
equation which is χ-plurisubharmonic. Then there exists a constant C depending only
on ||u||C0 , ||Du||C0 , and the upper and lower bounds of ψ in the range limited by the
bounds on u and Du so that

||DD̄u||C0 ≤ C .
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where ψ(z , u, p) is a given positive function, and the solution u is required to be
χ-plurisubharmonic, i.e. ω′ = χ(z , u) + i∂∂̄u > 0.

Theorem 7 (P., S. Picard, X. Zhang) Assume that u is a C4 solution of the above
equation which is χ-plurisubharmonic. Then there exists a constant C depending only
on ||u||C0 , ||Du||C0 , and the upper and lower bounds of ψ in the range limited by the
bounds on u and Du so that

||DD̄u||C0 ≤ C .

◮ This estimate also requires an extension of a technique of Guan, Ren, and Wang.

◮ Actually, it holds under a weaker assumption that χ-plurisubharmonicity, namely
that ω′ be in the Γk+1 = {M; σ1(M) > 0, σ2(M) > 0, · · · , σk+1(M) > 0}. But
we expect that the optimal condition should be that ω′ be in the Γk cone, which
is an open problem.



A possible general approach: the Anomaly Flow



A possible general approach: the Anomaly Flow

If we already know the holomorphic vector bundle E → X in the Strominger system,
then the Donaldson-Uhlenbeck-Yau theorem determines the corresponding
Hermitian-Einstein metric Hᾱβ . The system reduces then to the problem of solving for
ω satisfying simultaneously the equation (2) (whose origin is a cancellation of anomaly
requirement), and the condition (3) of being balanced.
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Hermitian-Einstein metric Hᾱβ . The system reduces then to the problem of solving for
ω satisfying simultaneously the equation (2) (whose origin is a cancellation of anomaly
requirement), and the condition (3) of being balanced.

One possible strategy is to adopt a particular ansatz for ω that guarantees that it is
balanced, and then try to find a solution of (2) with that ansatz. For example, if ω0 is
balanced, then any metric ω of the form

ω2 = ω2
0 + i∂∂̄(uω̃)

with dω2
0 = 0 and ω̃ any (1, 1)-form, is automatically balanced, and we can then solve

for u. The drawback is that no particular ansatz seems more compelling than the
others, and the resulting equations all seem very complicated and unnatural.
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then the Donaldson-Uhlenbeck-Yau theorem determines the corresponding
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One possible strategy is to adopt a particular ansatz for ω that guarantees that it is
balanced, and then try to find a solution of (2) with that ansatz. For example, if ω0 is
balanced, then any metric ω of the form

ω2 = ω2
0 + i∂∂̄(uω̃)

with dω2
0 = 0 and ω̃ any (1, 1)-form, is automatically balanced, and we can then solve

for u. The drawback is that no particular ansatz seems more compelling than the
others, and the resulting equations all seem very complicated and unnatural.

Because of this, it has been recently proposed by P., S. Picard, and X. Zhang to look
for solutions of the Strominger system as stationary points of the following flow of
positive (2, 2)-forms, called the “Anomaly flow”,

∂t(||Ω||ωω2) = i∂∂̄ω + α(Tr(Rm ∧ Rm)−Tr(F ∧ F ))

with ω = ω0 when t = 0, where ω0 is a balanced metric.



Theorem 8 (P., S. Picard, X. Zhang) The above flow of positive (2, 2)-forms defines a
vector field on the space of positive (1, 1)-forms.
(a) The corresponding flow preserves the balanced property of the metric ω(t).
(b) Clearly its stationary points are solutions of the Strominger system.
(c) The flow exists at least for a short time, assuming that the parameter α is small
enough.
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◮ It had been shown a while ago by Michelson that, given a positive
(n− 1, n− 1)-form Ψ, there is a unique positive (1, 1)-form ω so that ωn−1 = Ψ.
It turns out that ω can be expressed algebraically in Ψ. In fact, ⋆ω = Ψ.
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◮ The short-time existence follows from the weak parabolicity of the flow and the
Nash implicit function theorem.
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◮ An indication that the anomaly flow is natural is provided by the fact that it
preserves the ansatz of Fu Yau for toric fibrations over K3 surfaces. In fact, it
reduces to the following “parabolic Fu-Yau equation”,

u̇ = e−u(∆(eu − fe−u) + αdet uk̄ j + µ)

This equation may be interesting in its own right.
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◮ The short-time existence follows from the weak parabolicity of the flow and the
Nash implicit function theorem.

◮ An indication that the anomaly flow is natural is provided by the fact that it
preserves the ansatz of Fu Yau for toric fibrations over K3 surfaces. In fact, it
reduces to the following “parabolic Fu-Yau equation”,

u̇ = e−u(∆(eu − fe−u) + αdet uk̄ j + µ)

This equation may be interesting in its own right.

◮ More generally, the general theory of the anomaly flow, such as criteria for
long-time existence and convergence, is yet to be developed. It is also known
that the Fu-Yau ansatz for the Strominger equation is not always solvable, so
algebraic-geometric conditions for the existence of solutions would be very
important, if at all available.


