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1. Introduction

1. Introduction

Let P(x ,Dx) be a second order differential operator with C∞(Ω) real-valued coefficients
in a bounded domain Ω ⊂ Rd with smooth boundary ∂Ω. Consider a boundary problem{

P(x ,Dx)u = f in Ω,

B(x ,Dx)u = g on ∂Ω.
(1)

where B(x ,Dx) is a differential operator with order less or equal to 1 and the principal
symbol P(x , ξ) of P(x ,Dx) satisfies p(x , ξ) ≥ c0|ξ|2, c0 > 0. Assume that there exists
0 < ϕ < π such that the problem{

(P(x ,Dx)− z)u = f in Ω,

B(x ,Dx)u = g on ∂Ω.
(2)

is parameter elliptic for every z ∈ Γψ = {z : arg z = ψ}, 0 < |ψ| ≤ ϕ. Then following a
classical result of Agranovich-Vishik (1964) we can find a closed operator A with domain
D(A) ⊂ H2(Ω) related to the problem (1). Moreover, for every closed angle

Q = {z ∈ C : α ≤ arg z ≤ β} ⊂ {z ∈ C : | arg z | < ϕ} which does not contain R+ there
exists aQ > 0 such that the resolvent (A− z)−1 exists for z ∈ Q, |z | ≥ aQ . The operator
A has a discrete spectrum in C with eigenvalues with finite multiplicities.
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1. Introduction

Let λj be the eigenvalues of A ordered as

0 ≤ |λ1| ≤ ... ≤ |λm| ≤ ....

In general A is not a self-adjoint operator and the analysis of the asymptotics of the
counting function N(r) = #{|λj | ≤ r} as r → +∞ is a difficult problem. In particular, it
is quite complicated to obtain a Weyl formula for N(r) with a remainder and many
authors obtained results which yield only the leading term of the asymptotics. Even for
elliptic boundary problem the result of Agranovich-Vishik says that in the domain
0 < ψ < | arg z | < ϕ we can have only finite number eigenvalues but we could have a
bigger eigenvalues-free domains. As we will discuss in the talk , to have a better
remainder we must obtain a eigenvalues-free regions outside some
parabolic neighborhoods of the real axis and this is crucial for Weyl formula. To do this
a fine semi-classical analysis is applied.

In mathematical physics there are problems which are not related to parameter -elliptic
boundary problems. Therefore, the results of Agranovich-Vishik canot be applied and the
analysis of the eigenvalues-free regions must be studied by another approach.

Vesselin Petkov ( Université de Bordeaux ) Location and Weyl formula for the eigenvalues of non self-adjoint operators 4 / 38



1. Introduction

In this direction we have the following problems:

I. Prove the discreteness of the spectrum of A in some subset U ⊂ C.

II. Find eigenvalues-free domains having the form

| Im z | ≥ C±δ(|Re z |+ 1)δ± ,±Re z ≥ 0, 0 < δ± < 1.

III. Establish a Weyl asymptotic for the counting function

N(r) = crd +O(rd−κ), 0 < κ < 1.

In this talk we treat the problems (II) and (III). The problem (I) is easer to deal with and
the analysis of (II) in many cases implies that A− z is a Fredholm operator for z in a
suitable regions.
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2. Two spectral problems related to scattering theory

2. Two spectral problems related to scattering theory.

I. Let K ⊂ Rd , d ≥ 2, be a bounded non-empty domain and let Ω = Rd \ K̄ be
connected. We suppose that the boundary Γ of Ω is C∞. Consider the boundary problem

utt −∆xu = 0 in R× Ω,

∂νu − γ(x)ut = 0 on R× Γ,

u(0, x) = f0, ut(0, x) = f1

(3)

with initial data f = (f1, f2) ∈ H1(Ω)× L2(Ω) = H. Here ν is the unit outward normal to
Γ pointing into Ω and γ(x) ≥ 0 is a C∞ function on Γ. The solution of (3) is given by
(u, ut) = V (t)f = etG f , t ≥ 0, where V (t) is a contraction semi-group in H The
spectrum of G in Re z < 0 is formed by isolated eigenvalues with finite multiplicity, while
the continuous spectrum of G coincides with iR. Next if Gf = λf with f = (f1, f2) 6= 0,
we get {

(∆− λ2)f1 = 0 in Ω,

∂ν f1 − λγf1 = 0 on Γ.
(4)
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2. Two spectral problems related to scattering theory

Notice that if Gf = λf with Reλ < 0, f 6= 0, then (u(t, x), ut(t, x)) = V (t)f = eλt f (x)
is a solution of (1) with exponentially decreasing global energy. Such solutions are called
asymptotically disappearing and they perturb the inverse scattering problems. Recently
it was proved that if we have a least one eigenvalue λ of G with Reλ < 0, then the wave
operators W± are not complete, that is Ran W− 6= Ran W+. Hence we canot define the
scattering operator S related to (3) by S = W−1

+ W−. We may define S by another
evolution operator.

For dissipative boundary problems the S(z0) may have a non trivial kernel for some
z0, Im z0 > 0. In this case for odd dimensions Lax and Phillips (1973) proved that iz0 is
an eigenvalue of G . Consequently, the analysis of the location of the eigenvalues of G is
important for the inverse scattering problems.
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2. Two spectral problems related to scattering theory

Now we will discuss another important spectral problem for scattering leading to non
self-adjoint operator. The inhomogeneous medium in K is characterized by a smooth
function n(x) > 0 in K̄ , called contrast. The scattering problem is related to an
incident wave ui which satisfies (∆ + k2)ui = 0 in Rd and the total wave u = ui + us
which satisfies the transmission problem

∆u + k2u = 0 in Rd \ K̄ ,
∆u + k2n(x)u = in K ,

u+ = u− on Γ,(
∂u
∂ν

)+

=
(
∂u
∂ν

)−
on Γ.

, (5)

where f ± = limε→0 f (x ± εν) for x ∈ Γ. Here k > 0 and the outgoing scattering wave us
satisfies the outgoing Sommerfeld radiation condition

lim
r→+∞

r (1−d)/2
(∂us
∂r
− ikus

)
= 0

uniformly with respect to θ = x/r ∈ Sd−1, r = |x |.
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2. Two spectral problems related to scattering theory

If the incident wave has the form ui = e ik〈x,ω〉, ω ∈ Sd−1, then

us(rθ, k) = e ikr r−(d−1)/2
(
a(k, θ, ω) +O(

1

r
)
)
, r → +∞.

The function a(k, θ, ω) is called scattering amplitude and the far-field operator

F (k) : L2(Sd−1) −→ L2(Sd−1) has the form

(F (k)f )(θ) =

∫
Sd−1

a(k, θ, ω)f (ω)dω.

The inverse scattering problem of the reconstruction of K based on the linear sampling
method of Colton and Kress breaks down for frequencies k such that F (k) has a non
trivial kernel or co-kernel. If Ker F (k) 6= {0} for k ∈ R, then λ = k2 is such that the
problem 

∆u + k2u = 0 in K ,

∆v + k2n(x)v = 0 in K ,

u = v , ∂νu = ∂νv on Γ

(6)

has a non-trivial solution (u, v) 6= 0.
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2. Two spectral problems related to scattering theory

We consider a more general setting. A complex number λ ∈ C, λ 6= 0, is called
interior transmission eigenvalue (ITE) if the following problem has a non-trivial solution
(u, v) 6= 0: 

(∇c1(x)∇+ λn1(x)) u1 = 0 in K ,

(∇c2(x)∇+ λn2(x)) u2 = 0 in K ,

u1 = u2, c1∂νu1 = c2∂νu2 on Γ,

(7)

where ν denotes the exterior unit normal to Γ, cj(x), nj(x) ∈ C∞(K), j = 1, 2 are strictly
positive real-valued functions. For the analysis of (ITE) one imposes the condition

d(x) = c1(x)n1(x)− c2(x)n2(x) 6= 0, ∀x ∈ Γ. (8)

Partial cases: 1) isotropic case: c1(x) = c2(x), ∀x ∈ Γ, n1(x) 6= n2(x) ∀x ∈ Γ. 2)
anisotropic case: c1(x) 6= c2(x), ∀x ∈ Γ.

Vesselin Petkov ( Université de Bordeaux ) Location and Weyl formula for the eigenvalues of non self-adjoint operators 10 / 38



3. Eigenvalues-free regions

3. Eigenvalues-free regions

For the eigenvalues of G we examine two cases:
(A) : −1 < γ(x)− 1 < 0, ∀x ∈ Γ, (B) : γ(x)− 1 > 0, ∀x ∈ Γ.

Theorem 1

In the case (A) for every ε, 0 < ε� 1, the eigenvalues of G lie in the region

Λε = {z ∈ C : |Re z | ≤ Cε(| Im z |
1
2

+ε + 1), Re z < 0}.

In the case (B) for every ε, 0 < ε� 1, and every N ∈ N the eigenvalues of G lie in the
region Λε ∪RN , where

RN = {z ∈ C : | Im z | ≤ CN(|Re z |+ 1)−N , Re z < 0}.

In 1975 A. Majda proved that the eigenvalues of G lie in the region

case(A) : E1 = {z ∈ C : |Re z | ≤ C1(| Im z |3/4 + 1), Re z < 0},

case (B): σp(G) ⊂ E1 ∪ E2, where

E2 = {z ∈ C : | Im z | ≤ C2(|Re z |1/2 + 1), Re z < 0}.

The case γ(x) = 1, ∀x ∈ Γ is special because for the ball K = {x ∈ R3 : |x | ≤ 1} it was
shown by Majda that there are no eigenvalues of G .
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3. Eigenvalues-free regions
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Figure: Eigenvalues for 0 < γ(x) < 1
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3. Eigenvalues-free regions
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Figure: Eigenvalues for γ(x) > 1
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3. Eigenvalues-free regions

Theorem 2 (Vodev)

Assume (8) fulfilled together with the condition
c1(x) = c2(x), ∂νc1(x) = ∂νc2(x), ∀x ∈ Γ. Then for every 0 < ε� 1 the (ITE) lie the
region

Λ+ := {z ∈ C : Reλ ≥ 0, | Imλ| ≤ Cε(Reλ+ 1)3/4+ε}

and there are only a finite number (ITE) with Reλ < 0. If c1(x) 6= c2(x), ∀x ∈ Γ, the
(ITE) lie in

Λ′+ := {z ∈ C : Reλ ≥ 0, | Imλ| ≤ Cε(Reλ+ 1)4/5+ε}.

If (c1(x)− c2(x))d(x) > 0, ∀x ∈ Γ we have only a finite number (ITE) with Reλ < 0.
Moreover, if we assume that (c1(x)− c2(x))d(x) < 0, ∀x ∈ Γ, then for Reλ ≥ 0 the
(ITE) are in Λ+, while for Reλ < 0 and every N ≥ 1 there exists CN > 0 such that
(ITE) lie in

{λ ∈ C : | Imλ| ≤ CN(|Reλ|+ 1)−N , Reλ ≤ 0}.

A weaker result in a partial case (n1(x) = 1, n2(x) > 1 in K) with eigenvalues-free region

{z ∈ C : Reλ ≥ 0, | Imλ| ≥ C(Reλ+ 1)24/25}

has been obtained by Hitrik and al.
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3. Eigenvalues-free regions

Strictly convex obstacles

Theorem 3

Assume K strictly convex. In the case γ(x)− 1 > 0 for every N ∈ N outside the region
RN we have only finite number eigenvalues of the generator G. Moreover, there exists
ε0 > 0 such that all eigenvalues of G satisfy Reλj ≤ −ε0.

Theorem 4 (Vodev)

Assume K strictly convex and c1(x) = c2(x), ∂νc1(x) = ∂νc2(x), x ∈ Γ. Then for every
ε > 0 the (ITE) lie in the region

Λ+ := {z ∈ C : Reλ ≥ 0, | Imλ| ≤ Cε(Reλ+ 1)1/2+ε}

and there are only a finite number (ITE) with Reλ < 0.

The result of Theorem 4 is almost optimal since for the interval K = {|x | ≤ 1} the
eigenvalues lie in

Λ+ := {z ∈ C : Reλ ≥ 0, | Imλ| ≤ Cε(Reλ+ 1)1/2}
and this domain cannot be improved (Silvester, Ha and Stefanov). Theorem 3 is also

almost optimal, since in RN we have infinite number eigenvalues.
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4. Weyl formula for the eigenvalues

4. Weyl formula for the eigenvalues

To obtain a Weyl formula for the (ITE) introduce the coefficients

τj =
ωd

(2π)d

∫
K

(nj(x)

cj(x)

)d/2

dx , j = 1, 2,

where ωd is the volume of the unit ball in Rd .

In the anisotropic case c1(x) = 1, n1(x) = 1, c2(x) 6= 1, c2(x)n2(x) 6= 1, ∀x ∈ K̄ , the
asymptotics

N(r) ∼ (τ1 + τ2)rd , r → +∞. (9)

has been obtained by Lakshatanov and Vainberg (2012) under some additional
assumptions which guarantee that the boundary problem is parameter-elliptic. By the
results of Agranovich and Vishik outside every angle Dα = {z ∈ C : | arg z | ≤ α} we
have only a finite number of (ITE) and the following estimate holds

‖(z −A)−1‖ ≤ Cα|z |−1, z /∈ Dα, |z | � 1.

The authors applied directly a result of Boimanov-Kostjuchenko (1990) leading to (9).
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4. Weyl formula for the eigenvalues

The isotropic case c1(x) = c2(x) = 1, ∀x ∈ K̄ , n1(x) = 1, n2(x) 6= 1, ∀x ∈ Γ, is more
difficult since the corresponding operator A has domain

D(A) = {(u, v) ∈ L2(K)× L2(K) : ∆u ∈ L2(K), ∆v ∈ L2(K),

u − v = 0, ∂ν(u − v) = 0 on Γ}

Thus D(A) is not included in H2(K), and the problem is not parameter-elliptic. In this
case Robbiano (2013) obtained (9) by establishing the asymptotics∑

j

1

|λj |p + t
= αt−1+ d

2p + o(t−1+ d
2p ), t → +∞.

where p ∈ N is sufficiently large. An application of the Tauberian theorem of
Hardy-Littlewood yields the result. A similar result with leading term 3

√
3(τ1 + τ2) has

been obtained previously by Dimassi and Petkov (2013). By this argument one obtains a
very week estimate for the remainder which can be estimated by the principal term
divided by a logarithmic factor. To get better results, it is important to take into account
parabolic eigenvalues-free regions and to apply different techniques which are not based
on Tauberian theorems.

Vesselin Petkov ( Université de Bordeaux ) Location and Weyl formula for the eigenvalues of non self-adjoint operators 17 / 38



4. Weyl formula for the eigenvalues

Theorem 5 (-P., Vodev)

Under the condition (8), assume that there are no (ITE) in the region

{λ ∈ C : | Imλ| ≥ C(|Reλ|+ 1)1−κ
2 }, C > 0, 0 < κ ≤ 1. (10)

Then for every 0 < ε� 1 we have the asymptotics

N(r) = (τ1 + τ2)rd +Oε(rd−κ+ε), r → +∞. (11)

• For arbitrary obstacles and c1(x) = c2(x), ∂νc1(x) = ∂νc2(x), ∀x ∈ Γ, we can take

κ = 1
2
− ε and we obtain a remainder Oε(rd−1/2+ε).

• For strictly convex obstacles we may take κ = 1− ε, ∀ε. Consequently, we have in this

case a remainder Oε(r
d−1+ε).

• The optimal result should be to have a eigenvalues-free region with κ = 1 but it is an
open problem. This optimal result is known only for the interval K = {x ∈ R : |x | ≤ 1}.
Even for the ball |x | ≤ 1 in Rd , d ≥ 2 this is an open problem.
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5. Location of eigenvalues

5. Location of eigenvalues

The proofs of Theorems 1-4 are based on a fine semi-classical analysis. Introduce three
regions in {z ∈ C : Im z ≥ 0} :

Z1 = {z ∈ C : Re z = 1, h1/2−ε ≤ Im z ≤ 1, 0 < ε� 1},

Z2 = {z ∈ C : Re z = −1, | Im z | ≤ 1}, Z3 = {z ∈ C : |Re z | ≤ 1, Im z = 1}. Consider
the semi-classical problem{

(P(h)− z)u = 0 in Rd \ K , u ∈ H2(Rd \ K),

u = f on Γ,
(12)

where P(h) = − h2

n(x)
∇c(x)∇. Let Dν = −i∂ν , and let γ0 denote the trace on Γ. The

problem is to construct a semi-classical parametrix for the problem (12) in Z1 ∪ Z2 ∪ Z3

and to find an approximation for the semi-classical Dirichlet-to-Neumann map (DN)

N (z , h) : Hs
h(Γ) 3 f −→ γ0hDνu ∈ Hs−1

h (Γ)

for domains with arbitrary geometry. Here Hs
h(Γ) is the semi-classical Sobolev space with

norm ‖〈hD〉su‖L2(Γ).
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5. Location of eigenvalues

hδ

Z1

Z2

Z3

Figure: Contours Z1,Z2,Z3, δ = 1/2 − ε
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5. Location of eigenvalues

Strategy:

Step 1. Let u = (u1, u2) 6= 0 be an eigenfunction of G and let f = u1|Γ. Then

(−∆ + λ2)u1 = 0 and ∂νu1 − λγu1 = 0 on Γ. Set

λ =
i
√
z

h
, 0 < h� 1, z ∈ Z1 ∪ Z2 ∪ Z3.

We obtain the problem

(−h2∆− z)u1 = 0, in Rd \ K , N(z , h)f −
√
zγf = 0 on Γ.

Step 2. One search an approximation ‖N(z , h)− Oph(ρ)‖L2→L2 = O(hα) by a
h-pseudo-differential operator Oph(ρ) and we get

C(z , h)f := Oph(ρ)f −
√
zγf = O(hα)f , α > 0.

Here α depend on the zone Zj , j = 1.2, 3.

Step 3. We wish to invert the operator C(z , h) and deduce f = O(hβ)f , β > 0. This
implies f = 0 and hence u = 0. It is not sufficient to prove that C is invertible and we
must examine the norm ‖C−1C‖L2(Γ)→L2(Γ).
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5. Location of eigenvalues

We need to introduce some h−pseudo-differential operators.
We say that a(x , ξ; h) ∈ Sk,m

δ (Γ) if the following conditions are satisfied:

(i) for |ξ| ≥ L� 1 we have

|∂αx ∂γξ a(x , ξ; h)| ≤ Cα,γ,L(1 + |ξ|)m−|γ|, ∀α,∀γ.

(ii) for |ξ| ≤ L we have

|∂αx ∂γξ a(x , ξ; h)| ≤ Cα,γ,Lh
−k−δ(|α|+|γ|), ∀α,∀γ.

Then for a ∈ Sk,m
δ (Γ), we consider the operator

(
Oph(a)f

)
(x) = (2πh)−d+1

∫ ∫
e i〈x−y,ξ〉/ha(x , ξ)f (y)dydξ.

We have a calculus for the h− pseudodifferential operators with symbols in Sk,m
δ if

0 < δ < 1/2. In particular, if a ∈ S0,1
δ , b ∈ S0,−1

δ , one gets

‖Oph(a)Oph(b)− Oph(ab)‖L2 ≤ Ch1−2δ.
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5. Location of eigenvalues

Close to the boundary introduce geodesic normal coordinates (x ′, xd) in a neighborhood
of a point x0 ∈ Γ with xd = 0 on Γ(we take xd = dist(x , Γ)). For simplicity, we treat the
case c1 = c2 = 1. Then the symbol of −h2∆ becomes ξ2

d + r(x , ξ′) + hq(x , ξ′) and
r(x ′, 0, ξ′) = r0(x ′, ξ′) is the principal symbol of the Laplace-Beltrami operator −h2∆|Γ
on Γ. For z ∈ Z1 ∪ Z2 ∪ Z3, let ρ ∈ C∞(T ∗(Γ) be the root of the equation

ρ2 + r0(x ′, ξ′)− n(x ′, 0)z = 0

with Im ρ > 0. Then we have the following

Proposition 1 (Vodev, (2014))

Given 0 < ε� 1, there exists 0 < h0(ε)� 1 such that for z ∈ Z1 and 0 < h ≤ h0 we
have

‖γ0hDν − Oph(ρ+ hb)f ‖H1
s (Γ) ≤

Ch√
| Im z |

‖f ‖L2(Γ), (13)

where b ∈ S0,0
0 does not depend on z , h and the function n(x). Moreover, for z ∈ Z2 ∪ Z3

the above estimate holds with | Im z | replaced by 1.

Vodev established Prop. 1 for bounded domains K , but with some modification of the
proof the same result holds for Rd \ K .
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5. Location of eigenvalues

In the case (A) we have 0 < ε0 ≤ γ(x) ≤ 1− ε0, ε0 > 0, ∀x ∈ Γ. If u 6= 0. Set λ = i
√
z

h
.

The boundary condition implies

N(z , h)f − γ
√
zf = 0.

According to Prop. 1, for 1 ≥ Im z ≥ hδ, δ = 1/2− ε, we have

‖Oph(ρ)f − γ
√
zf ‖L2(Γ) ≤ C

h√
| Im z |

‖f ‖L2(Γ), (14)

where for z ∈ Z2 ∪ Z3 the estimate holds with | Im z | replaced by 1. Consider the symbol

c(x ′, ξ′, z) = ρ(x ′, ξ′, z)− γ
√
z

=
(1− γ2)z − r0(x ′, ξ′)

ρ(x ′, ξ′, z) + γ
√
z

.

We show that c(x ′, ξ′, z) ∈ S0,1
δ is elliptic, while | Im z |c−1 ∈ S0,−1

δ .
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5. Location of eigenvalues

Thus
‖Oph(c−1)g‖L2(Γ) ≤ C | Im z |−1‖g‖L2(Γ)

and we deduce

‖Oph(c−1)Oph(c)f ‖L2(Γ) ≤ C1
h

| Im z |3/2
‖f ‖L2(Γ).

A more fine analysis shows that

‖Oph(c−1)Oph(c)f − f ‖L2(Γ) ≤ C2
h

| Im z |2 ‖f ‖L2(Γ).

Consequently, one concludes that

‖f ‖L2(Γ) ≤ C3

(
h1−2δ + h1− 3

2
δ
)
‖f ‖L2(Γ). (15)

Since δ = 1/2− ε, 0 < ε� 1, from (15) we obtain f = 0 for 0 < h ≤ h0(ε) small
enough. The case γ(x)− 1 > 0 is more complicated and the argument, exploited in the
case γ(x)− 1 < 0, breaks down since for Re z = −1, Im z = 0 the symbol

[(1 + r0(x ′, ξ′)− γ(x ′)]

is not elliptic and it may vanish for some (x ′0, ξ
′
0).
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6. Idea of the proof of Theorem 5

6. Idea of the proof of Theorem 5

Step 1. We pass to a semi-classical setting. Set

Z = {z ∈ C; 1
2
≤ |Re z | ≤ 3, | Im z | ≤ 1} and consider for z ∈ Z and 0 < h� 1 the

operator
hT (z/h2) := c1N1(z , h)− c2N2(z , h),

where the DN-maps Nj(z , h) were defined in the previous section.

Let G
(j)
D , j = 1, 2, be the Dirichlet self-adjoint realization of the operator

Lj := −n−1
j ∇cj∇ in the space Hj = L2(K , nj(x)dx). Set H = H1 ⊕ H2. Let R(λ) be the

resolvent of the transmission boundary problem. We omit in the notation j = 1, 2 and
consider the operators

F (z , h) = N (z , h)− Ñ (z , h) = N (z , h)Oph(χ)− γ0Dν(h2GD − z)−1 c

n
Oph(p),

where χ(x ′, ξ′) = Φ(δ0r0(x ′, ξ′)) with Φ(σ) = 1 for |σ| ≤ 1 and Φ(σ) = 0 for |σ| ≥ 2,
while 0 < δ0 � 1 is small enough. Here Ñ (z , h) is the parametrix of the DN operator
N (z , h)Oph(1− χ) in the domain where r0(x ′, ξ′) > 1

δ0
and p is some symbol with

behavior O(hN). The number N will be taken large enough and it depends only on the
parametrix construction.
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The operator F (z , h) is meromorphic with values in trace class operators and we denote
by µj(F (z , h)) its characteristic eigenvalues.

Lemma 1

If z/h2 does not belong to spec GD , then for every integer 0 ≤ m ≤ N/4 we have

µj(F (z , h)) ≤ C

δ(z , h)

(
hj1/(d−1)

)−2m

, ∀j ,

where δ(z , h) := min{1,dist {z , spec h2GD}} > 0 and C > 0 depends on m and N but is
independent of z , h, j .

Let
T (λ) := c1γ0DνK1(λ)− c2γ0DνK2(λ),

where Kj(λ)f = u, and u is the solution of the problem{(
Lj − λ

)
u = 0 in K ,

u = f on Γ.
.
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Step 2.

Theorem 6

Assume that T (λ)−1 is a meromorphic function with residue of finite rank. Let δ ⊂ C be

a simple closed positively oriented curve which avoids the eigenvalues of G
(j)
D , j = 1, 2, as

well as the poles of T (λ)−1. Then we have the identity

trH (2πi)−1

∫
δ

R(λ)dλ =
2∑

j=1

trHj (2πi)−1

∫
δ

(G
(j)
D − λ)−1dλ

−trL2(Γ) (2πi)−1

∫
δ

T (λ)−1 dT (λ)

dλ
dλ. (16)

Let us mention that if R(λ) is an operator-valued meromorphic function with residue of
finite rank, the multiplicity of a pole λk ∈ C of R(λ) is defined by

mult (λk) = rank (2πi)−1

∫
|λ−λk |=ε

R(λ)dλ, 0 < ε� 1.

On the other hand, the rank above is equal to the trace and on the left hand side of (16)
we have the sum of the mutiplicities of the (ITE) lying in the domain ωδ ⊂ C bounded by

δ. Clearly, the terms with (G
(j)
D − λ)−1 yield the sum of eigenvalues of G

(j)
D in ωδ counted

with their multiplicities.
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Step3. It is possible to construct invertible, bounded operator E(z , h) : Hs
h(Γ)→ Hs+1

h (Γ)

with bounded inverse E(z , h)−1 : Hs
h(Γ)→ Hs−1

h (Γ), ∀s ∈ R so that

hT (z/h2) = E−1(z , h)(I +K(z , h)),

(hT (z/h2))−1 = (I +K(z , h))−1E(z , h)

with a trace class operator

K(z , h) = E(z , h)(c1F1(z , h)− c2F2(z , h)) + L(z , h).

Moreover, the operators E(z , h),E−1(z , h) are holomorphic with respect to z in Z , while
K(z , h) is memoromorphic operator-valued function in this region. Then

tr

∫
δ

T−1(z/h2)
d

dz
T (z/h2)dz = tr

∫
δ

(I +K(z , h))−1 d

dz
K(z , h)dz .
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Set gh(z) := det(I +K(z , h)) and denote by Mδ(h) the number of the poles {λk} of

R(λ) such that h2λk are in ωδ. Similarly, we denote by M
(j)
δ (h) the number of the

eigenvalues νk of G
(j)
D such that h2νk ∈ ωδ. Then using the well-known formula

tr (I +K(x , h))−1 ∂K(z , h)

∂z
=

∂

∂z
log det(I +K(z , h)),

we get from (16) the following

Lemma 2

Let δ ⊂ Z be closed positively oriented curve which avoid the eigenvalues of
h2G

(j)
D , j = 1, 2 as well as the poles of T (z/h2)−1. Then we have

Mδ(h) = M
(1)
δ (h) + M

(2)
δ (h) +

1

2πi

∫
δ

d

dz
log gh(z)dz . (17)

Observe that z0 ∈ Z \ spec (h2G
(1)
D )∪ spec (h2G

(2)
D ) is a zero of gh(z) if and only if z0 is a

pole of R(z/h2) and hence z0/h
2 is an (ITE).

Vesselin Petkov ( Université de Bordeaux ) Location and Weyl formula for the eigenvalues of non self-adjoint operators 30 / 38



6. Idea of the proof of Theorem 5

Step 4.

Lemma 3

Let 0 < κ ≤ 1 be as in Theorem 5. Then, given any 0 < ε� 1, the operator I +K(z , h)
is invertible on L2(Γ) for z ∈ Z , | Im z | ≥ hκ−ε and the inverse operator satisfies in this
region the estimate ∥∥∥(I +K(z , h))−1

∥∥∥
L2→L2

≤ Cεh
−`

with constants C > 0, ` > 0. For these values of z we have

log
1

|gh(z)| ≤ Cεh
1−d−ε, 0 < ε� 1. (18)

Moreover, for these z the function gh(z) is holomorphic and we have∣∣∣ d
dz

log gh(z)
∣∣∣ ≤ Cεh

1−d−2ε

| Im z | (19)

for z ∈W := {z ∈ C : 2/3 ≤ |Re z | ≤ 5/2, 2hκ−ε ≤ | Im z | ≤ 1/2}.
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Proposition 2

For every 0 < ε� 1 and A > 0, independent of h, we have the asymptotics

I (h) := ]
{
zk , zk/h

2 is (ITE) : 1− Ahκ−ε ≤ |Re zk | ≤ 2 + Ahκ−ε, |Im zk | ≤ hκ−ε
}

= (2d/2 − 1)(τ1 + τ2)h−d +Oε,A(h−d+κ−3ε). (20)

We will discuss only the case of (ITE) with Re zk > 0, since the case Re zk < 0 is similar
(and even simpler since the function gh(z) does not have poles in Re z < 0). Consider
the points

w±1 = 1− Ahκ−ε ± i

3
, w±2 = 2 + Ahκ−ε ± i

3
,

w̃±1 = 1− Ahκ−ε ± i3hκ−ε, w̃±2 = 2 + Ahκ−ε ± i3hκ−ε

and set

Θ1 =
{
z ∈ C : 1− 2(A + 1)hκ−ε ≤ Re z ≤ 1 + hκ−ε, |Im z | ≤ 4hκ−ε

}
,

Θ2 =
{
z ∈ C : 2− hκ−ε ≤ Re z ≤ 2 + 2(A + 1)hκ−ε, |Im z | ≤ 4hκ−ε

}
.

Vesselin Petkov ( Université de Bordeaux ) Location and Weyl formula for the eigenvalues of non self-adjoint operators 32 / 38



6. Idea of the proof of Theorem 5

Lemma 4

There exist positively oriented piecewise smooth curves γ̃1 ⊂ Θ1 and γ̃2 ⊂ Θ2, where γ̃1

connects the point w̃−1 with w̃+
1 , while γ̃2 connects the point w̃+

2 with w̃−2 , such that∣∣∣∣∣Im
∫
γ̃j

d

dz
log gh(z)dz

∣∣∣∣∣ ≤ Cεh
−d+κ−2ε, j = 1, 2. (21)

We apply Lemma 2 with a contour δ = γ1 ∪ γ3 ∪ γ2 ∪ γ4, where γ3 ⊂W is the segment
[w+

1 ,w
+
2 ] on the line passing through the points w+

1 and w+
2 , and γ4 ⊂W is the segment

[w−2 ,w
−
1 ] on the line passing through the points w−2 and w−1 . Next,

γ1 = [w−1 , w̃
−
1 ] ∪ γ̃1 ∪ [w̃+

1 ,w
+
1 ], γ2 = [w+

2 , w̃
+
2 ] ∪ γ̃2 ∪ [w̃−2 ,w

−
2 ] (see Figure). Since

γj ⊂W , |γj | = O(1), j = 3, 4, by (19) we have∣∣∣∣∣
∫
γj

d

dz
log gh(z)dz

∣∣∣∣∣ ≤
∫
γj

∣∣∣∣ ddz log gh(z)

∣∣∣∣ |dz |
≤ Cεh

−d+1−2ε

∫
γj

|dz | ≤ Cεh
−d+1−2ε, j = 3, 4

Applying (19) once more, we have∣∣∣∣∣
∫

[w±
j ,w̃

±
j ]

d

dz
log gh(z)dz

∣∣∣∣∣ ≤ Cεh
−d+1−2ε

∫ 1/2

3hκ−ε

dσ

σ
≤ Cεh

−d+1−3ε, j = 1, 2.
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Figure: contour δ
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Choose h =
√

2
r
, r � 1. The asymptotics (20) avec eigenvalues λk = zk r

2

2
yields

{λ ∈ C : λ is (ITE),
r 2

2
− Ar 2−κ+ε ≤ |Reλ| ≤ r 2 + Ar 2−κ+ε, |Imλ| ≤ r 2−κ+ε}

= (1− 2−d/2)(τ1 + τ2)rd +Oε,A(rd−κ+3ε),

where κ is described in Theorem 5. By applying this asymptotics with different A, we
conclude that the same asymptotics holds for the (ITE) in the region

{λ ∈ C :
r 2

2
≤ |λ| ≤ r 2, |Imλ| ≤ r 2(1−κ

2
+ε)}, 0 < ε� 1.

According to our assumption, there are no (ITE) in the region

{λ ∈ C : r2

2
≤ |λ| ≤ r 2, |Imλ| ≥ r 2(1−κ

2
+ε)} for every 0 < ε� 1, provided

r ≥ r0(ε)� 1. Thus we get the asymptotics

N(r)− N(r/
√

2) = (1− 2−d/2)(τ1 + τ2)rd +Oε(rd−κ+ε), r ≥ r0(ε),

for every 0 < ε� 1. This implies easily the result of Theorem 5.
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Concluding remarks.

1. The idea of Theorem 6 to use an integral of the resolvent R(λ) comes back from the
works of Sjöstrand and Vodev and Popov and Vodev for the counting function for the
resonances in a neighbourhood of R for the elasticity system and the transmission
problem, respectively.

2. To our best knowledge Theorem 5 is the first result where a precise relation between
the eigenvalues-free region and the order of the remainder in the Weyl formula was
established.

3. The argument of the proof of Theorem 5 works for more general boundary problems,
assuming that we have established an eigenvalues-free region. We compare the resolvent
of the boundary problem with that of the Dirichlet one and eigenvalues appear as the
points where some operator T (λ) is not invertible. In particular, we proved an analogue
of Theorem 6 for the eigenvalues of the generator G lying in ω ⊂⊂ {Re z < 0}.

4. The approach for the analysis of eigenvalues-free regions can be applied also for more
general problems including Maxwell system etc. The construction of a parametrix for
−h2∆− z works replacing −∆ by another second order elliptic operator P(x , hDx).
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Thank you !
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