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Outline of Talk

Purpose: We show that the scattering matrix, in the high energy limit, is a semiclassical
pseudodifferential operator and compute its principal symbol. Then we obtain the
asymptotics of the spectrum of the scattering matrix as a corollary. We consider rather
general scaler equations, as well as 2 and 3 dimensional Dirac operators.
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1. Single operator

1. Single operator

Hamilton Operators

◃ We consider a pair of m-th order partial differential operators H0 and H on
H = L2(Rd), defined by

H0 =
∑

|α|=m

bαD
α
x , H = H0 +

∑
|α|≤m−1

bα(x)D
α
x ,

where d,m ≥ 1, {bα}|α|=m are constants, {bα(x)}|α|≤m−1 are smooth functions, and
Dx = −i ∂

∂x .

◃ We write p0(ξ) =
∑

|α|=m bαξ
α, and we suppose the H0 is strongly elliptic, i.e.,

p0(ξ) ≥ c|ξ|m, ξ ∈ Rd, with some c > 0.

◃ We suppose {bα(x)}|α|≤m−1 are short-range, i.e., there is µ > 1 such that for any

β ∈ Zd
+, ∣∣∂βx bα(x)∣∣ ≤ Cβ⟨x⟩−µ−|β|, x ∈ Rd, |α| < m,

with some Cβ > 0.

◃ We also suppose H0 and H are formally symmetric differential operators. The H0 and
H are self-adjoint with D(H) = D(H0) = Hm(Rd).
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1. Single operator

Scattering Theory and Scattering Matrix

◃ Under these assumptions, the wave operators

W± = s-lim
t→±∞

eitHe−itH0

exists and are complete: Ran[W±] = Hc(H).

◃ We recall basic properties of the wave operators:

◃ It is easy to see H0 has absolutely continuous spectrum, and

HW± = W±H0.

This intertwining property implies Ran[W±] ⊂ Hac(H) in general.

◃ By the definition, if we set ψ = W±ψ±, ψ,ψ± ∈ H, then

e−itHψ ∼ e−itH0ψ± as t → ±∞

Thus, W± connects the time evolution e−itHψ with the free time evolution e−itH0ψ± as
t → ±∞. The completeness implies that for any ψ ∈ Hc(H) has this property with
some ψ± ∈ H.

◃ By the intertwining property, completeness also implies that Hc(H) is unitarily
equivalent to H, and the equivalences are given by W±.
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1. Single operator

◃ The scattering operator is defined by S = W∗
+W−, which connects the time evolution

at t = −∞ to that at t = +∞.

◃ The spectral representation of H0 is given by

F0 : L2(Rd) →
∫ ⊕

R+

L2(ΣE,mE)dE,

F0(φ)(E; ·) = Fφ(·)
∣∣
ΣE

∈ L2(ΣE,mE), E > 0,

where ΣE =
{
ξ ∈ Rd

∣∣ p0(ξ) = E
}
and dmE = dS/|dp0(ξ)|, F is the Fourier

transform.

◃ By the intertwining property: SH0 = H0S, S is decomposed to scattering matrices

Ŝ(E) : L2(ΣE,mE) → L2(ΣE,mE), E > 0.

◃ By a change of coordinate:

ξ ∈ ΣE 7→ E−1/mξ ∈ Σ1,

we may consider Ŝ(E) as an operator on L2(Σ1, dm1), and we write the transformed
operator by S(E) ∈ B(L2(Σ1),m1). (We recall p0(ξ) is homogeneous.)

◃ We investigate asymptotic properties of S(E) as E → +∞. In the following, we write
Σ1 = Σ for simplicity.
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1. Single operator

Semiclassical Reduction

◃ We set the semiclasical parameter by

h = E−1/m,

and we consider the semiclassical asymptotics as h → +0.

◃ We write

E−1H = p0(hDx) + hw(h, x, hDx), E−1H0 = p0(hDx).

where
pj(x, ξ) =

∑
|α|=m−j

bα(x)ξ
α, x, ξ ∈ Rd, j = 0, . . . ,m,

and

w(h, x, ξ) =
m∑
j=1

hj−1pj(x, ξ).

◃ We denote the velocity by

v(ξ) = dp0(ξ) =

(
∂p0

∂ξ1
(ξ), . . . ,

∂p0

∂ξd
(ξ)

)
.

We note, by virtue of the Euler formula: ξ · dp0(ξ) = mp0(ξ) and the ellipticity of
p0(ξ), v(ξ) ̸= 0 for ξ ̸= 0.
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1. Single operator

h-Pseudodifferential Calculus

◃ For ξ ∈ Σ, we can canonically identify T∗
ξΣ with the normal tangent space

v(ξ)⊥ =
{
x ∈ Rd

∣∣ x · v(ξ) = 0
}
, and we denote the cotangent bundle of Σ as

T∗Σ =
{
(x, ξ)

∣∣ ξ ∈ Σ, x ∈ v(ξ)⊥ ⊂ Rd}.
◃ For an h-dependent symbol a(h, x, ξ) ∈ C∞(T∗Σ), we quantize it by

Oph(a)f(ξ) = a(h,−hDξ, ξ)f(ξ)

= (2πh)−(d−1)

∫∫
e−i(ξ−η)·x/ha(h, x, η)f(η)dηdx, ξ ∈ Σ,

with f ∈ C∞
0 (Σ) in each local coordinate.

◃ If A = Oph(a), then we denote the symbol of A by a = Sym(A).

◃ For a weight function K(h, x, ξ) ∈ C∞(T∗Σ), we write a = a(h, x, ξ) ∈ S(K, g0)
(Hörmander’s notation) if and only if for any α, β ∈ Zd−1

+ ,∣∣∂αx ∂βξ a(h, x, ξ)∣∣ ≤ CαβK(h, x, ξ)⟨x⟩−|α|, (x, ξ) ∈ T∗Σ, h > 0

with some Cαβ > 0. Here g0 = ⟨x⟩−2dx2 + dξ2 denote a metric on T∗Σ.
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2. Main Theorems

2. Main Theorems

◃ We denote

ψ(h, x, ξ) =

∫ ∞

−∞
w(h, x + tv(ξ), ξ)dt, for ξ ∈ Σ, x ∈ v(ξ)⊥.

We note ψ ∈ S(⟨x⟩−µ+1, g0). Now we can state our main result.

Theorem 1: For sufficiently large E, S(E) is an h-pseudodifferential operator on Σ (with
h = E−1/m), and the principal symbol is given by e−iψ(h,x,ξ), i.e.,

Sym(S(E)) = e−iψ(h,x,ξ) + r(h, x, ξ)

with r ∈ S(h⟨x⟩−µ, g).

◃ If we write

ψ1(x, ξ) =

∫ ∞

−∞
p1(x + tv(ξ), ξ)dt, ξ ∈ Σ, x ∈ v(ξ)⊥,

then ψ − ψ1 ∈ S(h⟨x⟩−µ+1, g), and hence we have the following corollary. Note that
ψ1(x, ξ) is an h-independent symbol.

Corollary 2: Sym(S(E)) = e−iψ1(x,ξ) + r′(h, x, ξ) with r′ ∈ S(h⟨x⟩−µ+1, g).
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2. Main Theorems

◃ We then consider the case when many terms in w(h, x, ξ) vanishes.

Theorem 3: Let k ∈ {2, . . . ,m} and suppose pj(x, ξ) = 0 for j = 1, . . . , k − 1. We
write

ψk(x, ξ) =

∫ ∞

−∞
pk(x + tv(ξ), ξ)dt, ξ ∈ Σ, x ∈ v(ξ)⊥,

and ϕk(h, x, ξ) =
∑m

j=k h
j−kψj(x, ξ). Then, for sufficiently large E,

Sym(S(E)) = e−ihk−1ϕk(h,x,ξ) + rk(h, x, ξ), rk ∈ S(hk⟨x⟩−µ, g),

and
Sym(S(E)) = e−ihk−1ψk(x,ξ) + r′k(h, x, ξ), r′k ∈ S(hk⟨x⟩−µ+1, g),

when k < m.
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2. Main Theorems

Schrödinger operators

◃ A typical example is the Schrödinger operator. Let

H =
1

2
(Dx − A(x))2 + V(x) on L2(Rd), d ≥ 1,

where A(x) = (A1(x), . . . ,Ad(x)) is the vector potential and V(x) is the scalar
potential. We suppose A(x) and V(x) are smooth and satisfy our short-range
assumption. In this case, Σ is the unit sphere, v(ξ) = ξ, and h = E−1/2.

◃ By Corollary 2, we learn the symbol of the scattering matrix is given by

exp
(
i

∫ ∞

−∞
ξ · A(x + tξ)dt

)
+ r1(h, x, ξ), r1 ∈ S(h⟨x⟩−µ+1, g0).

◃ If A = 0, then we learn that the symbol of S(E) is

exp
(
−ih

∫ ∞

−∞
V(x + tξ)dt

)
+ r2(h, x, ξ), r2 ∈ S(h2⟨x⟩−µ, g0)

by Theorem 3.

◃ Similar representation was obtained for Schrödinger operators by Yafaev (2003).
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2. Main Theorems

Spectral consequences

Theorem 4: Let ψ1 ̸≡ 0. Then for any φ ∈ C(T) that vanishes in a neighbourhood of
the point 1, one has

lim
h→0

hd−1Tr[φ(S(E))] = (2π)−d+1

∫
T∗Σ

φ(eiψ1(x,ξ))dx ∧ dξ,

where dx ∧ dξ is the standard volume form of T∗Σ.

◃ Theorems 4 can be stated as weak convergence of the eigenvalue counting measure for
S(E). The proof uses functional calculus of h-pseudodifferential operators (see, e.g.,
[Dimassi-Sjöstrand]).

◃ This is a variation of the Weyl asymptotics. Roughly, this implies, if J b T,
J ∩ {1} = ∅, then

lim
h→0

hd−1#{e.v.’s of S(E) ∈ J} = (2π)−d+1Vol({(x, ξ)| exp(iψ1(x, ξ)) ∈ J}).

◃ If we apply this to Schrödinger operators we recover results of Bulger and Pushnitski
(2013).
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2. Main Theorems

◃ Next, consider the case discussed in Theorem 3, i.e., pj(x, ξ) = 0 for
j = 1, . . . , k − 1, k ≥ 2. Then we have

∥S(E) − I∥ = O(hk−1), h → 0, (k ≥ 2)

and so the spectrum of S(E) consists of eigenvalues located on the arc of length
O(hk−1) around 1. In particular, the operator Im[log S(E)] is well-defined for all
sufficiently large E.

Theorem 5: Assume the hypothesis of Theorem 3. We denote

B(h) = −h−k+1Im[log S(E)], h = E−1/m.

Then for any φ ∈ C(R) that vanishes in a neighbourhood of 0, one has

lim
h→0

hd−1Tr[φ(B(h))] = (2π)−d+1

∫
T∗Σ

φ(ψk(x, ξ))dx ∧ dξ.

◃ If we apply this to Schrödinger operators we recover results of Bulger and Pushnitski
(2012).

S. Nakamura (Univ. Tokyo) High Energy Asymptotics of Scattering Matrices December 15, 2015 12 / 22



3. 2 dimensional Dirac operator

3. 2 dimensional Dirac operator

Definiton of 2 dimensional Dirac operators (see, e.g., [Thaller])

◃ We set H = L2(R2;C2) ∼= L2(R2) ⊕ L2(R2), and we define

H0 =
∑
j=1,2

σjDj, Dj = −i∂xj , σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
on H.

◃ Let V(x), A(x) = (A1(x),A2(x)) be a real-valued functions and a vector valued

function on R2, respectively, and we define

H = H0 + W, W = V(x) +
∑
j=1,2

Aj(x)σj on H.

◃ We suppose V and A are smooth, and there is µ > 1 such that for any α ∈ Z2
+,∣∣∂αx V(x)

∣∣ + ∣∣∂αx A(x)
∣∣ ≤ Cα⟨x⟩−µ−|α|, x ∈ R2,

with some Cα > 0. H0 and H are self-adjoint with D(H) = D(H0) = H1(R2;C2).

◃ Then it is well-known that wave operators W±(H,H0) exist and they are complete:
Ran[W±(H,H0)] = Hac(H). In particular, the scattering operator
S(H,H0) = W+(H,H0)

∗W−(H,H0) is unitary.
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3. 2 dimensional Dirac operator

Construction of a spectral representation of H0

◃ We note the symbol of H0 is

P0(ξ) =

(
0 ξ1 − iξ2

ξ1 + iξ2 0

)
, ξ = (ξ1, ξ2) ∈ R2.

This matrix is diagonalized by the matrix

u0(ξ) =
1√
2

(
ζ 1
−1 ζ∗

)
, ζ =

ξ1 + iξ2
|ξ| ,

and we have

u0(ξ)P0(ξ)u0(ξ)
∗ =

(
|ξ| 0
0 −|ξ|

)
.

◃ We denote by π± : C2 → C the standard projections, π+(x1, x2) = x1,

π−(x1, x2) = x2, (x1, x2) ∈ C2. Denoting the Fourier transform by F , we have

u0(ξ)FH0F∗u0(ξ)
∗ =

(
|ξ| 0
0 −|ξ|

)
.

◃ A spectral representation of H0 is given by

F(E)φ(ξ) = |E|1/2π±[u0(ξ)Fφ](|E|ξ), ±E > 0, ξ ∈ S1,

for φ ∈ L2,s(R2;C2), s > 1/2. F(·) is extended to a unitary equivalence:

F(·) : H ∼=
∫ ⊕

R
L2(S1)dE.
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3. 2 dimensional Dirac operator

◃ Using F(·), S(H,H0) is decomposed to the scattering matrix S(E) :
L2(S1) → L2(S1), E ∈ R \ {0}.
◃ We set h = |E|−1 as our semiclassical parameter, and we write

w±(x, ξ) = V(x) ± ξ · A(x), x, ξ ∈ Rd;

ψ±(x, ξ) =

∫ ∞

−∞
w±(x + tξ, ξ)dt, ξ ∈ S1, x ∈ T∗

ξS1 ∼= ξ⊥.

Theorem 6: For sufficiently large |E|, S(E) is an h-pseudodifferential operator with the

symbol in S(1, g0), and the principal symbol is given by e−iψ±(x,ξ), i.e., for ±E ≫ 0,

Sym(S(E)) = e−iψ±(x,ξ) + r±(x, ξ), r± ∈ S(h⟨x⟩−µ, g0).

Theorem 7 Let φ ∈ C∞(T) be a function that vanishes in a neighborhood of 1 ∈ T.
Then

lim
E→±∞

2π

|E|Tr[φ(S(E))] =
∫
T∗S1

φ
(
exp(−iψ±(x, ξ))

)
dx dξ.
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4. 3 dimensional Dirac operators

4. 3 dimensional Dirac operators

Definition of 3 dimensional Dirac operator

◃ We set H = L2(R3;C4). The free Dirac operator is defined by

H0 =
3∑

j=1

αjDj + mα0,

where m ≥ 0 and α0, . . . , α3 are 4 × 4 Dirac matrices. The Dirac matrices satisfy the
anti-commutation relations:

αjαk + αkαj = 2δjk1114, j, k = 0, . . . , 3,

where 1114 stands for the 4 × 4 identity matrix. We also write 1112 for the 2 × 2 identity
matrix.

◃ We choose the Dirac matrices in a standard way:

α0 =

(
1112 0
0 −1112

)
, αj =

(
0 σσσj

σσσj 0

)
, j = 1, 2, 3,

where {σσσj}3
j=1 are the Pauli matrices:

σσσ1 =

(
0 1
1 0

)
, σσσ2 =

(
0 −i
i 0

)
, σσσ3 =

(
1 0
0 −1

)
.
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4. 3 dimensional Dirac operators

◃ The perturbed Dirac operator is defined by

H = H0 + W,

where W has the form

W(x) = V(x)1114 +
3∑

j=1

αjAj(x).

◃ The scaler potential V(x) and the vector potential A(x) = (A1(x),A2(x),A3(x)) are

real-valued smooth functions, and we suppose the short-range condition: there is µ > 1
such that for any α ∈ Z3

+,

∣∣∂αx V(x)
∣∣ + 3∑

j=1

∣∣∂αx Aj(x)
∣∣ ≤ Cα⟨x⟩−µ−|α|, x ∈ R3,

with some Cα > 0.

◃ Under these assumptions, it is well-known that H is self-adjoint with
D(H) = D(H0) = H1(R3;C4), and that the wave operators

W±(H,H0) = s-lim
t→±∞

eitHe−itH0

exist and they are complete: Ran[W±(H,H0)] = Hac(H). Hence, in particular, the
scattering operator S(H,H0) = W+(H,H0)

∗W−(H,H0) is unitary on H.
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4. 3 dimensional Dirac operators

Diagonalization of H0

◃ We denote the symbol of H0 by

h0(ξ) =
3∑

j=1

ξjαj + mα0, ξ ∈ R3.

The Hermitian matrix h0(ξ) has eigenvalues

±ν(ξ) = ±
√

|ξ|2 + m2,

and the multiplicities of {±ν(ξ)} are two for ξ ̸= 0. We set

u0(ξ) = a+(ξ)1114 + a−(ξ)
3∑

j=1

ξ̂jα0αj, a±(ξ) =
1√
2

(
1 ± m

ν(ξ)

)1/2

.

u0(ξ) is a unitary matrix, and

u0(ξ)h0(ξ)u0(ξ)
∗ = ν(ξ)α0.

◃ By setting U0 = u0(Dx), we have

U0H0U
∗
0 =

(
ν(Dx)1112 0

0 −ν(ξ)1112

)
,

and hence σ(H0) = (−∞,−m] ∪ [m,∞) and the spectrum is absolutely continous.
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4. 3 dimensional Dirac operators

◃ Let π± : C4 → C2 be the projections:

π+(x) = (x1, x2), π−(x) = (x3, x4), for x = (x1, x2, x3, x4) ∈ C4.

Then we have
π±U0H0U

∗
0π

∗
± = ±ν(ξ)1112.

We note the energy surface of ±ν(ξ) at E is given by

ΣE =
{
ξ
∣∣ ±ν(ξ) = E

}
= ρ S2, ±E > m, ρ =

√
E2 − m2.

◃ A spectral representation of H0 is given by

F(E)φ(ξ) = |E|1/2ρ1/2π±[FU0φ](ρξ), ξ ∈ S2,±E > m,

for φ ∈ Hs(R3;C4), s > 1/2, and F(E)φ ∈ L2(S2;C2).

◃ We note F(E)H0φ = EF(E)φ, and {F(·)} is extended to a unitary equivalence

F(·) : H ∼=
∫ ⊕

σ(H0)

L2(S2;C2)dE.

◃ Then the scattering operator S(H,H0) is decomposed to the scattering matrices

S(E) : L2(S2;C2) → L2(S2;C2), |E| > m.

S. Nakamura (Univ. Tokyo) High Energy Asymptotics of Scattering Matrices December 15, 2015 19 / 22



4. 3 dimensional Dirac operators

◃ We set h = |E|−1, and we consider S(E) as E → ±∞. We define

W±(x, ξ) = V(x) ± ξ · A(x), x, ξ ∈ R3,

and

ψ±(x, ξ) =

∫ ∞

−∞
W±(x + tξ, ξ)dt, x, ξ ∈ R3, ξ ̸= 0.

◃ We also define

ψ±
1 (h, x, ξ) = ψ±(x̃, ξ̃), ξ ∈ S2, x ∈ T∗

ξS2 ∼= ξ⊥,

where
x̃ = (1 − h2m2)−1/2x, ξ̃ = (1 − h2m2)1/2ξ.

Theorem 8: For sufficiently large |E|, S(E) is a 2 × 2-matrix valued h-pseudodifferential

operator on S2 with a symbol in S(1, g0). The principal symbol is given by e−iψ
±
1 (h,x,ξ)1112

for ±E ≫ m, i.e.,

Sym[S(E)] = e−iψ
±
1 (h,x,ξ)1112 + r±(h, x, ξ), r± ∈ S(h⟨x⟩−µ, g0).

◃ We note ψ±
1 (h, x, ξ) → ψ±(x, ξ) as h → 0, and we have

Theorem 9: Let φ ∈ C∞(T) be a function that vanishes in a neighborhood of 1 ∈ T.
Then

lim
E→±∞

2π

|E|Tr[φ(S(E)] = 2

∫
T∗S2

φ
(
e−iψ±(x,ξ))dxdξ.
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5. Ideas of the proof

5. Ideas of the proof

1. Isozaki-Kitada parametrices

We construct h-pseudodifferential operators A± = a±(h, x, hDx) such that

HhA± − A±Hh
0 ∼ 0

as h → 0, |x| → ∞ when ±x · v(ξ) ≥ −1 + ε, where Hh = hmH, H0 = hmH0. We
constuct a± of the form:

a±(h, x, ξ) ∼ eiψ±(h,x,ξ)(1 + a±1 (h, x, ξ) + a±2 (h, x, ξ) + · · · ),

where

ψ±(h, x, ξ) =

∫ ±∞

0

w(h, x + tv(ξ), ξ)dt,

and a±j ∈ S(hj⟨x⟩−µ+1−j), j = 1, 2, . . . .

2. Microlocal resolvent estimate (in the semiclassical form)

We characterize the frequency sets of the distribution kernels of (Hh − λ∓ i0)−1 (in the
Fourier space).
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5. Ideas of the proof

3. Representation formula of the scattering matrix

We use a variation of representation formulas of S-matrix due to Isozaki-Kitada (1986),
Yafaev (2003).

4. Microlocal diagonalization of Hh

For Dirac operators, we use an approximate (block) diagonalization of the matrix-valued
h-pseudodifferential operator Hh, which is a generalization of Taylor (1975), and
Helffer-Sjöstrand (1990).

Remark: We may generalize our results to more general systems, but we need to assume
technical assumptions to carry out this block diagonalization argument, and probably it
would be technically complicated.
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