Estimates on the molecular dynamics for the predissociation process

Philippe BRIET & André MARTINEZ

$$\varphi \mapsto e^{-itP}\varphi$$

where P stands for the Schrödinger operator of the system, and $\varphi \in L^2$ $(\|\varphi\|_{L^2} = 1)$ is the initial state.

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\varphi \mapsto e^{-itP}\varphi$$

where P stands for the Schrödinger operator of the system, and $\varphi \in L^2$ $(\|\varphi\|_{L^2} = 1)$ is the initial state. (Here Planck constant = 1.)

・ 何 ト ・ ヨ ト ・ ヨ ト ・

$$\varphi \mapsto e^{-itP}\varphi$$

where P stands for the Schrödinger operator of the system, and $\varphi \in L^2$ $(\|\varphi\|_{L^2} = 1)$ is the initial state. (Here Planck constant = 1.)

Survival amplitude of φ : $A(t, \varphi) := \langle e^{-itP} \varphi, \varphi \rangle_{L^2}$

- * @ * * 注 * * 注 * … 注

$$\varphi \mapsto e^{-itP}\varphi$$

where P stands for the Schrödinger operator of the system, and $\varphi \in L^2$ $(\|\varphi\|_{L^2} = 1)$ is the initial state. (Here Planck constant = 1.)

Survival amplitude of φ : $A(t, \varphi) := \langle e^{-itP} \varphi, \varphi \rangle_{L^2}$

Survival probability of φ : $S(t, \varphi) := |A(t, \varphi)|^2$

(本間) (本語) (本語) (二語

$$\varphi \mapsto e^{-itP}\varphi$$

where P stands for the Schrödinger operator of the system, and $\varphi \in L^2$ $(\|\varphi\|_{L^2} = 1)$ is the initial state. (Here Planck constant = 1.)

Survival amplitude of φ : $A(t, \varphi) := \langle e^{-itP} \varphi, \varphi \rangle_{L^2}$

Survival probability of φ : $S(t, \varphi) := |A(t, \varphi)|^2$

In particular, if $P\varphi = E\varphi$, then $A(t,\varphi) = e^{-itE}$ and $S(t,\varphi) = 1$ (boundstate)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Question: How about resonances?

æ

イロト イヨト イヨト イヨト

Question: How about resonances?

 ψ out-going (**not** in L^2) solution to

$$P\psi = \rho\psi$$

э

A B F A B F

< 一型

Question: How about resonances?

 ψ out-going (**not** in L^2) solution to

$$P\psi =
ho\psi$$
 $(
ho = a - ib \in \mathbb{C} \setminus \mathbb{R})$

э

A B F A B F

< 一型

Question: How about resonances?

 ψ out-going (**not** in L^2) solution to

$$P\psi = \rho\psi$$
 $(
ho = a - ib \in \mathbb{C} \setminus \mathbb{R})$

One expects the existence of $\varphi \in L^2$ such that

$$S(t,\varphi) \sim |e^{-it
ho}| = e^{-tb}$$

Question: How about resonances?

 ψ out-going (**not** in L^2) solution to

$$P\psi = \rho\psi$$
 $(\rho = a - ib \in \mathbb{C} \setminus \mathbb{R})$

One expects the existence of $\varphi \in L^2$ such that

$$S(t, arphi) \sim |e^{-it
ho}| = e^{-tb}$$
 (metastable state).

Question: How about resonances?

 ψ out-going (**not** in L^2) solution to

$$P\psi = \rho\psi$$
 $(\rho = a - ib \in \mathbb{C} \setminus \mathbb{R})$

One expects the existence of $\varphi \in L^2$ such that

$$S(t, arphi) \sim |e^{-it
ho}| = e^{-tb}$$
 (metastable state).

 b^{-1} is called the life-time of the state.

Question: How about resonances?

 ψ out-going (**not** in L^2) solution to

$$P\psi = \rho\psi$$
 $(\rho = a - ib \in \mathbb{C} \setminus \mathbb{R})$

One expects the existence of $\varphi \in L^2$ such that

$$S(t, arphi) \sim |e^{-it
ho}| = e^{-tb}$$
 (metastable state).

 b^{-1} is called the life-time of the state.

But difficult to justify rigorously in general (resonant state $\notin L^2$).

Some results :

3

イロト イヨト イヨト イヨト

<u>Some results</u> : Herbst (1980) Hunziker (1990) Costin-Soffer (2001) Cattaneo-Graf-Hunziker (2006) Jensen-Nenciu (2006)...

<u>Some results</u> : Herbst (1980) Hunziker (1990) Costin-Soffer (2001) Cattaneo-Graf-Hunziker (2006) Jensen-Nenciu (2006)...

These are results on perturbations $H_{\kappa} = H_0 + \kappa V$ of an operator H_0 with imbedded eigenvalue λ_0

<u>Some results</u> : Herbst (1980) Hunziker (1990) Costin-Soffer (2001) Cattaneo-Graf-Hunziker (2006) Jensen-Nenciu (2006)...

These are results on perturbations $H_{\kappa} = H_0 + \kappa V$ of an operator H_0 with imbedded eigenvalue λ_0 (\Rightarrow general scalar Schrödinger operator is excluded).

<u>Some results</u> : Herbst (1980) Hunziker (1990) Costin-Soffer (2001) Cattaneo-Graf-Hunziker (2006) Jensen-Nenciu (2006)...

These are results on perturbations $H_{\kappa} = H_0 + \kappa V$ of an operator H_0 with imbedded eigenvalue λ_0 (\Rightarrow general scalar Schrödinger operator is excluded).

 $|\kappa| << 1
ightarrow$ resonance λ_κ close to λ_0

<u>Some results</u> : Herbst (1980) Hunziker (1990) Costin-Soffer (2001) Cattaneo-Graf-Hunziker (2006) Jensen-Nenciu (2006)...

These are results on perturbations $H_{\kappa} = H_0 + \kappa V$ of an operator H_0 with imbedded eigenvalue λ_0 (\Rightarrow general scalar Schrödinger operator is excluded).

 $|\kappa| << 1 \rightarrow$ resonance λ_{κ} close to λ_0

With $H_0 = \lambda_0 \varphi_0$:

$$A(t,\varphi_0) = e^{-it\lambda_{\kappa}} \|\varphi_0\|^2 + \mathcal{O}(\kappa^2)$$

<u>Some results</u> : Herbst (1980) Hunziker (1990) Costin-Soffer (2001) Cattaneo-Graf-Hunziker (2006) Jensen-Nenciu (2006)...

These are results on perturbations $H_{\kappa} = H_0 + \kappa V$ of an operator H_0 with imbedded eigenvalue λ_0 (\Rightarrow general scalar Schrödinger operator is excluded).

 $|\kappa|<<1
ightarrow$ resonance λ_{κ} close to λ_{0} With $H_{0}=\lambda_{0}arphi_{0}$:

$$A(t,\varphi_0) = e^{-it\lambda_{\kappa}} \|\varphi_0\|^2 + \mathcal{O}(\kappa^2)$$

With a cut-off g around λ_0 :

$$\langle e^{-it\mathcal{H}_\kappa}g(\mathcal{H}_\kappa)arphi_0,arphi_0
angle=e^{-it\lambda_\kappa}a(\kappa)+\mathcal{O}(\kappa^2(1+t)^{-
u})$$

 $(a(\kappa) = \|\varphi_0\|^2 + \mathcal{O}(k^2)$ and $\nu \ge 0$ depends on the regularity of g).

イロト イポト イヨト イヨト 二日

<u>Some results</u> : Herbst (1980) Hunziker (1990) Costin-Soffer (2001) Cattaneo-Graf-Hunziker (2006) Jensen-Nenciu (2006)...

These are results on perturbations $H_{\kappa} = H_0 + \kappa V$ of an operator H_0 with imbedded eigenvalue λ_0 (\Rightarrow general scalar Schrödinger operator is excluded).

 $|\kappa|<<1
ightarrow$ resonance λ_{κ} close to λ_{0} With $H_{0}=\lambda_{0}arphi_{0}$:

$$A(t,\varphi_0) = e^{-it\lambda_{\kappa}} \|\varphi_0\|^2 + \mathcal{O}(\kappa^2)$$

With a cut-off g around λ_0 :

$$\langle e^{-it\mathcal{H}_{\kappa}}g(\mathcal{H}_{\kappa})arphi_{0},arphi_{0}
angle = e^{-it\lambda_{\kappa}}a(\kappa) + \mathcal{O}(\kappa^{2}(1+t)^{-
u})$$

 $(a(\kappa) = \|\varphi_0\|^2 + \mathcal{O}(k^2)$ and $\nu \ge 0$ depends on the regularity of g). [Also: Semiclassical result by Nakamura-Stefanov-Zworski (2003): Evolution operator (scalar case), with remainder $\mathcal{O}(h^{\infty}_{+})$.]

æ

< 一型

Answer:

æ

- 4 週 ト - 4 三 ト - 4 三 ト

<u>Answer</u>: Molecular dynamics in the Born-Oppenheimer approximation.

 \rightarrow *N* × *N* semiclassical Hamiltonian:

 $H = -h^2 \Delta I_N + M_N(x) +$ lower order terms

 \rightarrow *N* × *N* semiclassical Hamiltonian:

 $H = -h^2 \Delta I_N + M_N(x) +$ lower order terms

where $N \ge 1$ depends on the range of energy,

・ロン ・聞と ・ヨン ・ヨン … ヨ

 \rightarrow *N* × *N* semiclassical Hamiltonian:

$$H = -h^2 \Delta I_N + M_N(x) +$$
 lower order terms

where $N \ge 1$ depends on the range of energy, $h := (\text{nuclear mass})^{-\frac{1}{2}} << 1$,

 \rightarrow *N* × *N* semiclassical Hamiltonian:

$$H = -h^2 \Delta I_N + M_N(x) +$$
 lower order terms

where $N \ge 1$ depends on the range of energy, $h := (\text{nuclear mass})^{-\frac{1}{2}} << 1,$ $x \in \mathbb{R}^n$ position of nuclei,

<u>Answer</u>: Molecular dynamics in the Born-Oppenheimer approximation.

 \rightarrow *N* × *N* semiclassical Hamiltonian:

$$H = -h^2 \Delta I_N + M_N(x) +$$
 lower order terms

where $N \ge 1$ depends on the range of energy, $h := (\text{nuclear mass})^{-\frac{1}{2}} << 1$, $x \in \mathbb{R}^n$ position of nuclei, eigenvalues of $M_N(x)$ are electronic levels.

Molecular predissociation

æ

- 本間 と 本語 と 本語 と

N = 2,

æ

イロト イヨト イヨト イヨト

$$N = 2, \quad H = H_0 + h\mathcal{W}(x, hD_x) = \begin{pmatrix} P_1 & 0\\ 0 & P_2 \end{pmatrix} + h\mathcal{W}(x, hD_x)$$
(1)

æ

- 本間 と 本語 と 本語 と

$$N = 2, \quad H = H_0 + h\mathcal{W}(x, hD_x) = \begin{pmatrix} P_1 & 0\\ 0 & P_2 \end{pmatrix} + h\mathcal{W}(x, hD_x)$$
(1)
$$P_j := -h^2\Delta + V_j(x) \quad (j = 1, 2),$$

æ

- 本間 と 本語 と 本語 と

$$N = 2, \quad H = H_0 + h\mathcal{W}(x, hD_x) = \begin{pmatrix} P_1 & 0\\ 0 & P_2 \end{pmatrix} + h\mathcal{W}(x, hD_x) \quad (1)$$
$$P_j := -h^2 \Delta + V_j(x) \quad (j = 1, 2),$$
$$\mathcal{W}(x, hD_x) = \begin{pmatrix} 0 & W\\ W^* & 0 \end{pmatrix}$$

 $W = w(x, hD_x)$ first-order semiclassical pseudodifferential operators.

伺下 イヨト イヨト

Molecular predissociation

The two potentials:

æ

.∋...>

.⊒ . ►

In particular, near *E*, $H_0 = \begin{pmatrix} P_1 & 0 \\ 0 & P_2 \end{pmatrix}$ has embedded eigenvalues.
In particular, near *E*,
$$H_0 = \begin{pmatrix} P_1 & 0 \\ 0 & P_2 \end{pmatrix}$$
 has embedded eigenvalues.

Question: Can we obtain similar estimates for the evolution in this case?

< 一型

▶ < ∃ ▶ < ∃ ▶</p>

In particular, near *E*,
$$H_0 = \begin{pmatrix} P_1 & 0 \\ 0 & P_2 \end{pmatrix}$$
 has embedded eigenvalues.

Question: Can we obtain similar estimates for the evolution in this case?

Difficulty: Here, both $H_0 = H_0(x, hD_x)$ and the perturbation $h\mathcal{W}(x, hD_x)$ depend on the small parameter.

In particular, near *E*,
$$H_0 = \begin{pmatrix} P_1 & 0 \\ 0 & P_2 \end{pmatrix}$$
 has embedded eigenvalues.

Question: Can we obtain similar estimates for the evolution in this case?

Difficulty: Here, both $H_0 = H_0(x, hD_x)$ and the perturbation $h\mathcal{W}(x, hD_x)$ depend on the small parameter.

We fix E = 0.

・何ト ・ヨト ・ヨト

Assumption 1. The potentials V_1 and V_2 are smooth and bounded on \mathbb{R}^n , and satisfy,

 $\begin{array}{ll} The \ set \ U := \{V_1 \leq 0\} \ is \ bounded \ ; & (2) \\ \liminf_{|x| \to \infty} V_1 > 0; & (3) \\ V_2 \ has \ a \ strictly \ negative \ limit \ - \ \ ras \ |x| \to \infty; & (4) \\ V_2 > 0 \ on \ U. & (5) \end{array}$

Assumption 1. The potentials V_1 and V_2 are smooth and bounded on \mathbb{R}^n , and satisfy,

$$\begin{array}{ll} \mbox{The set } U := \{V_1 \leq 0\} \mbox{ is bounded }; & (2) \\ \mbox{liminf } V_1 > 0; & (3) \\ \mbox{V_2 has a strictly negative limit } -\Gamma \mbox{ as } |x| \rightarrow \infty; & (4) \\ \mbox{V_2 > 0 on U.} & (5) \end{array}$$

Assumption 2. The potentials V_1 and V_2 extend to bounded holomorphic functions near a complex sector of the form, $S_{R_0,\delta} := \{x \in \mathbb{C}^n ; |\text{Re } x| \ge R_0, |\text{Im } x| \le \delta |\text{Re } x|\}, \text{ with } R_0, \delta > 0.$ Moreover V_2 tends to its limit at ∞ in this sector and $\text{Re } V_1$ stays away from E = 0 in this sector. **Assumption 3.** The symbol $w(x,\xi)$ of W extends to a holomorphic functions in (x,ξ) near,

$$\widetilde{\mathcal{S}}_{\mathcal{R}_0,\delta} := \mathcal{S}_{\mathcal{R}_0,\delta} \times \{\xi \in \mathbb{C}^n ; |\mathrm{Im} \ \xi| \le \delta \langle \mathrm{Re} \ x \rangle \},\$$

and, for real x, w is a smooth function of x with values in the set of holomorphic functions of ξ near $\{|\text{Im } \xi| \leq \delta\}$. Moreover, we assume that, for any $\alpha \in \mathbb{N}^{2n}$, it satisfies

 $\partial^{\alpha} w(x,\xi) = \mathcal{O}(\langle \operatorname{Re} \xi \rangle)$ uniformly on $\widetilde{\mathcal{S}}_{\mathcal{R}_0,\delta} \cup (\mathbb{R}^n \times \{|\operatorname{Im} \xi| \le \delta\})$. (6)

Assumption [V] (Virial condition)

$$2V_2(x) + x\nabla V_2(x) < 0 \text{ on } \{V_2 \le 0\},\$$

or, more generally,

Assumption [NT]

E = 0 is a non-trapping energy for V_2 .

- A I I I A I I I I

Resonances

Philippe BRIET & André MARTINEZ Molecular dynamics for predissociation

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Resonances of H = eigenvalues of the complex distorted operator:

$$H_{ heta} := U_{ heta} H U_{ heta}^{-1} \qquad (heta > 0)$$

$$U_{ heta}\phi(x) := \det(I + i heta dF(x))^{\frac{1}{2}}\phi(x + i heta F(x)), \ F(x) \in C^{\infty}(\mathbb{R}^n, \mathbb{R}^n),$$

 $F(x) = 0 ext{ for } |x| \leq R_0, \ F(x) = x ext{ for } |x| >> 1.$

æ

(日) (周) (三) (三)

Resonances of H = eigenvalues of the complex distorted operator:

$$H_{ heta} := U_{ heta} H U_{ heta}^{-1} \qquad (heta > 0)$$

$$\begin{split} &U_{\theta}\phi(x) := \det(I + i\theta dF(x))^{\frac{1}{2}}\phi(x + i\theta F(x)), \ F(x) \in C^{\infty}(\mathbb{R}^n, \mathbb{R}^n), \\ &F(x) = 0 \ \text{for} \ |x| \leq R_0, \ F(x) = x \ \text{for} \ |x| >> 1. \end{split}$$

Anti-resonances = eigenvalues of $H_{-\theta}$ = conjugated of resonances

(4回) (4回) (4回)

Resonances

In our situation, [M. Klein, 1987] \Rightarrow near 0, the resonances are exponentially close to the eigenvalues of

$$\widetilde{H} := \left(egin{array}{cc} P_1 & 0 \ 0 & \widetilde{P}_2 \end{array}
ight) + h \mathcal{W}(x, h D_x) \ \widetilde{P}_2 := -h^2 \Delta + \widetilde{V}_2$$

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Let $I(h) \subset [-\varepsilon_0, \varepsilon_0]$, and assume there exists a(h) > 0 s.t.

$$h^2/a(h) \to 0$$
 $(h \to 0);$
 $\sigma(\widetilde{H}) \cap (I(h) + [-3a, 3a]) \setminus I(h) = \emptyset.$

æ

・ロト ・聞ト ・ ほト ・ ほト

Let $I(h) \subset [-\varepsilon_0, \varepsilon_0]$, and assume there exists a(h) > 0 s.t.

$$h^2/a(h) \to 0$$
 $(h \to 0);$
 $\sigma(\widetilde{H}) \cap (I(h) + [-3a, 3a]) \setminus I(h) = \emptyset.$

(ex: n = 1, non-degenerate point-wells, ...)

(4月) (4日) (4日)

Let $I(h) \subset [-\varepsilon_0, \varepsilon_0]$, and assume there exists a(h) > 0 s.t.

$$h^2/a(h) \to 0$$
 $(h \to 0);$
 $\sigma(\widetilde{H}) \cap (I(h) + [-3a, 3a]) \setminus I(h) = \emptyset.$

(ex: n = 1, non-degenerate point-wells, ...) Denote: • $\lambda_1, \ldots, \lambda_m$ = eigenvalues of P_1 in $\widetilde{I}(h) := I(h) + [-a, a]$;

個 と く ヨ と く ヨ と …

Let $I(h) \subset [-\varepsilon_0, \varepsilon_0]$, and assume there exists a(h) > 0 s.t.

$$h^2/a(h) \to 0$$
 $(h \to 0);$
 $\sigma(\widetilde{H}) \cap (I(h) + [-3a, 3a]) \setminus I(h) = \emptyset.$

(ex: n = 1, non-degenerate point-wells, ...) Denote:

- $\lambda_1, \ldots, \lambda_m$ = eigenvalues of P_1 in $\widetilde{I}(h) := I(h) + [-a, a];$
- u_1, \ldots, u_m orthonormal basis of corresponding eigenfunctions;

Let $I(h) \subset [-\varepsilon_0, \varepsilon_0]$, and assume there exists a(h) > 0 s.t.

$$h^2/a(h) \to 0$$
 $(h \to 0);$
 $\sigma(\widetilde{H}) \cap (I(h) + [-3a, 3a]) \setminus I(h) = \emptyset.$

(ex: n = 1, non-degenerate point-wells, ...) Denote:
λ₁,..., λ_m = eigenvalues of P₁ in *l*(h) := l(h) + [-a, a];

Let $I(h) \subset [-\varepsilon_0, \varepsilon_0]$, and assume there exists a(h) > 0 s.t.

$$h^2/a(h) \to 0$$
 $(h \to 0);$
 $\sigma(\widetilde{H}) \cap (I(h) + [-3a, 3a]) \setminus I(h) = \emptyset.$

(ex: n = 1, non-degenerate point-wells, ...) Denote:

- $\lambda_1, \ldots, \lambda_m$ = eigenvalues of P_1 in $\widetilde{I}(h) := I(h) + [-a, a];$
- u₁,..., u_m orthonormal basis of corresponding eigenfunctions;
 φ_j := (u_j 0), j = 1,..., m;

• ρ_1, \dots, ρ_m = resonances of H in $\Omega(h) := \tilde{I}(h) - i[0, \varepsilon_1]$ (0 < ε_1 << 1)

Let $I(h) \subset [-\varepsilon_0, \varepsilon_0]$, and assume there exists a(h) > 0 s.t.

$$h^2/a(h) \to 0$$
 $(h \to 0);$
 $\sigma(\widetilde{H}) \cap (I(h) + [-3a, 3a]) \setminus I(h) = \emptyset.$

(ex: n = 1, non-degenerate point-wells, ...) Denote:

- $\lambda_1, \ldots, \lambda_m$ = eigenvalues of P_1 in $\widetilde{I}(h) := I(h) + [-a, a];$

• ρ_1, \ldots, ρ_m = resonances of H in $\Omega(h) := \tilde{I}(h) - i[0, \varepsilon_1]$ ($0 < \varepsilon_1 << 1$) ($\Rightarrow \rho_j = \lambda_j + \mathcal{O}(h^2)$).

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ …

Let also $g \in L^\infty(\mathbb{R})$ and $\nu \ge 0$ such that,

æ

イロト イヨト イヨト イヨト

Let also $g \in L^\infty(\mathbb{R})$ and $\nu \ge 0$ such that,

• g is supported in I(h) + [-2a, 2a];

3

Let also $g \in L^\infty(\mathbb{R})$ and $\nu \ge 0$ such that,

• g is supported in
$$I(h) + [-2a, 2a]$$
;

•
$$g = 1$$
 in $\widetilde{I}(h) = I(h) + [-a, a];$

æ

イロト イヨト イヨト イヨト

Let also $g \in L^{\infty}(\mathbb{R})$ and $\nu \geq 0$ such that,

• For
$$k = 0, ..., \nu$$
, $g^{(k)} \in L^{\infty}$;

æ

- < A > < B > < B >

Let also $g \in L^{\infty}(\mathbb{R})$ and $\nu \geq 0$ such that,

• g is supported in
$$I(h) + [-2a, 2a];$$

• $g = 1$ in $\tilde{I}(h) = I(h) + [-a, a];$
• For $k = 0, ..., \nu, g^{(k)} \in L^{\infty};$
• $g^{(k)} = \mathcal{O}(a^{-k})$ uniformly $(k = 0, ..., \nu).$

æ

イロン イ理と イヨン イヨン

Theorem

For $t \geq 0$ and $\varphi = \sum_j \alpha_j \phi_j$, one has

$$\langle e^{-itH}g(H)\varphi,\varphi\rangle = \sum_{j=1}^m e^{-it\rho_j}b_j(\varphi,h) + r(t,\varphi,h)$$

Theorem

For $t \geq 0$ and $\varphi = \sum_j \alpha_j \phi_j$, one has

$$\langle e^{-itH}g(H)\varphi,\varphi\rangle = \sum_{j=1}^m e^{-it\rho_j}b_j(\varphi,h) + r(t,\varphi,h)$$

•
$$r(t,\varphi,h) = r_0(t,\varphi,h) + \mathcal{O}(h^4 a^{-2} \min_{0 \le k \le \nu} a^{-k} (1+t)^{-k} \|\varphi\|^2),$$

Theorem

For $t \geq 0$ and $\varphi = \sum_j \alpha_j \phi_j$, one has

$$\langle e^{-itH}g(H)\varphi,\varphi\rangle = \sum_{j=1}^m e^{-it\rho_j}b_j(\varphi,h) + r(t,\varphi,h)$$

•
$$r(t,\varphi,h) = r_0(t,\varphi,h) + \mathcal{O}\left(h^4 a^{-2} \min_{0 \le k \le \nu} a^{-k} (1+t)^{-k} \|\varphi\|^2\right),$$

 $r_0(t,\varphi,h) := h^2 \sum_{j,k} \langle e^{-itP_2} g(P_2) R_2(\lambda_j + i0) W^* u_j, R_2(\lambda_k - i0) W^* u_k \rangle,$

Theorem

For $t \geq 0$ and $\varphi = \sum_j \alpha_j \phi_j$, one has

$$\langle e^{-itH}g(H)arphi,arphi
angle = \sum_{j=1}^m e^{-it
ho_j}b_j(arphi,h) + r(t,arphi,h)$$

•
$$r(t,\varphi,h) = r_0(t,\varphi,h) + \mathcal{O}(h^4 a^{-2} \min_{0 \le k \le \nu} a^{-k} (1+t)^{-k} \|\varphi\|^2),$$

 $r_0(t,\varphi,h) := h^2 \sum_{j,k} \langle e^{-itP_2} g(P_2) R_2(\lambda_j + i0) W^* u_j, R_2(\lambda_k - i0) W^* u_k \rangle,$
 $r_0(t,\varphi,h) = \mathcal{O}(h^2 a^{-1} \min_{0 \le k \le \nu} a^{-k} (1+t)^{-k} \|\varphi\|^2);$

Theorem

For $t \geq 0$ and $\varphi = \sum_j \alpha_j \phi_j$, one has

$$\langle e^{-itH}g(H)arphi,arphi
angle = \sum_{j=1}^m e^{-it
ho_j}b_j(arphi,h) + r(t,arphi,h)$$

•
$$r(t, \varphi, h) = r_0(t, \varphi, h) + \mathcal{O}(h^4 a^{-2} \min_{0 \le k \le \nu} a^{-k} (1+t)^{-k} \|\varphi\|^2),$$

 $r_0(t, \varphi, h) := h^2 \sum_{j,k} \langle e^{-itP_2} g(P_2) R_2(\lambda_j + i0) W^* u_j, R_2(\lambda_k - i0) W^* u_k \rangle,$
 $r_0(t, \varphi, h) = \mathcal{O}(h^2 a^{-1} \min_{0 \le k \le \nu} a^{-k} (1+t)^{-k} \|\varphi\|^2);$
• $b_j(\varphi; h) = residue \ at \ \rho_i \ of \ z \mapsto \langle (z - H)^{-1} \varphi, \varphi \rangle$

Theorem

For $t \geq 0$ and $\varphi = \sum_j \alpha_j \phi_j$, one has

$$\langle e^{-itH}g(H)arphi,arphi
angle = \sum_{j=1}^m e^{-it
ho_j}b_j(arphi,h) + r(t,arphi,h)$$

•
$$r(t, \varphi, h) = r_0(t, \varphi, h) + \mathcal{O}\left(h^4 a^{-2} \min_{0 \le k \le \nu} a^{-k} (1+t)^{-k} \|\varphi\|^2\right),$$

 $r_0(t, \varphi, h) := h^2 \sum_{j,k} \langle e^{-itP_2} g(P_2) R_2(\lambda_j + i0) W^* u_j, R_2(\lambda_k - i0) W^* u_k \rangle,$
 $r_0(t, \varphi, h) = \mathcal{O}\left(h^2 a^{-1} \min_{0 \le k \le \nu} a^{-k} (1+t)^{-k} \|\varphi\|^2\right);$
• $b_j(\varphi; h) = residue \ at \ \rho_j \ of \ z \mapsto \langle (z - H)^{-1} \varphi, \varphi \rangle$
 $= residue \ at \ \rho_j \ of \ z \mapsto \langle (z - M(z))^{-1} \alpha, \alpha \rangle,$
 $M(z) = m \times m \ matrix = \operatorname{diag}(\lambda_1, \dots, \lambda_m) + \mathcal{O}(h^2);$

Theorem

For $t \geq 0$ and $\varphi = \sum_j \alpha_j \phi_j$, one has

$$\langle e^{-itH}g(H)arphi,arphi
angle = \sum_{j=1}^m e^{-it
ho_j}b_j(arphi,h) + r(t,arphi,h)$$

•
$$r(t,\varphi,h) = r_0(t,\varphi,h) + \mathcal{O}\left(h^4 a^{-2} \min_{0 \le k \le \nu} a^{-k} (1+t)^{-k} \|\varphi\|^2\right),$$

 $r_0(t,\varphi,h) := h^2 \sum_{j,k} \langle e^{-itP_2} g(P_2) R_2(\lambda_j + i0) W^* u_j, R_2(\lambda_k - i0) W^* u_k \rangle,$
 $r_0(t,\varphi,h) = \mathcal{O}\left(h^2 a^{-1} \min_{0 \le k \le \nu} a^{-k} (1+t)^{-k} \|\varphi\|^2\right);$
• $b_j(\varphi;h) = residue \ at \ \rho_j \ of \ z \mapsto \langle (z-H)^{-1}\varphi,\varphi \rangle$
 $= residue \ at \ \rho_j \ of \ z \mapsto \langle (z-M(z))^{-1}\alpha,\alpha \rangle,$
 $M(z) = m \times m \ matrix = \operatorname{diag}(\lambda_1, \dots, \lambda_m) + \mathcal{O}(h^2);$
• $\sum_{j=1}^m b_j(\varphi,h) = \|\varphi\|^2 + \mathcal{O}\left(h^2 + \frac{h^4}{a^2}\right) \|\varphi\|^2.$

Remarks

э.

・ロト ・四ト ・ヨト ・ヨト

Remarks

• If
$$m = 1$$
, then $b_1 = \|\varphi\|^2 + \mathcal{O}\left(h^2 + \frac{h^4}{a^2}\right)\|\varphi\|^2$;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

Remarks

• If
$$m = 1$$
, then $b_1 = \|\varphi\|^2 + \mathcal{O}\left(h^2 + \frac{h^4}{a^2}\right)\|\varphi\|^2$;

• If $\lambda_1, \ldots, \lambda_m$ are simple with a gap $\widetilde{a} >> h^2$, then $b_j(\varphi, h) = |\langle \varphi, \phi_j \rangle|^2 + \mathcal{O}\left((h^2 + h^4(a\widetilde{a})^{-1}) \|\varphi\|^2\right);$

3

イロト イポト イヨト イヨト

Remarks

• If
$$m=1$$
, then $b_1=\|arphi\|^2+\mathcal{O}\left(h^2+rac{h^4}{a^2}
ight)\|arphi\|^2;$

- If $\lambda_1, \ldots, \lambda_m$ are simple with a gap $\widetilde{a} >> h^2$, then $b_j(\varphi, h) = |\langle \varphi, \phi_j \rangle|^2 + \mathcal{O}\left((h^2 + h^4(a\widetilde{a})^{-1}) \|\varphi\|^2\right);$
- E.g. for m = 1, $r(t, \varphi, h)$ remains negligible up to $t \sim |\text{Im}\rho_1|^{-1} \ln(a/h^2)$ (\Rightarrow much beyond the life-time);

(4 回) (4 \Pi) (4 \Pi)

Remarks

• If
$$m=1$$
, then $b_1=\|arphi\|^2+\mathcal{O}\left(h^2+rac{h^4}{a^2}
ight)\|arphi\|^2;$

- If $\lambda_1, \ldots, \lambda_m$ are simple with a gap $\widetilde{a} >> h^2$, then $b_j(\varphi, h) = |\langle \varphi, \phi_j \rangle|^2 + \mathcal{O}\left((h^2 + h^4(a\widetilde{a})^{-1}) \|\varphi\|^2\right);$
- E.g. for m = 1, $r(t, \varphi, h)$ remains negligible up to $t \sim |\text{Im}\rho_1|^{-1} \ln(a/h^2)$ (\Rightarrow much beyond the life-time);
- If $g \in C_0^\infty$ then $r(t, \varphi, h) = \mathcal{O}\left(\max(1, a(h)\langle t \rangle)^{-\infty}(h^2/a) \|\varphi\|^2\right)$.
Results

Remarks

• If
$$m = 1$$
, then $b_1 = \|\varphi\|^2 + \mathcal{O}\left(h^2 + \frac{h^4}{a^2}\right)\|\varphi\|^2$;

- If $\lambda_1, \ldots, \lambda_m$ are simple with a gap $\widetilde{a} >> h^2$, then $b_j(\varphi, h) = |\langle \varphi, \phi_j \rangle|^2 + \mathcal{O}\left((h^2 + h^4(a\widetilde{a})^{-1}) \|\varphi\|^2\right);$
- E.g. for m = 1, $r(t, \varphi, h)$ remains negligible up to $t \sim |\text{Im}\rho_1|^{-1} \ln(a/h^2)$ (\Rightarrow much beyond the life-time);
- If $g \in C_0^\infty$ then $r(t, \varphi, h) = \mathcal{O}\left(\max(1, a(h)\langle t \rangle)^{-\infty}(h^2/a) \|\varphi\|^2\right)$.

Corollary (Survival amplitude)

$$\langle e^{-itH}\varphi,\varphi\rangle = \sum_{j=1}^m e^{-it
ho_j} b_j(\varphi,h) + \mathcal{O}\left(\frac{h^2}{a}\right) \|\varphi\|^2.$$

Philippe BRIET & André MARTINEZ Molecular dynamics for predissociation

2

2

Theorem with t = 0

$$\Rightarrow \langle g(H) \varphi, \varphi \rangle = \sum_{j} b_{j} + r(0) = \|\varphi\|^{2} + \mathcal{O}\left(\frac{h^{2}}{a}\right) \|\varphi\|^{2}$$

2

Theorem with t = 0

$$\Rightarrow \langle g(H) arphi, arphi
angle = \sum_{j} b_{j} + r(0) = \|arphi\|^{2} + \mathcal{O}\left(rac{h^{2}}{a}
ight) \|arphi\|^{2}$$

$$\Rightarrow \langle (1-g(H))\varphi,\varphi\rangle = \mathcal{O}\left(\frac{h^2}{a}\right) \|\varphi\|^2.$$

2

Theorem with t = 0

$$\Rightarrow \langle g(H)\varphi,\varphi \rangle = \sum_{j} b_{j} + r(0) = \|\varphi\|^{2} + \mathcal{O}\left(\frac{h^{2}}{a}\right) \|\varphi\|^{2}$$

$$\Rightarrow \langle (1 - g(H))\varphi, \varphi \rangle = \mathcal{O}\left(\frac{h^2}{a}\right) \|\varphi\|^2.$$

Take 0 \leq g \leq 1 and write,

$$\langle e^{-itH}\varphi,\varphi\rangle = \langle e^{-itH}g(H)\varphi,\varphi\rangle + \langle e^{-itH}(1-g(H))^{\frac{1}{2}}\varphi,(1-g(H))^{\frac{1}{2}}\varphi\rangle$$

æ

(日) (周) (三) (三)

Theorem with t = 0

$$\Rightarrow \langle g(H)\varphi,\varphi \rangle = \sum_{j} b_{j} + r(0) = \|\varphi\|^{2} + \mathcal{O}\left(\frac{h^{2}}{a}\right) \|\varphi\|^{2}$$

$$\Rightarrow \langle (1 - g(H))\varphi, \varphi \rangle = \mathcal{O}\left(\frac{h^2}{a}\right) \|\varphi\|^2.$$

Take 0 $\leq g \leq 1$ and write,

$$\langle e^{-itH}\varphi,\varphi\rangle = \langle e^{-itH}g(H)\varphi,\varphi\rangle + \langle e^{-itH}(1-g(H))^{\frac{1}{2}}\varphi,(1-g(H))^{\frac{1}{2}}\varphi\rangle$$

> result.

æ

(日) (周) (三) (三)

Proof of Theorem:

2

Proof of Theorem: We start from Stone's formula,

$$\langle e^{-itH}g(H)\varphi,\varphi\rangle = \lim_{\varepsilon\to 0_+} \frac{1}{2i\pi} \int_{\mathbb{R}} e^{-it\lambda}g(\lambda)\langle (R(\lambda+i\varepsilon)-R(\lambda-i\varepsilon))\varphi,\varphi\rangle d\lambda,$$

æ

(日) (同) (三) (三)

Proof of Theorem: We start from Stone's formula,

$$\langle e^{-itH}g(H)\varphi,\varphi
angle = \lim_{arepsilon
ightarrow 0_+}rac{1}{2i\pi}\int_{\mathbb{R}}e^{-it\lambda}g(\lambda)\langle (R(\lambda+iarepsilon)-R(\lambda-iarepsilon))arphi,arphi
angle d\lambda,$$

Using the distortion and the location of resonances, this can be re-written,

$$egin{aligned} \langle e^{-itH}g(H)arphi,arphi
angle =&rac{1}{2i\pi}\int_{\gamma}e^{-itz}\langle (R_{ heta}(z)arphi_{ heta},arphi_{- heta}
angle dz \ &+rac{1}{2i\pi}\int_{\gamma_{-}}e^{-itz}g(\operatorname{Re}z)T_{ heta}(z)dz, \end{aligned}$$

B ▶ < B ▶

Proof of Theorem: We start from Stone's formula,

$$\langle e^{-itH}g(H)\varphi,\varphi
angle = \lim_{arepsilon
ightarrow 0_+}rac{1}{2i\pi}\int_{\mathbb{R}}e^{-it\lambda}g(\lambda)\langle (R(\lambda+iarepsilon)-R(\lambda-iarepsilon))arphi,arphi
angle d\lambda,$$

Using the distortion and the location of resonances, this can be re-written,

$$\langle e^{-itH}g(H)\varphi,\varphi\rangle = \frac{1}{2i\pi}\int_{\gamma}e^{-itz}\langle (R_{\theta}(z)\varphi_{\theta},\varphi_{-\theta}\rangle dz + \frac{1}{2i\pi}\int_{\gamma_{-}}e^{-itz}g(\operatorname{Re} z)T_{\theta}(z)dz,$$

• $\gamma =$ closed loop around I(h),

Proof of Theorem: We start from Stone's formula,

$$\langle e^{-itH}g(H)\varphi,\varphi
angle = \lim_{arepsilon
ightarrow 0_+}rac{1}{2i\pi}\int_{\mathbb{R}}e^{-it\lambda}g(\lambda)\langle (R(\lambda+iarepsilon)-R(\lambda-iarepsilon))arphi,arphi
angle d\lambda,$$

Using the distortion and the location of resonances, this can be re-written,

$$\langle e^{-itH}g(H)\varphi,\varphi\rangle = \frac{1}{2i\pi}\int_{\gamma} e^{-itz}\langle (R_{\theta}(z)\varphi_{\theta},\varphi_{-\theta}\rangle dz + \frac{1}{2i\pi}\int_{\gamma_{-}} e^{-itz}g(\operatorname{Re} z)T_{\theta}(z)dz,$$

- $\gamma =$ closed loop around I(h),
- $\gamma_{-} \subset \{Imz \leq 0\}$,

Proof of Theorem: We start from Stone's formula,

$$\langle e^{-itH}g(H)\varphi,\varphi
angle = \lim_{arepsilon
ightarrow 0_+}rac{1}{2i\pi}\int_{\mathbb{R}}e^{-it\lambda}g(\lambda)\langle (R(\lambda+iarepsilon)-R(\lambda-iarepsilon))arphi,arphi
angle d\lambda,$$

Using the distortion and the location of resonances, this can be re-written,

$$\langle e^{-itH}g(H)\varphi,\varphi\rangle = \frac{1}{2i\pi}\int_{\gamma} e^{-itz}\langle (R_{\theta}(z)\varphi_{\theta},\varphi_{-\theta}\rangle dz + \frac{1}{2i\pi}\int_{\gamma_{-}} e^{-itz}g(\operatorname{Re} z)T_{\theta}(z)dz,$$

• $\gamma =$ closed loop around I(h),

. . .

с .

•
$$\gamma_{-} \subset \{ Imz \leq 0 \},$$

• $T_{\theta}(z) := \langle (R_{\theta}(z)\varphi_{\theta}, \varphi_{-\theta}) - \langle (R(z)\varphi, \varphi) \rangle.$

$$\langle e^{-itH}g(H)\varphi,\varphi\rangle = \sum_{j=1}^m e^{-it\rho_j}b_j(\varphi,h) + r(t,\varphi,h),$$

æ

E ► < E ►

< A

$$egin{aligned} &\langle e^{-itH}g(H)arphi,arphi
angle &= \sum_{j=1}^m e^{-it
ho_j} b_j(arphi,h) + r(t,arphi,h), \ &
ho_j(t,arphi,h) &:= rac{1}{2i\pi} \int_{\gamma_-} e^{-itz} g(\operatorname{Re} z) T_{ heta}(z) dz. \end{aligned}$$

æ

$$egin{aligned} &\langle e^{-itH}g(H)arphi,arphi
angle = \sum_{j=1}^m e^{-it
ho_j} b_j(arphi,h) + r(t,arphi,h), \ &r(t,arphi,h) := rac{1}{2i\pi} \int_{\gamma_-} e^{-itz} g(\operatorname{Re} z) T_{ heta}(z) dz. \end{aligned}$$

Estimate on the rest (m=1, $\varphi = \phi_1 = (u_1, 0)$):

э

$$\langle e^{-itH}g(H)\varphi,\varphi\rangle = \sum_{j=1}^{m} e^{-it\rho_j}b_j(\varphi,h) + r(t,\varphi,h),$$

$$r(t,\varphi,h):=rac{1}{2i\pi}\int_{\gamma_{-}}e^{-itz}g(\operatorname{Re} z)T_{\theta}(z)dz.$$

Estimate on the rest (m=1, $\varphi = \phi_1 = (u_1, 0)$):

$$\langle R_{\theta}(z)\varphi_{\theta},\varphi_{-\theta}\rangle = \frac{h^2}{(\lambda_1-z)^2} \langle (1-\kappa)^{-1}W_{\theta}(P_2^{\theta}-z)^{-1}W_{\theta}^*u_1^{\theta},u_1^{-\theta}\rangle + (\lambda_1-z)^{-1}$$

with $K = \mathcal{O}(h^2/a)$.

3

- 4 週 ト - 4 三 ト - 4 三 ト

and similar formula for $\langle R(z)\varphi,\varphi\rangle$ $({\rm Im}z<{\tt 0})$

æ

and similar formula for $\langle R(z)\varphi,\varphi\rangle$ (Imz < 0) \Rightarrow

$$r(t,\varphi,h) = \frac{h^2}{2i\pi} \int_{\gamma_-} \frac{e^{-itz}g(\operatorname{Re}z)}{(\lambda_1 - z)^2} \langle (R_2^+(z) - R_2(z))W^*u_1, W^*u_1 \rangle dz + \mathcal{O}(h^4/a^2)$$

æ

(日) (周) (三) (三)

and similar formula for $\langle R(z)\varphi,\varphi\rangle$ (Imz < 0) \Rightarrow

$$\begin{aligned} r(t,\varphi,h) &= \frac{h^2}{2i\pi} \int_{\gamma_-} \frac{e^{-itz}g(\operatorname{Re} z)}{(\lambda_1 - z)^2} \langle (R_2^+(z) - R_2(z))W^*u_1, W^*u_1 \rangle dz \\ &+ \mathcal{O}(h^4/a^2) \end{aligned}$$

where $R_2^+(z) :=$ holomorphic extension of $(P_2 - z)^{-1}$ from $\{\text{Im} z > 0\}$ to the second sheet of $\mathbb{C} \setminus \{-\Gamma\}$ (z close to 0).

- 4 伺 ト 4 ヨ ト 4 ヨ ト

and similar formula for $\langle R(z)\varphi,\varphi\rangle$ (Imz < 0) \Rightarrow

$$\begin{aligned} r(t,\varphi,h) &= \frac{h^2}{2i\pi} \int_{\gamma_-} \frac{e^{-itz}g(\operatorname{Re} z)}{(\lambda_1 - z)^2} \langle (R_2^+(z) - R_2(z))W^*u_1, W^*u_1 \rangle dz \\ &+ \mathcal{O}(h^4/a^2) \end{aligned}$$

where $R_2^+(z) :=$ holomorphic extension of $(P_2 - z)^{-1}$ from $\{\text{Im} z > 0\}$ to the second sheet of $\mathbb{C} \setminus \{-\Gamma\}$ (z close to 0).

Also using $e^{-izt} = (1+t)^{-k} \left(1+i\frac{d}{dz}\right)^k e^{-izt}$, the estimate follows,

|山田 | 山田 | 山田 |

Estimates on the residues:

2

Estimates on the residues: Take F(x) = x near $\{V_2 \le 0\}$, and F(x) = 0 near U

3

Estimates on the residues: Take F(x) = x near $\{V_2 \le 0\}$, and F(x) = 0 near U ($\Rightarrow (P_2^{\theta} - z)^{-1} = \mathcal{O}(1)$ under virial condition).

3

Estimates on the residues: Take F(x) = x near $\{V_2 \le 0\}$, and F(x) = 0 near U ($\Rightarrow (P_2^{\theta} - z)^{-1} = \mathcal{O}(1)$ under virial condition).

Consider the two Grushin problems on $\mathcal{H} \times \mathbb{C}^m$:

Estimates on the residues: Take F(x) = x near $\{V_2 \le 0\}$, and F(x) = 0 near $U \quad (\Rightarrow (P_2^{\theta} - z)^{-1} = \mathcal{O}(1)$ under virial condition).

Consider the two Grushin problems on $\mathcal{H} \times \mathbb{C}^m$:

$$\mathcal{G}_0(z) := \left(egin{array}{cc} H_0^{ heta} - z & L_- \ L_+ & 0 \end{array}
ight) \quad ; \quad \mathcal{G}(z) := \left(egin{array}{cc} H_{ heta} - z & L_- \ L_+ & 0 \end{array}
ight)$$

$$L_{-}(\mu_{1},\ldots,\mu_{m}):=\sum_{j=1}^{m}\mu_{j}\phi_{j}^{\theta} \quad ; \quad L_{+}u:=L_{-}^{*}u=(\langle u,\phi_{1}^{-\theta}\rangle,\ldots,\langle u,\phi_{m}^{-\theta}\rangle).$$

Estimates on the residues: Take F(x) = x near $\{V_2 \le 0\}$, and F(x) = 0 near $U \quad (\Rightarrow (P_2^{\theta} - z)^{-1} = \mathcal{O}(1)$ under virial condition).

Consider the two Grushin problems on $\mathcal{H} \times \mathbb{C}^m$:

$$\mathcal{G}_0(z) := \left(egin{array}{cc} H_0^{ heta} - z & L_- \ L_+ & 0 \end{array}
ight) \quad ; \quad \mathcal{G}(z) := \left(egin{array}{cc} H_\theta - z & L_- \ L_+ & 0 \end{array}
ight)$$

$$L_{-}(\mu_{1},\ldots,\mu_{m}):=\sum_{j=1}^{m}\mu_{j}\phi_{j}^{\theta} \quad ; \quad L_{+}u:=L_{-}^{*}u=(\langle u,\phi_{1}^{-\theta}\rangle,\ldots,\langle u,\phi_{m}^{-\theta}\rangle).$$

 $\Rightarrow \mathcal{G}_0(z)$ is invertible, with inverse

$$\mathcal{G}_0(z)^{-1} = \left(egin{array}{cc} \widehat{R}^{ heta}_0(z) & L_- \ L_+ & z - \Lambda \end{array}
ight),$$

Estimates on the residues: Take F(x) = x near $\{V_2 \le 0\}$, and F(x) = 0 near U ($\Rightarrow (P_2^{\theta} - z)^{-1} = \mathcal{O}(1)$ under virial condition).

Consider the two Grushin problems on $\mathcal{H} \times \mathbb{C}^m$:

$$\mathcal{G}_0(z) := \left(egin{array}{cc} H_0^{ heta} - z & L_- \ L_+ & 0 \end{array}
ight) \quad ; \quad \mathcal{G}(z) := \left(egin{array}{cc} H_\theta - z & L_- \ L_+ & 0 \end{array}
ight)$$

$$L_{-}(\mu_{1},\ldots,\mu_{m}):=\sum_{j=1}^{m}\mu_{j}\phi_{j}^{\theta} \quad ; \quad L_{+}u:=L_{-}^{*}u=(\langle u,\phi_{1}^{-\theta}\rangle,\ldots,\langle u,\phi_{m}^{-\theta}\rangle).$$

 $\Rightarrow \mathcal{G}_0(z)$ is invertible, with inverse

$$\mathcal{G}_0(z)^{-1} = \left(egin{array}{cc} \widehat{R}^{ heta}_0(z) & L_- \ L_+ & z - \Lambda \end{array}
ight),$$

 $\widehat{R}_0^{\theta}(z) = \text{reduced resolvent of } H_0 \text{ on spectral complement of } Span(\phi_1^{\theta}, \dots, \phi_m^{\theta}), \Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_m).$

Philippe BRIET & André MARTINEZ

We compute,

$$\begin{aligned} \mathcal{G}(z)\mathcal{G}_0(z)^{-1} &=: \begin{pmatrix} A_{11} & A_{12} \\ 0 & I_{\mathbb{C}^m} \end{pmatrix}. \\ A_{11} &= I_2 + h\mathcal{W}_{\theta}\widehat{R}_0^{\theta}(z) = \begin{pmatrix} 1 & \mathcal{O}(h) \\ \mathcal{O}(h/a) & 1 \end{pmatrix} = \mathcal{O}(h/a); \\ A_{12} &= h\mathcal{W}_{\theta}L_- = \mathcal{O}(h). \end{aligned}$$

2

We compute,

$$\begin{aligned} \mathcal{G}(z)\mathcal{G}_0(z)^{-1} &=: \begin{pmatrix} A_{11} & A_{12} \\ 0 & I_{\mathbb{C}^m} \end{pmatrix}. \\ A_{11} &= I_2 + h\mathcal{W}_{\theta}\widehat{R}_0^{\theta}(z) = \begin{pmatrix} 1 & \mathcal{O}(h) \\ \mathcal{O}(h/a) & 1 \end{pmatrix} = \mathcal{O}(h/a); \\ A_{12} &= h\mathcal{W}_{\theta}L_- = \mathcal{O}(h). \end{aligned}$$

Note h/a(h) not small as $h \to 0_+$.

æ

(日) (周) (三) (三)

We compute,

$$\begin{aligned} \mathcal{G}(z)\mathcal{G}_0(z)^{-1} &=: \begin{pmatrix} A_{11} & A_{12} \\ 0 & I_{\mathbb{C}^m} \end{pmatrix}. \\ A_{11} &= I_2 + h\mathcal{W}_{\theta}\widehat{R}_0^{\theta}(z) = \begin{pmatrix} 1 & \mathcal{O}(h) \\ \mathcal{O}(h/a) & 1 \end{pmatrix} = \mathcal{O}(h/a); \\ A_{12} &= h\mathcal{W}_{\theta}L_{-} = \mathcal{O}(h). \end{aligned}$$

Note h/a(h) **not** small as $h \to 0_+$. However, since $h^2/a(h)$ is small, $\mathcal{G}(z)\mathcal{G}_0(z)^{-1}$ and $\mathcal{G}_0(z)^{-1}\mathcal{G}(z)$ are invertible, thus so is $\mathcal{G}(z)$, and we find,

We compute,

$$\begin{aligned} \mathcal{G}(z)\mathcal{G}_0(z)^{-1} &=: \begin{pmatrix} A_{11} & A_{12} \\ 0 & I_{\mathbb{C}^m} \end{pmatrix}. \\ A_{11} &= I_2 + h\mathcal{W}_{\theta}\widehat{R}_0^{\theta}(z) = \begin{pmatrix} 1 & \mathcal{O}(h) \\ \mathcal{O}(h/a) & 1 \end{pmatrix} = \mathcal{O}(h/a); \\ A_{12} &= h\mathcal{W}_{\theta}L_{-} = \mathcal{O}(h). \end{aligned}$$

Note h/a(h) **not** small as $h \to 0_+$. However, since $h^2/a(h)$ is small, $\mathcal{G}(z)\mathcal{G}_0(z)^{-1}$ and $\mathcal{G}_0(z)^{-1}\mathcal{G}(z)$ are invertible, thus so is $\mathcal{G}(z)$, and we find,

$$\mathcal{G}(z)^{-1} = \mathcal{G}_0(z)^{-1} \mathcal{F}(z) = \left(egin{array}{cc} E(z) & E_+(z) \ E_-(z) & E_{-+}(z) \end{array}
ight),$$
 $E_{-+}(z) := z - \Lambda + \mathcal{O}(h^2).$

We compute,

$$\begin{aligned} \mathcal{G}(z)\mathcal{G}_0(z)^{-1} &=: \begin{pmatrix} A_{11} & A_{12} \\ 0 & I_{\mathbb{C}^m} \end{pmatrix}. \\ A_{11} &= I_2 + h\mathcal{W}_{\theta}\widehat{R}_0^{\theta}(z) = \begin{pmatrix} 1 & \mathcal{O}(h) \\ \mathcal{O}(h/a) & 1 \end{pmatrix} = \mathcal{O}(h/a); \\ A_{12} &= h\mathcal{W}_{\theta}L_{-} = \mathcal{O}(h). \end{aligned}$$

Note h/a(h) **not** small as $h \to 0_+$. However, since $h^2/a(h)$ is small, $\mathcal{G}(z)\mathcal{G}_0(z)^{-1}$ and $\mathcal{G}_0(z)^{-1}\mathcal{G}(z)$ are invertible, thus so is $\mathcal{G}(z)$, and we find,

$$\begin{aligned} \mathcal{G}(z)^{-1} &= \mathcal{G}_0(z)^{-1} \mathcal{F}(z) = \begin{pmatrix} E(z) & E_+(z) \\ E_-(z) & E_{-+}(z) \end{pmatrix}, \\ E_{-+}(z) &:= z - \Lambda + \mathcal{O}(h^2). \end{aligned}$$

 \Rightarrow Result.

THANK YOU !

2

▲口> ▲圖> ▲屋> ▲屋>