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Introduction

Quantum mechanics: Evolution described by the operator

© e—itP(p

where P stands for the Schrodinger operator of the system, and ¢ € L2
(ll¢ll 2 = 1) is the initial state.
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Introduction

Quantum mechanics: Evolution described by the operator

© e—itP(p

where P stands for the Schrodinger operator of the system, and ¢ € L2
(|¢]lf2 = 1) is the initial state. (Here Planck constant =1.)
Survival amplitude of ¢:  A(t, @) 1= (e ™y, )2

Survival probability of p:  S(t,¢) == |A(t, ¢)|?

In particular, if Py = Eg, then A(t,¢) = e "€ and S(t,) =1
(boundstate)
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Introduction

Question: How about resonances?

1) out-going (not in L2) solution to

Py = py (p=a—ibe C\R)

One expects the existence of ¢ € L? such that

S(t,p) ~ |e_it”| —eth (metastable state).

b1 is called the life-time of the state.

But difficult to justify rigorously in general (resonant state ¢ L?).
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Introduction

Some results : Herbst (1980) Hunziker (1990) Costin-Soffer (2001)
Cattaneo-Graf-Hunziker (2006) Jensen-Nenciu (2006)...

These are results on perturbations H, = Hy + <V of an operator Hy with
imbedded eigenvalue Ao (= general scalar Schrodinger operator is
excluded).

|k| << 1 — resonance A\, close to Ao
With Hy = Aoo:

A(t, p0) = e[|l + O(x?)
With a cut-off g around Ag:
(e g(Hi)po. po) = e "a(r) + O(K* (1 + 1))

(a(k) = ||po|> + O(k?) and v > 0 depends on the regularity of g).
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Introduction

Some results : Herbst (1980) Hunziker (1990) Costin-Soffer (2001)
Cattaneo-Graf-Hunziker (2006) Jensen-Nenciu (2006)...

These are results on perturbations H, = Hy + <V of an operator Hy with
imbedded eigenvalue Ao (= general scalar Schrodinger operator is
excluded).

|k| << 1 — resonance A\, close to Ao
With Hy = Aoo:

A(t, p0) = e[|l + O(x?)
With a cut-off g around Ag:
(e g(Hi)po. po) = e "a(r) + O(K* (1 + 1))

(a(k) = ||po|> + O(k?) and v > 0 depends on the regularity of g).

[Also: Semiclassical result by Nakamura-Stefanov-Zworski (2003):
Evolution operator (scalar case), with remainder O(h>).]
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Introduction

Question: General physical context where similar situations occur?

Answer: Molecular dynamics in the Born-Oppenheimer approximation.
— N x N semiclassical Hamiltonian:
H = —h*Aly 4+ My(x) + lower order terms

where N > 1 depends on the range of energy,
h := (nuclear mass)*% << 1,

x € R" position of nuclei,

eigenvalues of Mp(x) are electronic levels.

Philippe BRIET & André MARTINEZ Molecular dynamics for predissociation 5/ 24



Molecular predissociation

Philippe BRIET & André MARTINEZ Molecular dynamics for predissociation



Molecular predissociation

Philippe BRIET & André MARTINEZ Molecular dynamics for predissociation



Molecular predissociation

P 0

N =2, H_H0+hW(x,hDX)_<0 b
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Molecular predissociation

P 0

N =2, H_H0+hW(x,hDX)_<0 b
2

) +AW(x,hDy) (1)

Pii= —RA+Vi(x) (j=1.2),
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Molecular predissociation

P 0

N =2, H_H0+hW(x,hDX)_<0 b
2

) + hW(x,hD,) (1)
P, == —hA+ Vi(x) (j=1,2),

W(x, hD.) = ( vg ‘gV )

W = w(x, hDy) first-order semiclassical pseudodifferential operators.

Philippe BRIET & André MARTINEZ Molecular dynamics for predissociation



Molecular predissociation

The two potentials:

¥1

D'a'@
A

N

(potential barrier) ("ogzﬂappfng )
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P 0

In particular, near E, Hy = ( 0 P
2

) has embedded eigenvalues.
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In particular, near E, Hy = ( 0 P
2

) has embedded eigenvalues.

Question: Can we obtain similar estimates for the evolution in this case?
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Molecular predissociation

P 0

0 P ) has embedded eigenvalues.

In particular, near E, Hy = (

Question: Can we obtain similar estimates for the evolution in this case?

Difficulty: Here, both Hy = Hy(x, hDy) and the perturbation WV(x, hDy)
depend on the small parameter.
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Molecular predissociation

P 0

0 P ) has embedded eigenvalues.

In particular, near E, Hy = (

Question: Can we obtain similar estimates for the evolution in this case?

Difficulty: Here, both Hy = Hy(x, hDy) and the perturbation WV(x, hDy)
depend on the small parameter.

We fix E = 0.
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General assumptions

Assumption 1. The potentials V/; and V, are smooth and bounded on
R", and satisfy,

The set U := {V; <0} is bounded ; (
liminf Vi > 0; (
|x|—o0

V has a strictly negative limit — T as |x| — oc; (
Vo >0onU. (
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General assumptions

Assumption 1. The potentials V/; and V, are smooth and bounded on
R", and satisfy,

The set U := {V; <0} is bounded ;
liminf V; > 0;

(
|x|—o0 (
V has a strictly negative limit — T as |x| — oc; (
Vo >0onU. (

Assumption 2. The potentials V; and V, extend to bounded holomorphic
functions near a complex sector of the form,

Srys = {x € C"; |[Re x| > Ry, |Im x| < §|Re x|}, with Ry, > 0.
Moreover V5 tends to its limit at oo in this sector and Re V; stays away
from E = 0 in this sector.
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General assumptions

Assumption 3. The symbol w(x,&) of W extends to a holomorphic
functions in (x, &) near,

gRO,(s = SRys X {£€C";[Im¢| <5(Rex)},

and, for real x, w is a smooth function of x with values in the set of

holomorphic functions of £ near {|Im &| < §}. Moreover, we assume that,
for any a € N2" it satisfies

0%w(x,&) = O((Re &)) uniformly on ‘SN‘RO’(; U (R" x {|Im &| <6}). (6)
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General assumptions

Assumption [V] (Virial condition)

2Vs(x) + xV Vs(x) <0 on {V» <0},
or, more generally,
Assumption [NT]

E = 0 is a non-trapping energy for V5.

Philippe BRIET & André MARTINEZ Molecular dynamics for predissociation



Resonances

Philippe BRIET & André MARTINEZ Molecular dynamics for predissociation



Resonances

Resonances of H = eigenvalues of the complex distorted operator:
Hy := UpHU;* (6 > 0)

Up(x) = det(l + i0dF (x))2d(x + iOF (x)), F(x) € C(R",R"),
F(x) =0 for |x| < Ry, F(x) = x for |x| >> 1.
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Resonances

Resonances of H = eigenvalues of the complex distorted operator:
Hy := UpHU;* (6 > 0)

Up(x) = det(l + i0dF (x))2d(x + iOF (x)), F(x) € C(R",R"),
F(x) =0 for |x| < Ry, F(x) = x for |x| >> 1.

Anti-resonances = eigenvalues of H_y = conjugated of resonances
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Resonances

In our situation, [M. Klein, 1987] = near 0, the resonances are
exponentially close to the eigenvalues of

(P 0
H._< . P2)+hW(x,hDX)

ﬁg = —h2A—|- \72

A -

=0
v2
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Let /(h) C [—¢0, 0], and assume there exists a(h) > 0 s.t.

h?/a(h) =0  (h—0);
o(H) N (I(h) + [~3a,3a]) \/(h) = 0.
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Let /(h) C [—¢0, 0], and assume there exists a(h) > 0 s.t.

h?/a(h) =0  (h—0);
o(H) N (I(h) + [~3a,3a]) \/(h) = 0.

(ex: n =1, non-degenerate point-wells, ...) Denote:

® AL,..., Am = eigenvalues of Py in I(h) := I(h) + [—a, a];

@ u1,...,Un orthonormal basis of corresponding eigenfunctions;

° 9= ( L(JJJ >,j:1,...,m;
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Let /(h) C [—¢0, 0], and assume there exists a(h) > 0 s.t.

h?/a(h) =0  (h—0);

o(H) N (I(h) + [~3a,3a]) \/(h) = 0.
(ex: n =1, non-degenerate point-wells, ...) Denote:

@ Ai,...,A\m = eigenvalues of Py in I(h) ;= I(h) + [—a, a];

@ u1,...,Un orthonormal basis of corresponding eigenfunctions;

° 9= ( L(JJJ >,j:1,...,m;

® p1,...,pm = resonances of H in Q(h) := I(h) — i[0, 1]
(0<e1 <<1)
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Let /(h) C [—¢0, 0], and assume there exists a(h) > 0 s.t.

h?/a(h) =0  (h—0);

o(H) N (I(h) + [~3a,3a]) \/(h) = 0.
(ex: n =1, non-degenerate point-wells, ...) Denote:

@ Ai,...,A\m = eigenvalues of Py in I(h) ;= I(h) + [—a, a];

@ u1,...,Un orthonormal basis of corresponding eigenfunctions;

° 9= ( L(JJJ >,j:1,...,m;

® p1,...,pm = resonances of H in Q(h) := I(h) — i[0, 1]
0<e1<<l) (=pi=A+ O(h?)).
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Let also g € L°°(R) and v > 0 such that,
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Let also g € L°°(R) and v > 0 such that,

e g is supported in /(h) + [—2a,2a];

e g=1inlI(h)=1I(h)+[-a,al];
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Let also g € L°°(R) and v > 0 such that,

e g is supported in /(h) + [—2a,2a];

e g=1inlI(h)=1(h)+ [—a,al;
o Fork=0,...,v, gk e L>;
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Let also g € L°°(R) and v > 0 such that,

e g is supported in /(h) + [—2a,2a];
o g=1inI(h)=I(h)+[-aa;
o Fork=0,...,v, gk e L>;

o gk} = O(a=¥) uniformly (k =0,...,v).
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Results

Fort >0 and ¢ = ZJ- aj¢j, one has

m
(e ™ g(H)p, 0) = Y _ e ™ibj(p, h) + r(t, p, h)
j=1
with
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Results

Fort >0 and ¢ = ZJ- aj¢j, one has

(e”™g(H = e "ibi(, h) + r(t, o, h)

J=1
with

C I’(t, 2 h) = rO(t? 2 h)+0(h m|n0<k<l/ k(1+ t)_qu)Hz)'

.
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Results

Fort >0 and ¢ = ZJ- aj¢j, one has

(e”™g(H = e "ibi(, h) + r(t, o, h)
j=1
with
o r(t, ¢, h)—fo( @, h) + O (h*a~? ming<k<y a (1 + £) ¥ lo||?),
ro(t, ¢, h) == >, (e ~itP2g(Py) Ro(Aj+i0) W*uj, Ro(Ak—i0) W*uy),
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Results

Fort >0 and p = ZJ- aj¢j, one has

(e”™g(H = e "ibi(, h) + r(t, o, h)

j=1
with
o r(t,p,h) =ro(t, 0, h) + O (h*a
rO(tana h) = h2 ZJ, <
rO(ta ®, h) =0 (hza

Zmino<k<y @ X(1 4 t) " [lol1?),
—itP2 (pQ)RQ(A +i0)W*uj, Ry(Ak—i0) W*uy),
mlnogkgy (1 + t) kH(PH )'

.
Philippe BRIET & André MARTINEZ Molecular dynamics for predissociation

16 / 24



Results

Fort >0 and p = ZJ- aj¢j, one has

(e”™g(H = e "ibi(, h) + r(t, o, h)

j=1
with
o r(t,p,h) =ro(t,p, h)+ O( 2 ming<k<y a (1 + t) || )
ro(t,(p, h) = h2 Zj, < — (PQ)RQ()\ +IO)W uj, RQ()\k—IO)W*Uk>
ro(t, o, h) = O (h?a~! ming<k<, a (1 +t)~*[|pl|?);
o bj(p; h) = residue at p; of z +— {(z — H) L, p)
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Results

Fort >0 and p = ZJ- aj¢j, one has

(e”™g(H = e "ibi(, h) + r(t, o, h)

j=1
with

C I’(t, 2 h) = rO(t? 2 )+O( m|n0<k<l/ k(1+ t)ikHSOH )
ro(t,(p, h) = h2 Zj, < — (PQ)RQ()\ +IO)W uj, RQ()\k—IO)W*Uk>
ro(t, ¢, h) = O (K~  mino<k<y 2™ (1 + £) 7 l]?)

o bj(p; h) = residue at p; of z +— {(z — H) L, p)
= residue at p; of z +— ((z — M(z)) ', ),
M(z) = m x m matrix = diag(\1, ..., Am) + O(h?);
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Results

Fort >0 and p = ZJ- aj¢j, one has

(e”™g(H = e "ibi(, h) + r(t, o, h)

j=1
with

C I’(t, 2 h) = rO(t? 2 )+O( m|n0<k<l/ (1+ t)ikHSOH )
ro(t,(p, h) = h2 Zj, < — (PQ)RQ()\ +IO)W uj, RQ()\k—IO)W*Uk>
ro(t, ¢, h) = O (K~  mino<k<y 2™ (1 + £) 7 l]?)

o bj(p; h) = residue at p; of z +— {(z — H) L, p)
= residue at p; of z +— ((z — M(z)) ', ),
M(z) = m x m matrix = diag(\1, ..., Am) + O(h?);

4
o S7bile h) = llgpl2 + O (1 + £ ) ol
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Remarks
o If m=1, then by = ||¢]2 + O (h2 + h%) lell?;
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Remarks
o If m=1, then by = ||¢]2 + O (h2 + h%) lell?;

o If A1,..., Am are simple with a gap 3 >> h?, then
bi(p. h) = (. 6;)1> + O (R + h*(aa))ll¢l);
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Remarks
o If m=1, then by = [l¢|? + O (# + 1) |l
o If A1,..., Am are simple with a gap 3 >> h?, then
bi(p. h) = (. 6;)1> + O (R + h*(aa))ll¢l);
e E.g. for m=1, r(t, p, h) remains negligible up to
t ~ [Impy| =1 In(a/h?) (= much beyond the life-time);
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o If A1,..., Am are simple with a gap 3 >> h?, then
bi(p. h) = (. 6;)1> + O (R + h*(aa))ll¢l);
e E.g. for m=1, r(t, p, h) remains negligible up to
t ~ [Impy| =1 In(a/h?) (= much beyond the life-time);

o If g € C&° then r(t, o, h) = O (max(1, a(h)(t))~<(h?/a)2||?).
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Remarks
o If m=1, then by = [l¢|? + O (# + 1) |l
o If A1,..., Am are simple with a gap 3 >> h?, then
bi(p. h) = (. 6;)1> + O (R + h*(aa))ll¢l);
e E.g. for m=1, r(t, p, h) remains negligible up to
t ~ [Impy| =1 In(a/h?) (= much beyond the life-time);

o If g € C&° then r(t, o, h) = O (max(1, a(h)(t))~<(h?/a)2||?).

Corollary (Survival amplitude)

_I I h2
o Ze by h) +0 () .
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Theorem with t =0

= (g(H)p, ) = 525 b+ r(0) = |l + O () Il

= ((1- g(H)e.9) = O () ]2
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Sketch of proof

Proof of Corollary:

Theorem with t =0

= (g(H)p, ) = 525 b+ r(0) = |l + O () Il

= ((1- g(H)e.9) = O () ]2

Take 0 < g <1 and write,

NI

(™0, 0) = (e g(H)p. o) + (e (1~ g(H)) 2. (1 - g(H))2¢)
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Sketch of proof

Proof of Corollary:

Theorem with t =0

= (g(H)p, ) = 525 b+ r(0) = |l + O () Il

= ((1- g(H)e.9) = O () ]2

Take 0 < g <1 and write,

NI

(™0, 0) = (e g(H)p. o) + (e (1~ g(H)) 2. (1 - g(H))2¢)

= result.
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Proof of Theorem: We start from Stone's formula,

(e g(H)p, o) = lim — [ e g\ (RO +i2) - RO\~ ig))p, o)A,

e—04 2I7T R
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Sketch of proof

Proof of Theorem: We start from Stone's formula,

(e g(H)p, o) = lim — [ e g\ (RO +i2) - RO\~ ig))p, o)A,

e—04 2I7T R

Using the distortion and the location of resonances, this can be re-written,
—itH 1 —itz
(e"™g(H)p, ¢) =5 ((Ro(2)o, p—g)dz
im /)y

1 .
+ 5in g e "“g(Re z) Ty(z)dz,
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Proof of Theorem: We start from Stone's formula,

(e g(H)p, o) = lim — [ e g\ (RO +i2) - RO\~ ig))p, o)A,

e—04 2I7T R

Using the distortion and the location of resonances, this can be re-written,
—itH 1 —itz
(e"™g(H)p, ¢) =5 ((Ro(2)o, p—g)dz
im /)y

1 .
+ 5in g e "“g(Re z) Ty(z)dz,

e ~y=closed loop around /(h),
e v_ C {Imz <0},
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Sketch of proof

Proof of Theorem: We start from Stone's formula,

(e g(H)p, o) = lim — [ e g\ (RO +i2) - RO\~ ig))p, o)A,

e—04 2I7T R

Using the distortion and the location of resonances, this can be re-written,

(e tHg(H)p, ) = / e ((Ry(2) 09, o) dz

:2i7r

1 .
+ 5in [y_ e "“g(Re z) Ty(z)dz,

e ~y=closed loop around /(h),
e v_ C {Imz <0},
o Ty(z) := ((Ra(2)pe, o) — (R(2), )
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Sketch of proof

Thus, by Cauchy formula,

m

(e™g(H)p,0) = > _e"bj(ip, h) + r(t, 0, h),
j=1
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Sketch of proof

Thus, by Cauchy formula,

<e—itH Ze ’tplb cp, + r(t7 2 h)v
j=1
1 —itz
r(t, ¢, h): 2im e g(Re 2)Tolz)oz
V-
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Sketch of proof

Thus, by Cauchy formula,

(e ™ g(H)p,0) =Y e ™ibj(p, h)+ r(t, ¢, h),
=
1 —itz
r(t, o, h) = i e "“g(Re z) Ty(z)dz.
77

Estimate on the rest (m=1, ¢ = ¢1 = (v1,0)):
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Sketch of proof

Thus, by Cauchy formula,

(e ™ g(H)p,0) =Y e ™ibj(p, h)+ r(t, ¢, h),
=
1 —itz
r(t, o, h) = i e "“g(Re z) Ty(z)dz.
77

Estimate on the rest (m=1, ¢ = ¢1 = (v1,0)):

2
(Rol)¢0--0) =5y (1= K) W (PE = 2) Wil )

+ ()\1 — Z)_1

with K = O(h?/a).
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Sketch of proof

and similar formula for (R(z)y, ¢) (Imz < 0)
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Sketch of proof

and similar formula for (R(z)y, ¢) (Imz < 0)
=

2 —itz ez
r(t, ¢, h) = 2,:7 /ve()\lg—(fz{P)«R;(Z) — Ra(2))W*uy, W*uy)dz

+O(h*/2%)
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Sketch of proof

and similar formula for (R(z)y, ¢) (Imz < 0)
=

h? e~ g(Rez)

h)y=— [ T2 (RS(z) - R W*uy, W*

r(t,p h) = 5 /7 O — 2)? ((Ry (2) — Re(2))W"tn, W¥un)dz
+ O(h*/a%)

where Ry (z) := holomorphic extension of (P, — z)~! from {Imz > 0} to

the second sheet of C\{—I'} (z close to 0).
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Sketch of proof

and similar formula for (R(z)y, ¢) (Imz < 0)
=

r(t, e, h) = il / w((ﬁ’;(z) — Ra(2))W*uy, W*uy)dz

2 ), (M —2)?
+ O(h*/a?)

where Ry (z) := holomorphic extension of (P, — z)~! from {Imz > 0} to
the second sheet of C\{—I'} (z close to 0).

Also using e=2t = (1 4+ )~k (1 + i%)k e~ 2t the estimate follows,
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Sketch of proof

Estimates on the residues:
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near U (= (P§ —z)~! = O(1) under virial condition).
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Estimates on the residues: Take F(x) = x near {V> <0}, and F(x) =0
near U (= (P§ —z)~! = O(1) under virial condition).

Consider the two Grushin problems on H x C™:
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Sketch of proof

Estimates on the residues: Take F(x) = x near {V> <0}, and F(x) =0
near U (= (P§ —z)~! = O(1) under virial condition).

Consider the two Grushin problems on H x C™:

Go(z) = ( HgL:z LO_ > () = ( HeL:z LO_ >

Lo(pa,-eoim) = > @] 5 Lyu:=Lu=((u,677%),..., (u,6,,7)).
=1
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Estimates on the residues: Take F(x) = x near {V> <0}, and F(x) =0
near U (= (P§ —z)~! = O(1) under virial condition).

Consider the two Grushin problems on H x C™:

Go(z) = ( HgL:z LO_ > () = ( HeL:z LO_ >

Lo(pa,-eoim) = > @] 5 Lyu:=Lu=((u,677%),..., (u,6,,7)).
=1

= Go(z) is invertible, with inverse

Go(2) ! = ( ﬁoi(j) zL—_/\ >,

Philippe BRIET & André MARTINEZ Molecular dynamics for predissociation



Sketch of proof

Estimates on the residues: Take F(x) = x near {V> <0}, and F(x) =0
near U (= (P§ —z)~! = O(1) under virial condition).

Consider the two Grushin problems on H x C™:
([ Hf -z L _ [ Hp—z L_
Go(2) = ( L. 0 ) - 9(2)= ( L. 0 >

Lo(pa,-eoim) = > @] 5 Lyu:=Lu=((u,677%),..., (u,6,,7)).
=1

= Go(z) is invertible, with inverse

Go(2) ! = ( ﬁoi(j) zL—_/\ >,

ﬁg(z) = reduced resolvent of Hp on spectral complement of
Span(¢?,...,¢%), A = diag(\1, ..., Am).
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Sketch of proof

We compute,

G(2)Go(2)~ = < A81 A12 )

Al =h+ hWeﬁg(Z) = ( (’)(I::/a) Og_h) ) = O(h/a)v

A1p = hWyl_ = O(h).
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Sketch of proof

We compute,

G(2)Go(2)~ = < A81 A12 )

Al =h+ hWeﬁg(Z) = ( (’)(I::/a) Og_h) ) = O(h/a)v

A1p = hWyl_ = O(h).

Note h/a(h) not small as h — 0.
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Sketch of proof

We compute,

G(2)Go(2)~ = < A81 A12 )

Al =h+ hWeﬁg(Z) = ( (’)(I::/a) Og_h) ) = O(h/a)v

A1p = hWyl_ = O(h).

Note h/a(h) not small as h — 0. However, since h?/a(h) is small,
G(2)Go(z)~! and Go(z)71G(z) are invertible, thus so is G(z), and we find,
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Sketch of proof

We compute,

G(2)Go(2)~ = < A81 A12 )

Al =h+ hWeﬁg(Z) = ( (’)(I::/a) Og_h) ) = O(h/a)v

A1p = hWyl_ = O(h).

Note h/a(h) not small as h — 0. However, since h?/a(h) is small,
G(2)Go(z)~! and Go(z)71G(z) are invertible, thus so is G(z), and we find,

G(2) 7' = Go(2) 1 F(2) = < EE_((ZZ)) IEE_++((ZZ)) >

E ((2):=z— N+ O(h).
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Sketch of proof

We compute,

62102 = ().

Al =h+ hWeﬁg(Z) = ( (’)(I::/a) Og_h) ) = O(h/a)v

A1p = hWyl_ = O(h).

Note h/a(h) not small as h — 0. However, since h?/a(h) is small,
G(2)Go(z)~! and Go(z)71G(z) are invertible, thus so is G(z), and we find,

G(2) 7' = Go(2) 1 F(2) = < EE_((ZZ)) IEE_++((ZZ)) >

E ((2):=z— N+ O(h).
= Result.
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THANK YOU !
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