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1 Introduction

This talk enters in the philosophy of the
beautifull probabilistic index theory of Bis-
mut. With path integrals, we see the for-
mulas which are simpler to check by usinf
the theory of parabolic equations when we
have them.

Let L be a generator on a space of func-
tions f on a Riemannian manifoldM which
generates a semi-group Pt:

∂

∂t
Ptf = −LPtf (1)
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A natural question is to know if the semi-
group has an heat-kernel

Ptf (x) =

∫
M

f (y)pt(x, y)dy (2)

where dy is the Riemannian measur (which
is unique modulo a multiplicative constant).

There are 3 approaches to solve this prob-
lem:

-)The microlocal analysis which uses the
Fourier transform as a tool.

-)The Harmonic analysis, which uses func-
tional inequalities.

-)The Malliavin Calculus.
The Malliavin Calculus deals only for

Markov semigroups: Ptf ≥ 0 if f ≥ 0.
The others approaches work for a broader
class of generator. The object of this work
is to fullfill this gap.

Malliavin did a breakdown in stochastic
analysis. There a lot of preliminary ver-
sions of the Malliavin Calculus, motivated
by mathematical physics. See works of
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Hida , Albeverio-Hoegh-Krohn, Berezan-
skii for instance. Malliavin approach to
hypoellipticity problem uses an heavy ap-
paratus of differential operations in infi-
nite dimension. Bismut has simplified this
approach. In Bismut’s approach, only con-
venient stochastic differential equations ap-
pear, therefore convenient semi-groups. This
allows us to translate Bismut’s approach .
We have done some reviews and applica-
tions to heat-kernel estimates.

Stochastic analysis works for the whole
process. Formulas of stochastic analysis
were interpreted by ourself in semi-group
theory but they are only valid for the semi-
groups. This remark allows us to extend
a lot formulas of stochastic analysis. We
have done several works for Wentzell-Freidlin
estimates for non Markovian semi-group.

In a first stepextend the Malliavin Cal-
culus of Bismut type for a four order op-
erator. In such a case, the semi-group as-
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sociated do not preserves the positivity.
Let G be a compact Lie group of dimen-

sion m which can be seen as a subgroup
of the special orthogonal group. Let ei be
an orthonormal basis of its Lie algebra en-
dowed with its biinvariant Euclidean struc-
ture. If g is a matrix, ei can be seen either
as a matrix in the tangent space of e, the
unit element of G or as eig a vector at
the tangent space of g. We consider the
generator

L =

m∑
i=1

e4
i (3)

It is an elliptic operator which generates
by elliptic theory a semi-group on Cb(G),
the space of continuous functions on G en-
dowed with the uniform norm.

Theorem 1 If t > 0, Pt has an heat-
kernel

Ptf (g) =

∫
G

pt(g, g
′)dg′ (4)
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where dg′ is the Haar measure on G.

If this theorem is rather standard in Anal-
ysis, it enters in our general programm to
extend stochastic analysis tools in the gen-
eral theory of parabolic equation.

In the paper where we have translated
Malliavin Calculus of Bismut type for dif-
fusion in semi-group theory, we have given
the formulas on diffusion processes which
lead to the translation of the Malliavin
Calculus of Bismut type for diffusion. Here,
it is not rigorously possible, but it should
possible to repeat in an heuristic way these
considerations.

We consider a ”process” bi,t on Rm asso-

ciated to the driving operator
∑

∂4

∂x4
i

= Lb

on Rm such that formally∫
E[0,∞[,Rm]

f (bt)”dµ” = P b
t f (0) (5)

where P b
t is the semi-group associated to

Lb and ”dµ” the ” law” of bt on a conve-
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nient space E[0,∞[,Rm] on trajectories
of bt. Of course, these considerations are
purely formal, because mainly P f

t does
not preserves positivity.

Suppose that formally we could solve the
”linear stochastic differential equattion” start-
ing from g

dgt =

m∑
i=1

eigtdbi,t (6)

such that

Ptf (g) =

∫
E[0,∞[,Rm]

f (gt)”dµ” (7)

Malliavin’s theorem state that in order hy-
pothesis the map b. → gt is in some ”gen-
eralized sense a submersion”, and that the
Malliavin matrix generlized in this con-
text the classical notion of Gram matrix.
Namely, if we perturb dbi,t into dbi,t +
λhi,tdt, we get formally
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dt
∂

∂λ
g0
t =

m∑
1

ei
∂

∂λ
g0
t dbi,t +

m∑
1

eigthi,tdt

(8)
which can be solved by using the method
of variation of constant as

∂

∂λ
gt = gt

m∑
0

∫ t

0

g−1
s eigsdhi,s (9)

(We refer to the review [9] in the case of
the Brownian motion where these consid-
erations are rigorously performed).

2 The theorem of Malliavin for an operator of
order four

We consider the elliptic operator on G×R
m∑
i

e4
i +

∑
hi,tei

∂

∂u
+

∂4

∂u4
= L̃ht (10)

It generates by perturbation theory a semi-
group (but not a contraction semi-group)
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on L2(G×R)(dg ⊗ du) and even a semi-
group on Cb(G× R) by ellipticity.

Theorem 2 (Elementary integration
by parts formula).We have if f is
smooth with compact support∫ t

0

Pt−s
∑

hs,ieiPs[f ]ds = P̃ h
t [uf ](., 0)

(11)

Proof:Let us begin by formal computa-
tions. Since ∂

∂u commutes with L̃ht , we get:

P̃ h
t [uf ](g, u0) = Pt[f ](g)u0 + P̃t[uf ](g, 0)

(12)
such that
∂

∂t
P̃ h
t [uf ](g, u0) = −LP̃ h

t [uf ](g, 0)−
∑

hi,teiPt[f ](x)

(13)
It is the same parabolic equation with sec-
ond member as the equation satisfied by
the lefthand side of (11).

In order to finish proof, it remain to
show that the enlarged semi group can act
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on the test function f (x)u. For that we
use the classical Davies gauge transform
instead of the Burkholer-Davies-Gundy in-
equality which work only for Markovian
semi-groups.. We consider g(u) = c(|u|2r+
1) with a big integer r. The main remark
is that

g(u)−1 ∂

∂u
(g(u).) =

∂

∂u
+ C(u) (14)

where C is smooth bounded. Therefore
g(u)−−1L̃ht (g(u).) spanns a semi-group on
L2(G × R)(dg ⊗ du) which is equal to
g(.)−1P̃ h

t g(.). The result arises because
u
g(u)f (x) belongs to L2(G× R)(dg ⊗ du).

♦
Let V = G × Mm. Mm is the space

of symmetric matrices on LieG. (x, v) ∈
V . v is called the Malliavin matrix. We
consider

X̂0 = (0,
∑

< g−1ei, . >
2) (15)
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We consider the Malliavin generator

L̂ =
∑

e4
i − X̂0 (16)

Theorem 3 L̂ spanns a semi-group P̂t
called the Malliavin semi-group on Cb(M).

Proof:L̂ is not a perturbation of an ellip-
tic operator on V , because

∑
e4
i is not an

elliptic operator on V . But we can apply
the Itô-Stratonovitch formula for general
semi-group o to conclude. We consider the
flow φt generated by X̂0 on V. We put
Φt[f ](x, u) = f (x, φtv). φt is an isometry
of M . Therefore ΦteiΦ

−1
t = ei,t is with-

out divergence on M and
∑
e4
i,t generates

a contraction semi-group on L2(M)(dg ⊗
dv). Let us put

C(g) =
∑

< g−1ei, . >
2 (17)

If f̂ (g, v) is a shape fn(u, v) exp−g(v)
where fn is a polynomial in v and g a
positive quadratic form in v, the following
Volterra expansion converges:
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P̂t[f̂ ](g0, v0) = f̂ (u0, v0)+∑∫
0<s1<..<sn<t

Ps1[C(.)Ps2−s1

[C(.)...[Pt−sn[D
n
vf (., .)](g0, v0)ds1..dsn

(18)

We consider a subdivision tli of [0,∞[ of
mesh 1/l. We put [t]l the closest time of
the subdivision by lower values of t. We
consider

P̂ l
t [f̂ ](g0, v0) = f̂ (g0, v0)+∑∫

0<s1<..<sn<t

Ps1[C(g[s1]l)

Ps2−s1..C(g[sn]l)[[Pt−sn[D
n
vf (., .](g0, v0)ds1..dsn

(19)

In order to understand this formula, we
divide the simplex in small simplices of the
si between tli and tli+1. We recognize in the
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previous expression the quantity

f̂ (g0, v0) + Ptl1
[Ptl2−tl1

[...[Pt−[t]l[f̂ (., v0+

C(gtl1
(tl2 − tl1) + ..C(g[t]l(t− [t]l)](g0, 0)

(20)

by applying the Volterra expansion to the
semi group

P̂ g0
t [f̂ ](g′0, v0) = Pt[f̂ (., v0 + C(g0)t)](g′0)]

(21)
generated by

L̂g0 = L− C(g0)Dv (22)

where g0 is frozen. We use the formula
n∏
i=1

ai−
n∏
i=1

bi =

n∑
j=1

j−1∏
i=1

ai(aj−bj)
n∏

i=j+1

bi

(23)
and the fact that when t→ 0

|Pt|[|C(g)− C(g0)|](g0)→ 0 (24)

iin order to conclude if f if the type before
that P̂ l

t [f̂ ](g0, v0) converges to P̂t[f̂ ](g0, v0).
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We deduce that

|P̂t[f̂ ](g0, v0)| ≤ C‖f̂ |∞ (25)

if f̂ belongs to L2(M)(dg ⊗ dv).
♦

Proposition 4 For all r, there exists a
tensor polynomial Lri in the elements g,
ei, g

−1 and their derivatives such that

DrPt[f ](g) = Pt[

l∑
i=1

DrfLri ](g) (26)

Proof:This comes from the fact that

Pt[f ](g) = Pt[f (.g)](e) (27)

where e is the unit element of G.
♦
We consider the generator

Lλ =
∑

e4
i − λ

∑
< φ(g), ht >

i ei
(28)

It generates by elliptic theory a semigroup
on Cb(G) which depends smoothly on λ.
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We denote it by P λ
t . We get

∂

∂t

∂

∂λ
P 0
t f = −L ∂

∂λ
P 0
t f+

∑
< φ(g), ht >

i eiPt[f ]

(29)
By the previous theorem

eiPt[f ](g) = Pt[< Df, g−1ei >](g) =∫
G

< Df (g′), g′g−1eig > dPt(g, g
′) (30)

♦
Therefore

∂

∂λ
P 0
t [f ] =

∑∫ t

0

Pt−s[< φ(g′), hs >
i Ps[< Df, g′−1ei >]]

(31)
Let us consider the vector field onG×TeG

ẽi = (ei, 0) (32)

which operates on Cb(G×TeG). We con-
sider

X̃0 = (0,
∑

g−1ei < φ(g), ht >
i) (33)

We consider the operator on G× TeG
L̃ = L− X̃0 (34)
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As the Malliavin operator, it is not the
perturbation of an elliptic operator onG×
TeG. But we can define as we have defined
the Malliavin semi-group P̂t the semi-group
associated P̃t by using the Itô-Stratonovitch
formula for big order semi-groups].

This allows to show

Proposition 5We have if f is smooth
with compact support

∂

∂λ
P 0
t [f ](g0) = P̃t[< Df, gu >](g0, 0)

(35)

Proof:If the Volterra expansion converges,
we get

P̃t[< Df, u >](g, 0) =
∑

(−1)n∫
0<s1<..<sn<t

P 0
s1
X̃0..X̃0...X̃0Pt−sn[< Df, gu >](g0, 0)

(36)

But u0 → Pt−sn[< Df, gu >](g0, u0) is
linear in u0. So it remains only the first
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term in the Volterra expansion.
♦
Remark: This theorem has to be com-

pared with the remark at the end of the
introduction, formula (9).

Theorem 6 (Malliavin)If the Malli-
avin condition holds

|P̂t][v−p](g, 0) <<∞ (37)

for all integer positive integer p, Pt has
a smooth density.

Proof:If we consider the semi group Qt

associated to the elliptic operator onG×R∑
e4
i −

∑
< φ(g), ht >

i ei
∂

∂u
+

∂4

∂u4

(38)
we get as in the elementary integration by
parts of the beginning of this part

P̃t[< Df, gu >](g0, 0) = Qt[fu](g0, 0)
(39)

In this formula, < Dfg, u > is a scalar.
We choose X̂0 =

∑
< ., g−1ei >< g−1ei, . >.
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We get for vector valued semi-groups

P̂t[< Df, gv >](g0, 0) = Qt[fu](g0, 0)
(40)

If
|P̂t|[|v−1|p](g0, 0) <∞ (41)

for all positive integers p, we apply the
previous integration by parts formulas to
the test function (x, v) → f (x)v−1g−1ej
in order, following the initial idea of Malli-
avin that

|Pt[DrfLr](g0)| ≤ Cr‖f‖∞ (42)

where f is the supremum norm of the test
function f where Lr is a tensor polynomial
in the ei.
♦

3 Inversion of the Malliavin matrix

Theorem 7 Under the previous elliptic
assumptions,

|P̂t|[f̂ ]](g0, 0) <∞ (43)
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if t > 0 where the test function is the in-
verse of the Malliavin matrix at power
p

Proof: We remark that

|P̂ l
t − P̂

g0
t |[f̂ ](g0, v0) ≤ CC(t)t‖f̂‖∞

(44)
where C(t)→ 0 when t→ 0 if if the test

function f̂ is positive. We use the Volterra
expansion associated to these semi-groups
and (23), (24) to conclude. We deduce
therefore that

|P̂t − P̂ g0
t |[f̂ ](g0, v0) ≤ C(t)t‖f̂‖∞ (45)

We remark that

P̂ l
t [f̂ ](g0, u) = P̂ g0

tl1
[P̂ g1

tl2−t
l
1
..P̂

gk
t−tlk

[f̂ ]..](g0, u0)

(46)
where tlk = [t]l. We deduce that

|P̂t − P̂ l
t |[f̂ ](g0, 0) ≤ C(l)‖f̂‖∞ (47)

where C(l) → 0 when l → ∞ if the test

function f̂ is positive. Moreover C(g) ≥
CId. We have therefore
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|P̂ l
t |[(v−1)p](g0, 0) ≤ C(p) <∞ (48)

for all p where C(p) does not depend on
l. Therefore the result.
♦
Proof of theorem1 This comes from

theorem 6 and theorem 7.
♦

4 Varadhan estimates

The object of Varadhan type estimates
is to know if Wentzel-Freidlin estimates
(large deviation estimates) pass to the den-
sity of the involved random variable.

The goal of the Malliavin Calculus is to
know if the law of a random variable has a
density with respect of the Lebesgue mea-
sure.

Bismut [1] in his seminal book pointed
out the relationship beteween the Malli-
avin Calculus and large deviation estimates.
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The request of Bismut’s book was fullfilled
by ourself in our Compte-Rendu [2]. See
[3], [4] too.

We have translated in semi group theory
Bismut’s way of the Malliavin Calculus for
Markovian semi-groups. See the review
[5],[6] for that.

There are others semi-groups, which are
not Markovian, and which are not repre-
sented by stochastic processes. We have
adapted the considerations of [5] and [6],
but in such a case the measure theory on
a given ”path space” involved is not very
well understood. See the review [10].

In this framework, we have performed
Wentzel-Freidlin estimates in [9], [11], [12]
for Non-Markovian semi-groups by using
the normalisation of W.K.B. Analysis [14].

Recently, we have adapted Bismut’s way
of the Malliavin Calculus for an operator
of order four on a Lie group [13]. So we
have the two main ingredients for Non-
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Markovian semi-groups to get Varadhan
types estimates:

-)The Malliavin Calculus.
-)Wentzel-Freidlin type estimates.
The object of this communication is to

produce such estimates in a simple case.

5 Statement of the main theorem

Let G be a compact Lie group of dimen-
sionm endowed with its biinvariant metric
with generic element g. Let ei be an or-
thonormal basis of its Lie algebra. ei can
be considered as an orthonormal basis of
the tangent space in the unity e Te(G), or
as the the vector fields eig or as first order
differential operator.

We consider the generator

L =

m∑
i=1

e4
i (49)

It generates a semi-group on Cb(G) the
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space of continuous function f on G en-
dowed with its uniform norm which satisfy
the parabolic equation

∂

∂t
Ptf = −LPtf ; P0f = f (50)

We consider the generator

Lε = ε3L (51)

Normalisation are those classical of W.K.B.
asymptotics (See [14]). Lε generates a semi-
group P ε

t

By using the Malliavin Calculus of Bis-
mut type for an order four of [13], we get:

P ε
1f (g0) =

∫
G

f (g)pε1(g0, g)dg (52)

where dg is the normalized volume ele-
ment on G.

Let us introduce the Hamiltonian on T ∗(G)

H(g, ξ) =

m∑
i=1

< ei, ξ >
4 (53)
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We consider the Lagrangian on TG:

L(g, p) = sup
ξ

(< p, ξ > −H(g, ξ)) (54)

A simple computation shows that:

C|p|4/3 ≥ L(g, p) ≥ C|p|4/3 (55)

If t ∈ [0, 1]→ G is a piecewise C1 curve
on G, we introduce the action

S(φ) =

∫ 1

0

L(φt,
d

dt
φt)dt (56)

and we consider

L(g0, g) = inf
φ0=g0;φ1=g

S(φ) (57)

Let us recal that (g0, g)→ l(g0, g) is con-
tinuous (See [9]).

Theorem 8When ε→ 0, we have uni-
formly on G×G

limεLog|pε1(g0, g)| ≤ −l(g0, g) (58)

The next section gives the proof of this
Varadhan type estimate, which follows losely
in this non-markovian context the proof of
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these estimates in semi-group theory for
diffusion in [7], [8].

6 Proof of the main theorem

Let us recall (see [9]) that

limεLog|P ε
1 |[10](g0) ≤ − inf

g∈O
l(g0, g)

(59)
if O is an open ball. We consider a posi-
tive bump function χ with support a ball
centered in g with a small radius such that
infg′∈O l(g0, g

′) is close from l(g0, g). We
consider the measure µε

f → P ε
1 [fχ](g0) (60)

According the framework of the Malliavin
Calculus, it is enough to show for all tensor
polynomial in the ei L

r of degree r that

|µε[< Drf, Lr >]| ≤ ‖f‖∞Cε−n(r) exp[
−l(g0, g) + δ

ε
]

(61)
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where ‖f‖∞ denotes the uniform norm of
f and n(r) is a convenient positive number
depending of r.

We apply for that the machinery of [13].
Let V = G ×Mm. Mm is the space on
symmetric matrices on TeG. (g, v) ∈ V .
v is called the Malliavin matrix. We con-
sider

X̂ε
0 = (0, ε3/2

m∑
i=1

< g−1ei, . >
2) (62)

and we consider the Malliavin generator

L̂ε = Lε − X̂ε
0 (63)

It generates a semi-group P̂ ε
t called the

Malliavin semi-group which acts continu-
ously on Cb(V ), the space of continuous

bounded function on V f̂ endowed with
the uniform norm.

The proof follows the proof of theorem 6
of [13], the estimate (11) and the following
lemma:

Lemma 9 For all p, there exists a real
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n(p) such that

|P̂ ε
1 |[|v−p|](g0, 0) ≤ C

εn(p)
(64)

for ε < 1

Proof:The proof of this lemma follows
closely the proof of Theorem 7 of [13]. We
put vε = ε−3/2v. It is enough to show that

|P̂ ε
1 |[|v−pε |](g0, 0) ≤ C(p) (65)

if ε < 1.
We consider the semi-group P̂ ε,g0

t asso-
ciated to Lε − ε3/2C(g0) (C(g0) frozen)
where C(g) =

∑m
i=1 < g−1ei, >

2.
We consider a subdivision tlj of mesh 1/l

of the interval [0, 1]. We put [t]l the closest
element of t by lower bound. We consider

P̂ l,ε
t [f̂ ](g0, v0) =

P ε
tl1

[P l
tl2−t

l
1
...[P ε

t−[t]l

[f̂ (., v0+ε3/2(C(gtl1
(tl2−tl1)+...C(g[t]l(t−[t]l))]]](g0, 0)

(66)
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We have clearly

|P̂ l,ε
1 |[(vε > C1)c](g0, 0) (67)

We have as in [13] Theorem 7, we have

|P̂ ε
t − P̂

g0,ε
t |[f̂ )(g0, v0) ≤ ε3/2Ct‖f̂‖∞

(68)
where C(t)→ 0 when t→ 0 for any pos-

itive test function f̂ . We deduce that

|P̂ ε
t − P̂

l,ε
t |[f̂ ](g0, v0) ≤ C(l)ε3/2‖f̂‖∞

(69)
where C(l)→ 0 when l →∞. Therefore
the result.
♦
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