

Stark-Wannier ladders and cubic exponential sums

A. Fedotov F. Klopp —

St Petersburg State University – Université Pierre et Marie Curie

Conférence NOSEVOL CIRM, 15/12/2015

F. Klopp (Université Pierre et Marie Curie) Stark-Wannier ladders and cubic exponential sums

Outline

16/12/2015 1 / 13

1 Stark-Wannier ladders

- The Stark-Wannier Hamiltonian and the questions
- Known results

2 The results

- Asymptotics of the reflection coefficient in the lower half-plane
- The low lying resonances and cubic exponential sums

3 The main steps of the proof

- The monodromy matrix
- Analysis of the Fourier series

The Stark-Wannier Hamiltonian

On $L^2(\mathbb{R})$, consider

$$H_{\varepsilon} = -\frac{d^2}{dx^2} + v(x) - \varepsilon x \tag{1}$$

where

- *v* is a real analytic 1-periodic function,
- ε is a positive constant.

Model for

- One dimensional Bloch electron in a constant electric field,
- Electrons in semi-conductor superlattices,
- Cold atoms in optical lattices.

Spectral theory:

- The spectrum of H_{ε} is \mathbb{R} and purely absolutely continuous.
- Resolvent $(z H_{\varepsilon})^{-1}$ can be continued from upper half plane \mathbb{C}^+ to \mathbb{C}^- .
- Resonances: poles of resolvent.
- Stark-Wannier ladders : resonances form ε -periodic lattices parallel to \mathbb{R} as $\tau_{-1}(z-H_{\varepsilon})^{-1}\tau_{1}=(z+\varepsilon-H_{\varepsilon})^{-1}$ for $\operatorname{Im} z>0$.

Stark-Wannier ladders and cubic exponential sum

Interactions of ladders. [Avron 1982 / Glück et al. 2002]

Known results

F. Klopp (Université Pierre et Marie Curie)

Many works (both physics and maths).

Proofs of existence of resonances for various regimes of v and ε .

Determination of the ladders when ε small: semi-classics (physics, Buslaev et al.). Analysis only done for v finite gap potential.

Effective Hamiltonian: $E_j(\kappa) - \xi = E$, E_j band functions for $-\frac{d^2}{dr^2} + v$,

Spectral band
$$\rightarrow$$
 one ladder: Re $z_{j,k} = k\varepsilon - \frac{1}{2}\int_0^{2\pi} E_j(\kappa)d\kappa + O(\varepsilon), k \in \mathbb{Z},$

Imag. part exp. small: when *n* gaps
$$-\log |\operatorname{Im} z_{j,k}| = \frac{1}{\varepsilon} \sum_{j \le l \le n} \int_{\gamma_l} E_l(\kappa) d\kappa + O(1);$$

Resonance phenomenon between ladders: very complicated (multifractal) behavior of resonances in ε small. Dependent on number theor. prop. of ε (Avron).

10^{-2} 1/F

16/12/2015

3/13

The reflection coefficient

For *v* entire, consider

$$-\psi''(x) + (v(x) - \varepsilon x)\psi(x) = E\psi(x), \quad x \in \mathbb{C};$$
(2)

for $E \in \mathbb{C}$, ψ_{\pm} unique solutions to (2) s.t.

$$\psi_{-}(x,E) = \frac{1}{\sqrt[4]{-\varepsilon x - E}} e^{-\int_{x}^{-E/\varepsilon} \sqrt{-\varepsilon t - E} dt + o(1)}, \quad x \to -\infty,$$
$$\psi_{+}(x,E) = \frac{1}{\sqrt[4]{\varepsilon x + E}} e^{i\int_{-E/\varepsilon}^{x} \sqrt{\varepsilon t + E} dt + o(1)}, \quad x \to +\infty.$$

Define $\psi_+^*(x, E) = \overline{\psi_+(\overline{x}, \overline{E})}$.

The solutions ψ_+ and ψ_+^* linearly independent; thus

$$\Psi_{-}(x,E) = w(E)\Psi_{+}^{*}(x,E) + w^{*}(E)\Psi_{+}(x,E), \quad x \in \mathbb{R},$$
(3)

w(E) is independent of x and the function $E \mapsto w(E)$ is entire and ε -periodic. The reflection coefficient: $r(E) = w^*(E)/w(E)$.

The reflection coefficient is an ε -periodic meromorphic function of E. The reflection coefficient is analytic in \mathbb{C}_+ , and, for $E \in \mathbb{R}$, one has |r(E)| = 1. Poles of r = resonances of H_{ε} .

F. Klopp (Université Pierre et Marie Curie) Stark-Wannier ladders and cubic exponential s 5/13

The Fourier coefficients of the inverse of r when $v(x) = \cos(2\pi x)$

We now assume $v(x) = \cos(2\pi x)$ and, for $\operatorname{Im} E \leq 0$, define $\frac{1}{r(E)} = \sum_{m \in \mathbb{Z}} e^{2\pi m i E/\varepsilon} p(m)$.

Theorem

Let $v(x) = 2\cos(2\pi x)$. Then, as $m \to \infty$,

$$p(m) = a(\varepsilon)\sqrt{m}e^{-2\pi i\omega m^3 - 2m\log(2\pi m/e) + \delta(m)}, \quad a(\varepsilon) = \sqrt{\frac{2}{\varepsilon}}\pi e^{i\pi/4}, \quad \omega = \left\{\frac{\pi^2}{3\varepsilon}\right\},$$

where, for x real, $\{x\}$ denotes the fractional part of x, and $\delta(m) = O(\log^2 m/m)$. This estimate is locally uniform in $\varepsilon > 0$.

When Im
$$E \to -\infty$$
, $\frac{1}{r(E)} \approx a(\varepsilon) \mathscr{P}(E/\varepsilon)$ where
 $\mathscr{P}(s) := \sum_{m \ge 1} \sqrt{m} e^{-2\pi i \omega m^3 - 2m \log(2\pi m/e) + 2\pi i m s}.$

 \mathscr{P} : mollified version of the cubic exponential sums $\sum_{i=1}^{n} e^{-2\pi i \omega n^3}$.

16/12/2015

7/13

Theorem

Let $v(x) = 2\cos(2\pi x)$. Assume that $\omega = \frac{p}{q} \in \mathbb{Q}$ with $0 \le p < q$ co-prime. For $\xi \in \mathbb{R}$, we set $I_q(\xi) := \{m \in \mathbb{Z} : |\xi - \frac{m}{q}| \le 1/2\}$. As $\operatorname{Im} E \to -\infty$, one has

$$r^{-1}(E) = \frac{b(\varepsilon)\rho}{q} \sum_{m \in I_q(\xi)} S_q(p,m) e^{\rho e^{i\pi(\xi - m/q)} + i\pi(\xi - m/q) + O(\log^2 \rho/\rho)} + e^{O(\frac{\rho}{\ln\rho})}, \quad (4)$$

where $b(\varepsilon) = \pi^{\frac{3}{2}} e^{i\pi/4} / \sqrt{2\varepsilon}$, $\xi = \operatorname{Re} E / \varepsilon$, $\rho = e^{-\pi \operatorname{Im} E / \varepsilon}$, and

$$S_q(p,m) = \sum_{l=0}^{q-1} e^{-2\pi i \frac{pl^3 - ml}{q}}.$$

The error estimates are locally uniform in $\varepsilon > 0$.

 $S_q(p,m)$ complete exponential sums.

F. Klopp (Université Pierre et Marie Curie) Stark-Wannier ladders and cubic exponential sums 16/12/2015

Some facts on complete exponential sums. We assume $\omega \in \mathbb{Q}^*$. One easily checks

Lemma

For any
$$q \in \mathbb{N}$$
 and $p \in \mathbb{N}$, $\sum_{m=0}^{q-1} |S_q(p,m)|^2 = q^2$.

For large q, many non-zero values $S_q(p,m)$: more precisely

Lemma

There exists a constant C > 0 such that, for any co-prime q > p > 0, one has $\#\{0 \le m < q : S_q(p,m) \ne 0\} \ge Cq^{\frac{2}{3}}$.

The low lying resonances when $\omega \in \mathbb{Q}^*$

If $S_q(p,m)$ non zero for at least two values of m

Corollary

Assume $S_q(p,m_1) \neq 0$ and $S_q(p,m_2) \neq 0$ for $0 \leq m_1 < m_2 < q$ and $S_q(p,m) = 0$ for all $m_1 < m < m_2$. Then, for sufficiently large y > 0, there are resonances in the vertical half-strip

$$\left\{E \in \mathbb{C}: -\frac{\operatorname{Im} E}{\varepsilon} \ge y, \ \frac{m_1}{q} \le \frac{\operatorname{Re} E}{\varepsilon} \le \frac{m_2}{q}\right\},\$$

and these resonances are given by: for $k \in \mathbb{N}$ large

$$\frac{E}{\varepsilon} = -i\left(\frac{\ln(\pi k)}{\pi} - \ln\sin\frac{\pi(m_2 - m_1)}{q}\right) + \frac{m_2 + m_1}{q} + o(1)$$
(5)

where $o(1) \xrightarrow[k \to +\infty]{} 0.$

Representation (5) not uniform in q, p, m_1 and m_2 : uniformity requires $\frac{q \ln k}{k}$ and $\frac{1}{k} \ln \left| \frac{S_q(p,m_1)}{S_q(p,m_2)} \right|$ remain small.

The low lying resonances when $\omega = 0$

Assume first $\omega = 0$.

F. Klopp (Université Pierre et Marie Curie)

By Theorem 2.2, $(b(\varepsilon)r(E))^{-1} = \sqrt{z}e^{\sqrt{z}+O(\frac{\ln^2 z}{\sqrt{z}})} + e^{O(\frac{\sqrt{z}}{\ln z})}, \quad z = e^{2i\pi E/\varepsilon}.$ Let $B_{\varepsilon} = \{E \in \mathbb{C} : \operatorname{Im} E \leq 0, 0 \leq \operatorname{Re} E \leq \varepsilon\}$ (as resonances on ε periodic ladders). Above representation implies

Stark-Wannier ladders and cubic exponential sum

Corollary

Assume $\omega = 0$. the resonances located in B_{ε} have the following properties :

- there exists C > 0 s.t., for sufficiently large y > 0, the resonances in $B_{\varepsilon} \cap {\text{Im } E < -\varepsilon y}$ are located in the domain $|\text{Re } E \varepsilon/2| \le C\varepsilon^2/|\text{Im } E|$;
- *let* n(y) *be the number of resonances in the rectangle* $[0, \varepsilon] i[0, \varepsilon y]$ *; one has*

$$n(y) = \frac{1}{\pi} e^{\pi y + o(1)}$$
 as $y \to \infty$.

When $\omega = 0$, difficult to describe resonances: it is not an asymptotic problem. Indeed, in a neighborhood of the line $\left\{\frac{\text{Re}E}{\varepsilon} = \frac{1}{2} \mod 1\right\}$, resonances determined by first Fourier coefficients of 1/r.

16/12/2015

9/13

The main steps of the proof

Recall eq. (2) $-\psi''(x) + (v(x) - \varepsilon x)\psi(x) = E\psi(x)$, $x \in \mathbb{C}$; and want to construct Buslaev's solutions with asymptotics

$$\psi_{-}(x,E) = \frac{1}{\sqrt[4]{-\varepsilon x - E}} e^{-\int_{x}^{-E/\varepsilon} \sqrt{-\varepsilon t - E} dt + o(1)}, \quad x \to -\infty,$$
$$\psi_{+}(x,E) = \frac{1}{\sqrt[4]{\varepsilon x + E}} e^{i\int_{-E/\varepsilon}^{x} \sqrt{\varepsilon t + E} dt + o(1)}, \quad x \to +\infty.$$

 $\psi(x, E)$ solution $\Longrightarrow \psi(x+1, E-\varepsilon)$ also solution.

Consistent solutions: $\psi(x+1, E-\varepsilon) = \psi(x, E)$.

Asymptotics of Buslaev solutions are consistent.

So find consistent solutions with Buslaev asymptotics.

Monodromy matrix: pick $\psi(x, E)$ solution so that $\psi(x+1, E-\varepsilon)$ linearly independent; define *M*

$$\begin{pmatrix} \psi(x+1,E-\varepsilon)\\ \psi(x+2,E-2\varepsilon) \end{pmatrix} = M(E) \begin{pmatrix} \psi(x,E)\\ \psi(x+1,E-\varepsilon) \end{pmatrix} \implies M(E) \sim \begin{pmatrix} 0 & 1\\ -1 & d(E) \end{pmatrix}.$$

Monodromy equation: solve $V(E - \varepsilon) = M(E)V(E)$, $V \ge 2 \times 2$ matrix \Longrightarrow

 $\begin{pmatrix} \Psi(x,E) \\ \Psi(x+1,E-\varepsilon) \end{pmatrix} := V^{-1}(E) \begin{pmatrix} \psi(x,E) \\ \psi(x+1,E-\varepsilon) \end{pmatrix}$ consistent basis.

F. Klopp (Université Pierre et Marie Curie) Stark-Wannier ladders and cubic exponential sum

16/12/2015 11 / 13

WKB analysis: used to construct the monodromy basis i.e. to compute *d*. This uses special form of periodic potential.

Should work for trigonometric polynomials as potential.

Solve monodromy equation: $M(E) \sim \begin{pmatrix} 0 & 1 \\ -1 & d(E) \end{pmatrix}$

Transfer matrix of a discrete Schrödinger equation \implies solved using continued fraction or discrete Ricatti equation depending on asymptotic regime.

Yields asymptotics of Buslaev's solution at large negative energies \implies asymptotics of the reflection coefficient.

Analysis of the reflection coefficient when $\omega \in \mathbb{Q}$:

renormalization: up to error terms, apply Poisson formula as in number theory for exponential sums. Difficulty: efficient analysis of the error terms.

Analysis of the resonances when $\omega \in \mathbb{Q}$:

when $\omega = p/q \neq 0$: keep two principal terms in series and solve;

when $\omega = 0$: estimate growth and use Levin-Cartan estimates for the zeros of analytic functions.