Distorted plane waves in chaotic scattering

M. Ingremeau

Université Paris-Sud and Institut de Physique Théorique, CEA Saclay Under the supervision of S. Nonnenmacher

December 12, 2015

★ ∃ >

Euclidean near infinity manifold

(X,g) Riemannian manifold such that

$$(X \setminus X_0, g) \cong ((\mathbb{R}^d \setminus B(0, R)), g_{flat}),$$

with X_0 compact, R > 0.

★ ∃ → < ∃</p>

Euclidean near infinity manifold

(X,g) Riemannian manifold such that

$$(X \setminus X_0, g) \cong ((\mathbb{R}^d \setminus B(0, R)), g_{flat}),$$

with X_0 compact, R > 0. For $\xi \in \mathbb{S}^d$, define

$$E^0_h(x;\xi):=e^{jrac{x\cdot\xi}{h}}$$
 if $x\in Xackslash X_0,\;\;0$ otherwise.

3 N

Definition of distorted plane waves

$$E_h(\cdot;\xi) = (1-\chi_0)E_h^0(\cdot;\xi) + E_h^1(\cdot;\xi),$$

where χ_0 is a smooth function equal to one in the interaction region X_0 , and

$$E_h^1(\cdot;\xi) := -R_h[h^2\Delta_g,\chi_0]E_h^0(\cdot;\xi).$$

$$R_h := (h^2 \Delta_g - (1+i0)^2)^{-1}.$$

A B > A B >

Definition of distorted plane waves

$$E_h(\cdot;\xi) = (1-\chi_0)E_h^0(\cdot;\xi) + E_h^1(\cdot;\xi),$$

where χ_0 is a smooth function equal to one in the interaction region X_0 , and

$$E_h^1(\cdot;\xi) := -R_h[h^2\Delta_g,\chi_0]E_h^0(\cdot;\xi).$$

$$R_h := (h^2 \Delta_g - (1+i0)^2)^{-1}.$$

We have

$$(h^2\Delta_g-1)E_h=0.$$

 E_h is called a *distorted plane wave* or an *Eisenstein function*.

More general structure at infinity

 $X \setminus X_0$ can be also be *Hyperbolic near infinity*, or have several Euclidean ends.

Why do we care ?

17 ▶

(*) *) *) *)

æ

Why do we care ?

• Distorted plane waves can be seen as usual plane waves propagated during a long time.

I ≡ ▶ < </p>

A D

Why do we care ?

- Distorted plane waves can be seen as usual plane waves propagated during a long time.
- They are the building block of scattering theory.

★ ∃ →

A D

Why do we care ?

- Distorted plane waves can be seen as usual plane waves propagated during a long time.
- They are the building block of scattering theory.
- They are a family of eigenfunctions of $-h^2\Delta$, and we can ask the same questions as in the case of compact manifolds.

(4) (2) (4)

Why do we care ?

- Distorted plane waves can be seen as usual plane waves propagated during a long time.
- They are the building block of scattering theory.
- They are a family of eigenfunctions of -h²Δ, and we can ask the same questions as in the case of compact manifolds. Semiclassical measures ?

Why do we care ?

- Distorted plane waves can be seen as usual plane waves propagated during a long time.
- They are the building block of scattering theory.
- They are a family of eigenfunctions of -h²Δ, and we can ask the same questions as in the case of compact manifolds. Semiclassical measures ? Nodal sets ?

Why do we care ?

- Distorted plane waves can be seen as usual plane waves propagated during a long time.
- They are the building block of scattering theory.
- They are a family of eigenfunctions of -h²Δ, and we can ask the same questions as in the case of compact manifolds.
 Semiclassical measures ? Nodal sets ? L^p estimates ?

Classical dynamics

Geodesic flow:

$$\Phi^t: T^*X \longrightarrow T^*X.$$

Incoming/ Outgoing tails:

 $\Gamma^{\pm} := \{ \rho \in S^*X; \{ \Phi^t(\rho), \pm t \leq 0 \} \text{ is a bounded subset of } S^*X \}.$

Trapped set:

$$K:=\Gamma^+\cap\Gamma^-.$$

A B + A B +

A D

Warning : (E_h) might not be bounded in L^2_{loc} uniformly with h!Recall that

$$E_h(\cdot;\xi) = \chi_0 E_h^0(\cdot;\xi) - R_h[h^2 \Delta_g, \chi_0] E_h^0(\cdot;\xi).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Warning : (E_h) might not be bounded in L^2_{loc} uniformly with h!Recall that

$$E_h(\cdot;\xi) = \chi_0 E_h^0(\cdot;\xi) - R_h[h^2 \Delta_g, \chi_0] E_h^0(\cdot;\xi).$$

If $K = \emptyset$, then (Burg 2000, Vodev 2002)

$$\|\chi R_h \chi\|_{L^2 \to L^2} \leq \frac{C}{h}.$$

同 ト イ ヨ ト イ ヨ ト

Warning : (E_h) might not be bounded in L^2_{loc} uniformly with h!Recall that

$$E_h(\cdot;\xi) = \chi_0 E_h^0(\cdot;\xi) - R_h[h^2 \Delta_g, \chi_0] E_h^0(\cdot;\xi).$$

If $K = \emptyset$, then (Burg 2000, Vodev 2002)

$$\|\chi R_h \chi\|_{L^2 \to L^2} \leq \frac{C}{h}.$$

If $K \neq \emptyset$, then (Bony-Burg-Ramond 2012)

$$\|\chi R_h \chi\|_{L^2 \to L^2} \ge \frac{C |\log h|}{h}$$

同 ト イ ヨ ト イ ヨ ト

Micro-local limits in a general setting

Theorem (Dyatlov-Guillarmou 2013)

Suppose K has zero Liouville measure. Then for almost every $\xi \in \partial \overline{X}$, there exists a Radon measure μ_{ξ} on S*X such that for each $a \in C_c^{\infty}(T^*X)$, we have

$$\begin{split} \lim_{h \to 0} h^{-1} \Big\| \langle Op_h(a) E_h(\lambda \xi), E_h(\lambda \xi) \rangle_{L^2(X)} \\ - \int_{S^*X} a \mathrm{d} \mu_{\xi} \Big\|_{L^1_{\xi,\lambda}(\partial \overline{X} \times [1,1+h])} = 0. \end{split}$$

We have $d\mu_{\xi} = \lim_{t \to \infty} (\Phi^t)_* (|(1 - \chi_0(x))|^2 dx d_{\{p=\xi\}}).$

(人間) ト く ヨ ト く ヨ ト

Hyperbolic plane waves

Consider $X = \mathbb{H}^d$ in the half-space model. Let $|\cdot|$ denote the Euclidean norm in \mathbb{R}^d . Then for all $\xi \in \partial \mathbb{H}^d$,

$$E_h^0(z;\xi) := \left(\frac{z_1}{|z-\xi|^2}\right)^{1/2-i/h}$$

is the incoming wave from direction ξ . It satisfies

$$(-h^2\Delta-rac{(d-1)^2}{4})E_h^0=E_h^0.$$

3 N

The case of convex co-compact hyperbolic manifolds

 $X = \Gamma ackslash \mathbb{H}^d$, Γ convex co-compact, $\xi \in \partial X$.

$$E_h(x;\xi) = \sum_{\gamma \in \Gamma} E_h^0(\gamma x;\xi).$$
$$\delta_{\Gamma} := dim_{Haus}(\Lambda_{\Gamma}),$$

where Λ_{Γ} is the limit set of Γ .

3 N

The case of convex co-compact hyperbolic manifolds

 $X = \Gamma \setminus \mathbb{H}^d$, Γ convex co-compact, $\xi \in \partial X$.

$$E_h(x;\xi) = \sum_{\gamma \in \Gamma} E_h^0(\gamma x;\xi).$$
$$\delta_{\Gamma} := dim_{Haus}(\Lambda_{\Gamma}),$$

where Λ_{Γ} is the limit set of $\Gamma.$

Theorem (Guillarmou-Naud 2011)

Suppose that $\delta_{\Gamma} < (d-1)/2$. Then, for any $a \in C_c^{\infty}(T^*X)$, we have

$$\left\langle Op_h(a)E_h(\xi), E_h(\xi) \right\rangle_{L^2(X)} = \int_{S^*X} a \mathrm{d}\mu_{\xi} + O(h^{\min(1,d-2\delta)}).$$

Here, μ_{ξ} is supported on a fractal set of Hausdorff dimension $d + \delta_{\Gamma}$ containing Γ^+ .

Hyperbolicity

Let X be a Euclidean or Hyperbolic near infinity manifold. We suppose the sectional curvature is everywhere nonpositive, and negative close to the trapped set.

A D

Hyperbolicity

Let X be a Euclidean or Hyperbolic near infinity manifold. We suppose the sectional curvature is everywhere nonpositive, and negative close to the trapped set.

The dynamics is then *hyperbolic* close to K, so for each $\rho \in K$, we can define the unstable Jacobian as

$$J^+(
ho) := rac{d}{dt}\Big|_{t=0} \det \left(d\Phi^t |_{E^+(
ho)}
ight),$$

where $E^+(\rho)$ is the unstable space of ρ .

Topological pressure assumption

For each periodic orbit of p, we write T_p for its period, ρ_p for one of its points, and set $\tilde{J}^+(p) := \int_0^{T_p} J^+(\Phi^t(\rho_p)) dt$. We then define the topological pressure associated to half the unstable Jacobian as

$$P(1/2) := \lim_{T \to \infty} \frac{1}{T} \log \Big(\sum_{T-1 \leq T_p \leq T} \exp \big(\frac{-\tilde{J}^+(p)}{2} \big) \Big).$$

Topological pressure assumption

For each periodic orbit of p, we write T_p for its period, ρ_p for one of its points, and set $\tilde{J}^+(p) := \int_0^{T_p} J^+(\Phi^t(\rho_p)) dt$. We then define the topological pressure associated to half the unstable Jacobian as

$$P(1/2) := \lim_{T \to \infty} \frac{1}{T} \log \Big(\sum_{T-1 \leq T_p \leq T} \exp \big(\frac{-\tilde{J}^+(p)}{2} \big) \Big).$$

Hypothesis

P(1/2) < 0.

- 同 ト - ヨ ト - - ヨ ト

Topological pressure assumption

For each periodic orbit of p, we write T_p for its period, ρ_p for one of its points, and set $\tilde{J}^+(p) := \int_0^{T_p} J^+(\Phi^t(\rho_p)) dt$. We then define the topological pressure associated to half the unstable Jacobian as

$$P(1/2) := \lim_{T \to \infty} \frac{1}{T} \log \Big(\sum_{T-1 \leq T_p \leq T} \exp \big(\frac{-\tilde{J}^+(p)}{2} \big) \Big).$$

Hypothesis

In dimension 2, this is equivalent to saying that

 $dim_{Haus}(K) < 2$, where dim_{Haus} is the Hausdorff dimension.

伺 と く ヨ と く ヨ と

Statement of the results

Let X be Euclidean or Hyperbolic near infinity, with sectional curvature everywhere non-positive, and negative close to K. Suppose the topological pressure inequality holds.

Theorem (I.)

Let $\chi\in C^\infty_c(X).$ For any $r>0,\,\ell>0,$ there exists $M_{r,\ell}>0$ such that we have

$$\chi(x)E_h(x;\xi) = \sum_{n=0}^{\lfloor M_{r,\ell} \mid \log h \mid \rfloor} \sum_{j \in \mathcal{J}_n} e^{i\phi_{j,n}(x;\xi)/h} a_{j,n}(x;\xi,h) + R_r,$$

where $|\mathcal{J}_n|$ grows exponentially with n, and

$$\|R_r\|_{C^\ell}=O(h^r).$$

< (1) > < (1) > <

Main Property of the amplitudes

$$\chi(x)E_h(x;\xi) = \sum_{n=0}^{\lfloor M_{r,\ell} \mid \log h \mid \rfloor} \sum_{j \in \mathcal{J}_n} e^{i\phi_{j,n}(x;\xi)/h} a_{j,n}(x;\xi,h) + R_r$$

C^{ℓ} bounds

For any $\ell \in \mathbb{N}$, $\epsilon > 0$, there exists $C_{\ell,\epsilon}$ such that

$$\sum_{j\in\mathcal{J}_n}\|a_{j,n}\|_{C^\ell}\leq C_{\ell,\epsilon}e^{n(P(1/2)+\epsilon)}.$$

A 10

I ≡ ▶ < </p>

Corollaries(1)

Corollary (C^{ℓ} bounds)

For any $\ell \in \mathbb{N}$, we have

$$\|\chi E_h\|_{C^\ell} \leq \mathcal{C}_\ell h^{-\ell}.$$

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Main property of the phase

$$\chi(x)E_h(x;\xi) = \sum_{n=0}^{\lfloor M_{r,l} \mid \log h \mid \rfloor} \sum_{j \in \mathcal{J}_n} e^{i\phi_{j,n}(x;\xi)/h} a_{j,n}(x;\xi,h) + R_r$$

Distance between the Lagrangian leaves

$$|\partial \phi_{j,n}(x) - \partial \phi_{j',n'}(x)| > Ce^{b\min(n,n')},$$

where b < 0 is the minimal value taken by the sectional curvature on X.

A 10

→ 3 → 4 3

Corollaries(2)

Corollary (Semiclassical measures)

For any $\epsilon > 0$, for any $a \in C^\infty_c(T^*X)$, we have

$$\langle Op_h(a)E_h(\xi), E_h(\xi)\rangle = \int_{\mathcal{T}^*X} a(x,p) \mathrm{d}\mu_{\xi}(x,p) + O(h^{\min(1,\frac{|P(1/2)|}{2|b|}-\epsilon})),$$

with

$$\mathrm{d}\mu_{\xi}(x,p) = \sum_{n=0}^{\infty} \sum_{j \in \mathcal{J}_n} |a_{j,n}^0(x;\xi)|^2 \delta_{\{p=\partial\phi_{j,n}(x;\xi)\}} dx,$$

where $a_{j,n}^0(x;\xi)$ is the principal symbol of $a_{j,n}(x;\xi)$.

- 4 同 6 4 日 6 4 日 6

Corollaries(3)

Let K be a compact subset of X. We define

$$\mathcal{N}_{h,K} := \{x \in K; \Re(E_h)(x) = 0\}.$$

Corollary

There exists C_K such that

$$Haus_{d-1}(\mathcal{N}_{h,\mathcal{K}}) \geq \frac{C_{\mathcal{K}}}{h}.$$

/□ ▶ < 글 ▶ < 글

More general setting

• "
$$h^2 \Delta_g$$
" \longrightarrow " $h^2 \Delta_g + V, V \in C^{\infty}_c(X)$ ".

 "Sectional curvature everywhere nonpositive, and negative close to K" → "K is a hyperbolic set for Φ^t".

More general setting

- Hyperbolicity close to the trapped set.
- Topological pressure assumption.
- Transversality assumption.

More general result

If Π_a is microlocalised close enough to a point in the trapped set, we have:

$$\mathcal{U}_a \Pi_a E_h(x) = \sum_{n=0}^{M_{r,l} \log h} \sum_{j \in \mathcal{J}_n} e^{i\phi_{j,n}(x)/h} a_{j,n}(x) + R_r$$

where \mathcal{U}_a is a FIO quantizing the use of adapted coordinates.

- 4 同 6 4 日 6 4 日 6

Sketch of proof

• Formally, we have

$$e^{-it/h}U(t)(\chi_0 E_h^0 + E_h^1) = E_h,$$

where $U(t) = e^{ith\Delta_g}$.

A B M A B M

э

Sketch of proof

Formally, we have

$$e^{-it/h}U(t)(\chi_0 E_h^0 + E_h^1) = E_h,$$

where $U(t) = e^{ith\Delta_g}$.

• Resolvent estimates + "Hyperbolic Dispersion Estimates" $\implies U(t)E_h^1$ becomes small as $t \longrightarrow \infty$.

A 10

Sketch of proof

Formally, we have

$$e^{-it/h}U(t)(\chi_0 E_h^0 + E_h^1) = E_h,$$

where $U(t) = e^{ith\Delta_g}$.

- Resolvent estimates + "Hyperbolic Dispersion Estimates" $\implies U(t)E_h^1$ becomes small as $t \longrightarrow \infty$.
- We have to study $U(t)\chi_0 E_h^0$ for long times. We want to use the WKB method.

Decomposing the phase space

We introduce $(W_a)_{a \in A}$ a finite open cover of S^*X in T^*X with

- $W_0 = S^*(X \setminus X_0)$ (no-interaction region)
- Some of the W_a are small sets close to K
- The others form an "intermediate region".

For any W_a close to the trapped set, we can equip it with an "adapted" system of symplectic coordinates. They are centred on $\rho_a \in K \cap W_a$, with axes tangent to the stable and unstable directions of the dynamics.

Evolution of Lagrangian manifolds

Incoming Lagrangian manifold:

$$\Lambda_{\xi} := \{ (x,\xi), x \notin X_0 \}.$$

We need to understand

$$\Lambda_{\alpha} := W_{\alpha_{N}} \cap \Phi^{1}(...\Phi^{1}(W_{\alpha_{2}} \cap \Phi^{1}(W_{\alpha_{1}} \cap \Lambda_{\xi}))...)$$

< ≣ > <

Evolution of Lagrangian manifolds

Incoming Lagrangian manifold:

$$\Lambda_{\xi} := \{(x,\xi), x \notin X_0\}.$$

We need to understand

$$\Lambda_{\alpha} := W_{\alpha_{N}} \cap \Phi^{1}(...\Phi^{1}(W_{\alpha_{2}} \cap \Phi^{1}(W_{\alpha_{1}} \cap \Lambda_{\xi}))...)$$

From the "Inclination lemma", we can show that it is a finite union of a bounded number of Lagrangian manifolds, close to the unstable manifold.

4 3 b

Decomposition of the propagator

We take $(\Pi_a)_{a \in A}$ a quantum partition of unity on T^*X , with Π_a micro-supported in W_a . If $\alpha \in A^N$, define

$$egin{aligned} &U_lpha := \mathsf{\Pi}_{lpha_{N}} U(1) \mathsf{\Pi}_{lpha_{N-1}} U(1) ... U(1) \mathsf{\Pi}_{lpha_{1}} . \ &U(N) = \sum_{lpha \in \mathcal{A}^{N}} U_lpha + O(h^\infty). \end{aligned}$$

Each $U_{\alpha}\chi_0 E_h^0$ is a Lagrangian state, and we can estimate the norm of its symbol thanks to hyperbolicity and topological pressure.

Back to the decomposition

$$egin{aligned} \chi(x)E_h(x) &= \chi\sum_{lpha\in A^N}U_lpha\chi_0E_h^0+O(h^{r_N})\ &= \sum_{n=0}^{M_{r,l}|\log h|}\sum_{j\in\mathcal{J}_n}e^{i\phi_{j,n}(x)/h}a_{j,n}(x)+R_r. \end{aligned}$$

n is the time spent inside the interaction region, and each $e^{i\phi_{j,n}(x)/h}a_{j,n}(x)$ corresponds to one of the Lagrangian states composing $U_{\alpha}\chi_{0}E_{h}^{0}$.

.

Proof of Corollary 3

We use the Dong-Sogge-Zelditch formula: for any $f \in C_c^{\infty}(X)$,

$$\int_X \left((-h^2 \Delta + 1)f \right) |\Re(E_h)| dV = h^2 \int_{\mathcal{N}_h} f |\nabla \Re(E_h)| dS.$$

Therefore,

$$\int_{\mathcal{K}} |\Re(E_h)| \approx h^2 \int_{\mathcal{N}_{h,K}} |\nabla \Re(E_h)| dS \leq h^2 \|\nabla E_h\|_{L^{\infty}} Haus_{d-1}(\mathcal{N}_{h,K}).$$

To bound the left-hand side, we use an equidistribution property.

伺 ト イ ヨ ト イ ヨ ト

Thank you for your attention !

- 4 同 6 4 日 6 4 日 6

э