> Jérémy Faupin

Lindblad operators and quantum dynamical semigroups

Main results

Ideas of the proofs

On Scattering theory for Lindblad operators

Jérémy Faupin

Université de Lorraine

Conference "Semiclassical Analysis and Non-self-adjoint Operators", CIRM, December 2015

Joint work with M. Falconi, J. Fröhlich and B. Schubnel

Jérémy Faupin

Lindblad operators and quantum dynamical semigroups

Main results

Ideas of the proofs

1 Lindblad operators and quantum dynamical semigroups

2 Main results

3 Ideas of the proofs

Jérémy Faupin

Lindblad operators and quantum dynamical semigroups

Main results

Ideas of the proofs Lindblad operators, quantum dynamical semigroups

Physical system

On Scattering theory for Lindblad operators

> Jérémy Faupin

Lindblad operators and quantum dynamical semigroups

Main results

Ideas of the proofs

Quantum system

- Quantum particle
- Quantum "target" localized in a suitable sense
- Environment

Hilbert space

- Hilbert space for the particle \mathcal{H}_p
- Hilbert space for the target \mathcal{H}_t
- Hilbert space for the environment \mathcal{H}_E
- Total Hilbert space

 $\mathcal{H}_{\rm tot} = \mathcal{H}_{p} \otimes \mathcal{H}_{t} \otimes \mathcal{H}_{E}.$

Hamiltonian

 $H_{\mathrm{tot}} = H_p \otimes \mathrm{Id} \otimes \mathrm{Id} \ + \mathrm{Id} \otimes H_t \otimes \mathrm{Id} + \mathrm{Id} \otimes \mathrm{Id} \otimes H_E + H_I.$

Reduced dynamics

Schrödinger picture

- (Mixed) states of the full system = density matrices $\rho \in \mathcal{J}_1(\mathcal{H}_{\mathrm{tot}}), \ \rho \geq 0, \ \mathrm{tr}(\rho) = 1$
- Evolution in the Schrödinger picture : $\rho(t) = e^{-itH_{tot}}\rho e^{itH_{tot}}$

Reduced dynamics

- Initial state of the target and the environment : fixed reference state ρ_{tF}^{R}
- Reduced dynamics : for any initial state $\rho_p \in \mathcal{J}_1(\mathcal{H}_p)$ of the particle,

$$\rho_{P}(t) = \operatorname{tr}_{t,E} \left(e^{-itH_{\text{tot}}} (\rho_{P} \otimes \rho_{t,E}^{R}) e^{itH_{\text{tot}}} \right)$$

Dynamical map

(Irreversible) dynamics for the particle = map $\Lambda : [0, \infty) \ni t \mapsto \Lambda_t \in \mathcal{L}(\mathcal{J}_1(\mathcal{H}_p))$ s.t.

- $t \mapsto \Lambda_t$ is a strongly continuous one-parameter semigroup on $\mathcal{J}_1(\mathcal{H}_p)$
- $\forall t \geq 0, \Lambda_t$ is trace preserving
- $\forall t \geq 0, \Lambda_t$ is positive

On Scattering theory for Lindblad operators

> Jérémy Faupin

Lindblad operators and quantum dynamical semigroups

Main results

Ideas of the proofs

> Jérémy Faupin

Lindblad operators and quantum dynamical semigroups

Main results

Ideas of the proofs

Quantum dynamical semigroups and their generators (I)

Theorem ([Kossakowski '72], [Ingarden, Kossakowski '75])

Let \mathcal{H} be a complex, separable Hilbert space. Necessary and sufficient conditions for an operator L on $\mathcal{J}_1^{\mathrm{sa}}(\mathcal{H})$ to be the generator of a strongly continuous, trace preserving, positive one-parameter semigroup on $\mathcal{J}_1^{\mathrm{sa}}(\mathcal{H})$ are that

- $\mathcal{D}(L)$ is dense in $\mathcal{J}_1^{\mathrm{sa}}(\mathcal{H})$
- $\operatorname{Ran}(\operatorname{Id} L) = \mathcal{J}_1^{\operatorname{sa}}(\mathcal{H})$
- L is dissipative (i.e. $tr(sgn(\rho)L\rho) \leq 0$ for all $\rho \in \mathcal{D}(L)$)
- $\operatorname{tr}(L\rho) = 0$ for all $\rho \in \mathcal{D}(L)$

Definition ([Lindblad '76])

Let \mathcal{H} be a complex, separable Hilbert space. A quantum dynamical semigroup on $\mathcal{J}_1(\mathcal{H})$ is a map $\Lambda : [0, \infty) \ni t \mapsto \Lambda_t \in \mathcal{L}(\mathcal{J}_1(\mathcal{H}))$ s.t.

- $t \mapsto \Lambda_t$ is a strongly continuous one-parameter semigroup on $\mathcal{J}_1(\mathcal{H})$
- $\forall t \geq 0$, Λ_t is trace preserving
- ∀t ≥ 0, Λ_t is completely positive (i.e. ∀n ∈ N, Λ_t ⊗ Id ∈ L(J₁(H ⊗ Cⁿ)) is positive)

> Jérémy Faupin

Lindblad operators and quantum dynamical semigroups

Main results

Ideas of the proofs

Quantum dynamical semigroups and their generators (II)

Theorem ([Lindblad '76])

Let ${\mathcal H}$ be a complex, separable Hilbert space. The generator

$$\mathcal{L} := \operatorname{s-} \lim_{t \to 0} (-it)^{-1} (\Lambda_t - \operatorname{Id})$$

of a norm continuous quantum dynamical semigroup $t \mapsto \Lambda_t \in \mathcal{L}(\mathcal{J}_1(\mathcal{H}))$ is of the form

$$\mathcal{L} = \underbrace{[H_0, \cdot]}_{\mathrm{ad}(H_0)} - \frac{i}{2} \sum_{j \in \mathbb{N}} \{ C_j^* C_j, \cdot \} + i \sum_{j \in \mathbb{N}} C_j \cdot C_j^*,$$
(1)

with H_0 self-adjoint and bounded and $C_j \in \mathcal{L}(\mathcal{H})$. Write $\Lambda_t = \{e^{-it\mathcal{L}}\}$.

Definition

An operator of the form (1) with H_0 , C_i unbounded is called a Lindblad operator.

> Jérémy Faupin

Lindblad operators and quantum dynamical semigroups

Main results

Ideas of the proofs

Quantum dynamical semigroups and their generators (III)

Proposition ([Davies '76])

Let H_0 be a self-adjoint operator on \mathcal{H} and let $C_j \in \mathcal{L}(\mathcal{H})$ for $j \in \{1, 2, ..., n\}$. Then the operator \mathcal{L} in (1) with domain

 $\mathcal{D}(\mathcal{L}) = \mathcal{D}(\mathrm{ad}(\mathcal{H}_0)) = \big\{ \rho \in \mathcal{J}_1(\mathcal{H}), \rho(\mathcal{D}(\mathcal{H}_0)) \subset \mathcal{D}(\mathcal{H}_0) \text{ and }$

 $H_0\rho - \rho H_0$ defined on $\mathcal{D}(H_0)$ extends to an element of $\mathcal{J}_1(\mathcal{H})$

generates a quantum dynamical semigroup $\{e^{-it\mathcal{L}}\}$ on $\mathcal{J}_1(\mathcal{H})$

Assumption

We suppose that the reduced dynamics for the particle is given by a quantum dynamical semigroup associated with a Lindblad operator

$$\mathcal{L} = [H_0, \cdot] - \frac{i}{2} \{ C^* C, \cdot \} + iC \cdot C^*$$

with H_0 a self-adjoint operator and $C \in \mathcal{L}(\mathcal{H}_{\rho})$. If the particle is initially in the state $\rho \in \mathcal{J}_1(\mathcal{H}_{\rho}), \rho \geq 0$, tr $(\rho) = 1$, the state of the particle at time $t \geq 0$ is given by $\rho(t) = e^{-it\mathcal{L}}\rho$. It solves the quantum master equation (quantum mechanical Fokker-Planck equation)

$$i
ho'(t) = \mathcal{L}
ho(t)$$

> Jérémy Faupin

Lindblad operators and quantum dynamical semigroups

Main results

Ideas of the proofs

Scattering theory for Lindblad operators

References

[Davies '80], [Alicki '81], [Alicki, Frigerio '83]

Free dynamics

Generated by $\mathcal{L}_0 := [H_0, \cdot]$

Aim

Suppose that the interaction is "not too strong". Prove that for any initial state ρ which is not a "bound state", there exists a scattering state ρ_+ such that

$$\lim_{\to +\infty} \left\| e^{-it\mathcal{L}} \rho - e^{-it\mathcal{L}_0} \rho_+ \right\|_{\mathcal{J}_1(\mathcal{H})} = 0$$

Wave operators

$$\Omega^+(\mathcal{L},\mathcal{L}_0):= \underset{t \to +\infty}{\operatorname{s-lim}} e^{-it\mathcal{L}} e^{it\mathcal{L}_0}, \quad \Omega^-(\mathcal{L}_0,\mathcal{L}):= \underset{t \to +\infty}{\operatorname{s-lim}} e^{it\mathcal{L}_0} e^{-it\mathcal{L}_0}$$

Scattering operator

$$\sigma := \Omega^{-}(\mathcal{L}_{0},\mathcal{L})\Omega^{+}(\mathcal{L},\mathcal{L}_{0})$$

Jérémy Faupin

Lindblad operators and quantum dynamical semigroups

Main results

Ideas of the proofs

Main results

Jérémy Faupin

Lindblad operators and quantum dynamical semigroups

Main results

Ideas of the proofs

with

Lindblad operator

Let H_0 be self-adjoint on \mathcal{H} and $C \in \mathcal{L}(\mathcal{H})$. For all $\rho \in \mathcal{D}(\mathrm{ad}(H_0))$,

$$\mathcal{L}(\rho) = H_0 \rho - \rho H_0 - \frac{i}{2} C^* C \rho - \frac{i}{2} \rho C^* C + i C \rho C^*$$
$$= H \rho - \rho H^* + i C \rho C^*,$$

$$H:=H_0-\frac{i}{2}C^*C.$$

Theorem ([Davies '80], [Falconi, F., Fröhlich, Schubnel])

Suppose that there exists a dense subset $\mathcal{D} \subset \mathcal{H}$ such that, for all $u \in \mathcal{D}$,

$$\int_{\mathbb{R}} \left\| C^* C e^{-itH_0} u \right\|_{\mathcal{H}} dt < \infty.$$

Let $\mathcal{L}_0(\rho) = H_0\rho - \rho H_0$. Then

$$\Omega^+(\mathcal{L},\mathcal{L}_0) = \operatorname{s-lim}_{t \to +\infty} e^{-it\mathcal{L}} e^{it\mathcal{L}_0} \text{ exists on } \mathcal{J}_1(\mathcal{H}).$$

Results (I)

Results (II)

On Scattering theory for Lindblad operators

Jérémy Faupin

Lindblad operators and quantum dynamical semigroups

Main results

Ideas of the proofs

Theorem ([Falconi, F., Fröhlich, Schubnel])

Suppose that there exists a positive constant $\mathrm{c}_0<2$ such that

$$\int_{\mathbb{R}} \left\| C e^{-itH_0} u \right\|_{\mathcal{H}}^2 dt \leq c_0^2 \|u\|_{\mathcal{H}}^2,$$

for all $u \in \mathcal{H}$. Let $\mathcal{L}_0(\rho) = H_0\rho - \rho H_0$. Then $\Omega^+(\mathcal{L}, \mathcal{L}_0) = \underset{t \to +\infty}{\text{s-lim}} e^{-it\mathcal{L}} e^{it\mathcal{L}_0} \text{ exists on } \mathcal{J}_1(\mathcal{H}),$

$$\Omega^{-}(\mathcal{L}_{0},\mathcal{L}) = \underset{t \to +\infty}{\text{s-lim}} e^{it\mathcal{L}_{0}} e^{-it\mathcal{L}} \text{ exists on } \mathcal{J}_{1}(\mathcal{H})$$

If in addition $c_0 < 2 - \sqrt{2}$, then $\Omega^+(\mathcal{L}, \mathcal{L}_0)$ and $\Omega^-(\mathcal{L}_0, \mathcal{L})$ are invertible in $\mathcal{L}(\mathcal{J}_1(\mathcal{H}))$ and the operators \mathcal{L} and \mathcal{L}_0 are similar.

Jérémy Faupin

Lindblad operators and quantum dynamical semigroups

Main results

Ideas of the proofs

Kato smoothness

Main assumption

• If there exists $\mathrm{c}_0>0$ such that

$$\int_{\mathbb{R}} \left\| C e^{-itH_0} u \right\|_{\mathcal{H}}^2 dt \leq c_0^2 \|u\|_{\mathcal{H}}^2,$$

for all $u \in \mathcal{H}$, C is said to be H_0 -smooth ([Kato '66])

• It is equivalent to

$$\sup_{z\in\mathbb{C}\setminus\mathbb{R}}\left\|C\left((H_0-z)^{-1}-(H_0-\bar{z})^{-1}\right)C^*\right\|_{\mathcal{H}}\leq 2\pi c_0.$$

• Useful observation : the following estimate is *always* satisfied :

$$\int_0^\infty \left\| C e^{-itH} u \right\|_{\mathcal{H}}^2 dt \le \|u\|_{\mathcal{H}}^2.$$

Jérémy Faupin

Lindblad operators and quantum dynamical semigroups

Main results

Ideas of the proofs

Weaker assumptions

Theorem ([Falconi, F., Fröhlich, Schubnel])

Suppose that C is $H_0\text{-smooth}$ and that there exists a positive constant $\tilde{c}_0 < 1$ such that

$$\int_{0}^{\infty} \left\| C e^{-itH} u \right\|_{\mathcal{H}}^{2} dt \leq \tilde{c}_{0}^{2} \| u \|_{\mathcal{H}}^{2}, \tag{2}$$

for all $u \in \mathcal{H}$. Let $\mathcal{L}_0(\rho) = H_0\rho - \rho H_0$. Then

$$\begin{split} \Omega^{+}(\mathcal{L},\mathcal{L}_{0}) &= \underset{t \to +\infty}{\text{s-lim}} e^{-it\mathcal{L}} e^{it\mathcal{L}_{0}} \text{ exists on } \mathcal{J}_{1}(\mathcal{H}), \\ \Omega^{-}(\mathcal{L}_{0},\mathcal{L}) &= \underset{t \to +\infty}{\text{s-lim}} e^{it\mathcal{L}_{0}} e^{-it\mathcal{L}} \text{ exists on } \mathcal{J}_{1}(\mathcal{H}). \end{split}$$

If in addition $\tilde{c}_0 < 1/2$, then $\Omega^+(\mathcal{L}, \mathcal{L}_0)$ and $\Omega^-(\mathcal{L}_0, \mathcal{L})$ are invertible in $\mathcal{L}(\mathcal{J}_1(\mathcal{H}))$ and the operators \mathcal{L} and \mathcal{L}_0 are similar.

Remark

Assumption that (2) holds with $\tilde{c}_0 < 1$ is equivalent to assuming that the inverse semigroup $\{e^{itH}\}_{t>0}$ is uniformly bounded in $\mathcal{L}(\mathcal{H})$.

Examples (I)

On Scattering theory for Lindblad operators

Jérémy Faupin

Lindblad operators and quantum dynamical semigroups

Main results

Ideas of the proofs

Non-relativistic quantum particle in \mathbb{R}^3

- Hilbert space $L^2(\mathbb{R}^3)\otimes \mathfrak{h}$ (where \mathfrak{h} is a complex, finite dimensional separable Hilbert space)
- Effective dynamics of the particle generated by

$$\mathcal{L} := \mathrm{ad}(-\Delta + \mathcal{H}_{\mathrm{int}}) - rac{i}{2} \{C^*C, \cdot\} + iC \cdot C^* = \mathcal{L}_0 - rac{i}{2} \{C^*C, \cdot\} + iC \cdot C^*,$$

with $H_{\rm int} \ge 0$ acting on \mathfrak{h} .

Assumptions

- Explicit form may be very complicated
- Rigorous derivation = open problem in general ([Davies '74] Weak coupling limit for finite dimensional system coupled to a free heat bath)
- Heuristic argument : assuming that the interaction with the environment induces decoherence in position space, it is "reasonable" to assume that

$$C = g(x) \otimes S$$

with $S \in \mathcal{L}(\mathfrak{h})$ and $g : \mathbb{R}^3 \to \mathbb{R}$ with sufficiently fast decay.

Jérémy Faupin

Lindblad operators and quantum dynamical semigroups

Main results

Ideas of the proofs

Examples (II)

Corollary ([Falconi, F., Fröhlich, Schubnel])

Suppose that $\|C\|_{\mathcal{L}(\mathcal{H})} < 2\pi^{-1/2}$, then $\Omega^+(\mathcal{L}, \mathcal{L}_0)$ and $\Omega^-(\mathcal{L}_0, \mathcal{L})$ exist on $\mathcal{J}_1(L^2(\mathbb{R}^3 \otimes \mathfrak{h}))$. If $\|C\|_{\mathcal{L}(\mathcal{H})} < (2 - \sqrt{2})\pi^{-1/2}$, then $\Omega^+(\mathcal{L}, \mathcal{L}_0)$ and $\Omega^-(\mathcal{L}_0, \mathcal{L})$ exist and are invertible.

Optimal smoothness estimate

Suffices to use ([Simon '91])

$$\int_{\mathbb{R}} \left\| |x|^{-1} e^{it\Delta} \varphi \right\|_2^2 dt \leq \pi \| arphi \|_2^2$$

for all $\varphi \in L^2(\mathbb{R}^3)$.

Other smoothness inequalities

$$\begin{split} &\int_{\mathbb{R}} \left\| \langle x \rangle^{-1} (1-\Delta)^{\frac{1}{4}} e^{it\Delta} \varphi \right\|_{2}^{2} dt \leq \frac{\pi}{2} \|\varphi\|_{2}^{2}, \\ &\int_{\mathbb{R}} \left\| V(x) e^{it\Delta} \varphi \right\|_{2}^{2} dt \leq \frac{\|V^{2}\|_{\mathrm{R}}}{2\pi} \|\varphi\|_{2}^{2}, \quad \|W\|_{\mathrm{R}}^{2} := \int_{\mathbb{R}^{3}} \frac{|W(x)||W(y)|}{|x-y|^{2}} dx dy. \end{split}$$

Capture (I)

Lindblad operator

Let V be relatively compact w.r.t. H_0 . For all $\rho \in \mathcal{D}(\mathrm{ad}(H_0))$,

$$\mathcal{L}(\rho) = (H_0 + \mathbf{V})\rho - \rho(H_0 + \mathbf{V}) - \frac{i}{2}C^*C\rho - \frac{i}{2}\rho C^*C + iC\rho C^*$$
$$= H\rho - \rho H^* + iC\rho C^*,$$

with

$$H = H_0 + V - \frac{i}{2}C^*C = H_V - \frac{i}{2}C^*C$$

Assumption

The spectrum of H_0 is purely absolutely continuous, the singular continuous spectrum of H_V is empty and H_V has at most finitely many eigenvalues with finite multiplicities. The wave operators

$$W_{\pm}(H_V,H_0) := \underset{t \to \mp \infty}{\operatorname{s-lim}} e^{itH_V} e^{-itH_0}, \quad W_{\pm}(H_0,H_V) := \underset{t \to \mp \infty}{\operatorname{s-lim}} e^{itH_0} e^{-itH_V} \Pi_{\operatorname{ac}}(H_V),$$

exist on $\ensuremath{\mathcal{H}}$ and are asymptotically complete in the sense that

$$\begin{aligned} \operatorname{Ran}(W_{\pm}(H_V,H_0)) &= \operatorname{Ran}(\Pi_{\operatorname{ac}}(H_V)) = \operatorname{Ran}(\Pi_{\operatorname{pp}}(H_V))^{\perp},\\ \operatorname{Ran}(W_{\pm}(H_0,H_V)) &= \mathcal{H}. \end{aligned}$$

On Scattering theory for Lindblad operators

> Jérémy Faupin

Lindblad operators and quantum dynamical semigroups

Main results

Ideas of the proofs

Capture (II)

On Scattering theory for Lindblad operators

Jérémy Faupin

Lindblad operators and quantum dynamical semigroups

Main results

Ideas of the proofs

Subspaces associated to H, H^*

With $H = H_0 + V - \frac{i}{2}C^*C$, consider the subspaces

• $\mathcal{H}_{b}(H) = \text{closure of the vector space generated by the set of eigenvectors with real eigenvalues of H.$

•
$$\mathcal{H}_{d}(H) := \{ u \in \mathcal{H}, \lim_{t \to +\infty} \|e^{-itH}u\| = 0 \}.$$

•
$$\mathcal{H}_{\mathrm{d}}(H^*) := \left\{ u \in \mathcal{H}, \lim_{t \to +\infty} \|e^{itH^*}u\| = 0 \right\}.$$

Definition : Modified wave operator ([Davies '80])

Let Π be the orthogonal projection with kernel $\mathcal{H}_{\mathrm{b}}(H) \oplus \mathcal{H}_{\mathrm{d}}(H)$. Modified wave operator $\tilde{\Omega}^{-}(\mathcal{L}_{0}, \mathcal{L})$ defined by

$$\tilde{\Omega}^{-}(\mathcal{L}_{0},\mathcal{L}):= \underset{t \rightarrow +\infty}{\operatorname{s-lim}} e^{it\mathcal{L}_{0}} \left(\prod e^{-it\mathcal{L}}(\cdot) \Pi \right).$$

Capture (III)

Jérémy Faupin

On Scattering theory for

Lindblad operators

Lindblad operators and quantum dynamical semigroups

Main results

Ideas of the proofs

Theorem ([Falconi, F., Fröhlich, Schubnel])

Suppose that there exists a positive constant $c_V < 2$ such that

 $\int_{\mathbb{R}} \left\| C e^{-itH_V} \Pi_{\mathrm{ac}}(H_V) u \right\|_{\mathcal{H}}^2 dt \leq c_V^2 \|\Pi_{\mathrm{ac}}(H_V) u\|_{\mathcal{H}}^2,$

for all $u \in \mathcal{H}$. Let $\mathcal{L}_0(\rho) = H_0\rho - \rho H_0$. Then the modified wave operator $\tilde{\Omega}^-(\mathcal{L}_0, \mathcal{L})$ exists on $\mathcal{J}_1(\mathcal{H})$. For all $\rho \in \mathcal{J}_1(\mathcal{H})$, $\rho \ge 0$, tr $(\rho) = 1$, we have that

 $0 \leq \operatorname{tr}(\tilde{\Omega}^{-}(\mathcal{L}_{0},\mathcal{L})
ho) \leq 1,$

and tr($\tilde{\Omega}^{-}(\mathcal{L}_{0}, \mathcal{L})\rho$) is interpreted as the probability that the particle initially in the state ρ eventually escapes from the target.

Jérémy Faupin

Lindblad operators and quantum dynamical semigroups

Main results

Ideas of the proofs

Example (I)

Non-relativistic quantum particle in \mathbb{R}^3

Effective dynamics of the particle

$$\begin{split} \mathcal{L} &= \mathrm{ad}(-\Delta + V(\mathsf{x}) + H_{\mathrm{int}}) - \frac{i}{2} \{C^*C, \cdot\} + iC \cdot C \\ &= \mathcal{L}_0 + \mathrm{ad}(V(\mathsf{x})) - \frac{i}{2} \{C^*C, \cdot\} + iC \cdot C^*, \end{split}$$

with $H_{\rm int} \ge 0$ acting on \mathfrak{h} , V real-valued.

Conditions on V

Suppose that

• There exists C > 0 s.t. for all $x \in \mathbb{R}$,

 $|V(x)| \leq C \langle x \rangle^{-2-\varepsilon}, \quad \varepsilon > 0.$

• 0 is neither an eigenvalue nor a resonance of H_V . [Ben-Artzi, Klainerman '91] : there exists $c_1 > 0$ s.t.

$$\int_{\mathbb{R}} \|\langle x \rangle^{-1-\varepsilon} e^{-itH_V} \Pi_{\mathrm{ac}}(H_V) u\|_2^2 dt \leq \mathrm{c}_1^2 \|u\|_2^2,$$

for all $u \in L^2(\mathbb{R}^3)$.

Example (II)

Lindblad operators Jérémy Faupin

On Scattering theory for

Lindblad operators and quantum dynamical semigroups

Main results

Ideas of the proofs

Corollary ([Falconi, F., Fröhlich, Schubnel])

Suppose that the previous conditions on V are satisfied and that

 $\left\| C \langle x \rangle^{1+\varepsilon} \right\|_{\mathcal{L}(\mathcal{H})} < 2c_1^{-1},$

for some $\varepsilon > 0$. Let $\mathcal{L}_0 = \operatorname{ad}(-\Delta + H_{\operatorname{int}})$. Then the modified wave operator $\tilde{\Omega}^-(\mathcal{L}_0, \mathcal{L})$ exists on $\mathcal{J}_1(\mathcal{H})$.

Jérémy Faupin

Lindblad operators and quantum dynamical semigroups

Main results

Ideas of the proofs

Ideas of the proofs

Jérémy Faupin

Lindblad operators and quantum dynamical semigroups

Main results

Ideas of the proofs

Existence of $\Omega^+(\mathcal{L}, \mathcal{L}_0)$

Theorem ([Falconi, F., Fröhlich, Schubnel])

Recall

$$\mathcal{L}(\rho) = H_0 \rho - \rho H_0 - \frac{i}{2} C^* C \rho - \frac{i}{2} \rho C^* C + i C \rho C^*$$
$$= \mathcal{L}_0(\rho) - \frac{i}{2} C^* C \rho - \frac{i}{2} \rho C^* C + i C \rho C^*$$

Suppose that there exists a dense subset $\mathcal{D} \subset \mathcal{H}$ such that, for all $u \in \mathcal{D}$,

$$\int_{\mathbb{R}} \left\| C^* C e^{-itH_0} u \right\|_{\mathcal{H}} dt < \infty.$$

Then

$$\Omega^+(\mathcal{L},\mathcal{L}_0) = \mathop{ ext{s-lim}}\limits_{t
ightarrow +\infty} e^{-it\mathcal{L}} e^{it\mathcal{L}_0} ext{ exists on } \mathcal{J}_1(\mathcal{H}).$$

Idea of the proof ([Davies '80])

- Cook's argument
- Cyclicity of the trace

> Jérémy Faupin

operators

Main results

Ideas of the proofs

Existence of $\Omega^{-}(\mathcal{L}_{0}, \mathcal{L})$ (I)

Theorem ([Falconi, F., Fröhlich, Schubnel])

Suppose that there exists a positive constant $c_0 < 2$ such that

$$\int_{\mathbb{R}} \left\| C e^{-itH_0} u \right\|_{\mathcal{H}}^2 dt \leq c_0^2 \|u\|_{\mathcal{H}}^2,$$

for all $u \in \mathcal{H}$. Then

$$\Omega^{-}(\mathcal{L}_{0},\mathcal{L})= \operatorname*{s-lim}_{t
ightarrow+\infty} e^{it\mathcal{L}_{0}}e^{-it\mathcal{L}} ext{ exists on } \mathcal{J}_{1}(\mathcal{H}).$$

Idea of the proof

• Let $\mathcal{L}_H(\rho) = H\rho - \rho H^*$, with $H = H_0 - iC^*C/2$, and write $it \mathcal{L}_H$). it C = ___it C ____it C = __it C

$$e^{nL_0}e^{-nL} = e^{nL_0}e^{-nL_H} + e^{nL_0}(e^{-nL} - e^{-nL_H})$$

• First term ·

$$e^{it\mathcal{L}_0}e^{-it\mathcal{L}_H}
ho = e^{itH_0}e^{-itH}
ho e^{itH^*}e^{-itH_0} \stackrel{\rightarrow}{\to} W_-
ho W_-^*$$

with $W_{-} = W_{-}(H_{0}, H)$ (assuming we can prove it exists on \mathcal{H})

Jérémy Faupin

Lindblad operators and quantum dynamical semigroups

Main results

Ideas of the proofs

Existence of $\Omega^-(\mathcal{L}_0,\mathcal{L})$ (II)

Idea of the proof

• Second term

$$\begin{split} e^{it\mathcal{L}_{0}}(e^{-it\mathcal{L}}-e^{-it\mathcal{L}_{H}})\rho &= \int_{0}^{t}e^{is\mathcal{L}_{0}}e^{i(t-s)\mathcal{L}_{0}}e^{-i(t-s)\mathcal{L}_{H}}C(e^{-is\mathcal{L}}\rho)C^{*}ds\\ &\xrightarrow[t\to\infty]{}\int_{0}^{\infty}e^{is\mathcal{L}_{0}}W_{-}C(e^{-is\mathcal{L}}\rho)C^{*}W_{-}^{*}ds, \end{split}$$

provided we can justify taking the limit

• Scattering theory for dissipative operators in Hilbert space,

$$W_{+}(H, H_{0}) = \underset{t \to +\infty}{\text{s-lim}} e^{-itH} e^{itH_{0}},$$
$$W_{-}(H_{0}, H) = \underset{t \to +\infty}{\text{s-lim}} e^{itH_{0}} e^{-itH}$$

[Martin '75], [Mochizuki '76], [Davies '78, '80], [Simon '79], [Kadowaki '02]

Jérémy Faupin

Lindblad operators and quantum dynamical semigroups

Main results

Ideas of the proofs

Invertibility of the wave operators

Theorem ([Falconi, F., Fröhlich, Schubnel])

Suppose that there exists a positive constant $\mathrm{c}_0 < 2 - \sqrt{2}$ such that

$$\int_{\mathbb{R}} \left\| C e^{-itH_0} u \right\|_{\mathcal{H}}^2 dt \leq c_0^2 \|u\|_{\mathcal{H}}^2,$$

for all $u \in \mathcal{H}$. Then $\Omega^+(\mathcal{L}, \mathcal{L}_0)$ and $\Omega^-(\mathcal{L}_0, \mathcal{L})$ are invertible in $\mathcal{L}(\mathcal{J}_1(\mathcal{H}))$ and the operators \mathcal{L} and \mathcal{L}_0 are similar.

Idea of the proof

- Introduce $e^{-it\mathcal{L}_H} = e^{-itH} \cdot e^{itH^*}$
- Estimate the Dyson series

> Jérémy Faupin

Lindblad operators and quantum dynamical semigroups

Main results

Ideas of the proofs

Scattering theory for dissipative operators in Hilbert space

Proposition ([Falconi, F., Fröhlich, Schubnel])

Suppose that there exists $\mathrm{c}_0>0$ such that

$$\int_{\mathbb{R}} \left\| C e^{-itH_0} u \right\|_{\mathcal{H}}^2 dt \leq c_0^2 \|u\|_{\mathcal{H}}^2,$$

for all $u \in \mathcal{H}$. Let $H = H_0 - iC^*C/2$. Then

$$W_+(H,H_0) = \underset{t \to +\infty}{\operatorname{s-lim}} e^{-itH} e^{itH_0}, \quad W_-(H_0,H) = \underset{t \to +\infty}{\operatorname{s-lim}} e^{itH_0} e^{-itH_0}$$

exist on ${\mathcal H}$ and

- $W_+(H, H_0)$ is injective,
- $\operatorname{Ran}(W_{-}(H_0, H))$ is dense in \mathcal{H} .

If $c_0 < 2$, then $W_+(H, H_0)$ and $W_-(H_0, H)$ are bijective.

Remark

- Bijectivity in the case where $\mathrm{c}_0 < 2$: result close to [Kato '66]
- Do not need the assumption that $\sup_{z\in\mathbb{C}\setminus\mathbb{R}}\|\mathcal{C}(\mathcal{H}_0-z)^{-1}\mathcal{C}^*\|<\infty$

Jérémy Faupin

Lindblad operators and quantum dynamical semigroups

Main results

Ideas of the proofs

The case of capture

Theorem ([Falconi, F., Fröhlich, Schubnel])

Let $H = H_0 + V - iC^*C/2$. Suppose that there exists a positive constant $c_V < 2$ s.t.

$$\int_{\mathbb{R}} \left\| C e^{-itH_V} \Pi_{\mathrm{ac}}(H_V) u \right\|_{\mathcal{H}}^2 dt \leq c_V^2 \|\Pi_{\mathrm{ac}}(H_V) u\|_{\mathcal{H}}^2,$$

for all $u \in \mathcal{H}$. Then

$$W_+(H,H_0) = \underset{t \to +\infty}{\operatorname{s-lim}} e^{-itH} e^{itH_0}$$

exists on \mathcal{H} , is injective, and its range is equal to

$$\operatorname{Ran}(W_{+}(H,H_{0})) = (\mathcal{H}_{\mathrm{b}}(H) \oplus \mathcal{H}_{\mathrm{d}}(H^{*}))^{\perp}$$

Remark

- Dissipative Schrödinger operators with small imaginary part [Wang, Zhu '14]
- Possible to relax the smallness condition in examples by remarking that if V = 0,

 $\operatorname{Ran}(W_+(H,H_0)) = \left\{ u \in \mathcal{H}, \exists M_u > 0, \forall t \ge 0, \|e^{itH}u\| \le M_u \right\}$

[Goldberg '08] (Schrödinger operators without real resonances)

Jérémy Faupin

Lindblad operators and quantum dynamical semigroups

Main results

Ideas of the proofs

Thank you!