# Spectral gaps and resonance counting for hyperbolic manifolds

#### Semyon Dyatlov (MIT/Clay Mathematics Institute)

December 14, 2015

#### Overview

Resonances: complex characteristic frequencies describing exponential decay of waves in open systems Re  $\lambda_j$  = rate of oscillation,  $- \text{Im } \lambda_j$  = rate of decay

Our setting: convex co-compact hyperbolic manifolds

The high frequency régime  $|\operatorname{Im} \lambda| \leq C$ ,  $|\operatorname{Re} \lambda| \gg 1$ is governed by the set of trapped trajectories, which in our case is determined by the limit set  $\Lambda_{\Gamma}$ 

We give a new spectral gap and fractal Weyl bound for resonances using a "fractal uncertainty principle"

# Hyperbolic manifolds

 $(M,g) = \Gamma \setminus \mathbb{H}^n$  convex co-compact hyperbolic manifold



An example: three-funnel surface with neck lengths  $\ell_1, \ell_2, \ell_3$ 

Resonances: poles of the scattering resolvent

$$R(\lambda) = \left(-\Delta_g - \frac{(n-1)^2}{4} - \lambda^2\right)^{-1} : \begin{cases} L^2(M) \to L^2(M), & \text{Im } \lambda > 0\\ L^2_{\text{comp}}(M) \to L^2_{\text{loc}}(M), & \text{Im } \lambda \le 0 \end{cases}$$

# Hyperbolic manifolds

 $(M,g) = \Gamma \setminus \mathbb{H}^n$  convex co-compact hyperbolic manifold



An example: three-funnel surface with neck lengths  $\ell_1,\ell_2,\ell_3$ 

Resonances: poles of the scattering resolvent

Also correspond to poles of the Selberg zeta function Existence of meromorphic continuation: Patterson '75,'76, Perry '87,'89, Mazzeo–Melrose '87, Guillopé–Zworski '95, Guillarmou '05, Vasy '13

### Plots of resonances



### Plots of resonances



#### Plots of resonances



#### The limit set and $\delta$

 $M = \Gamma \setminus \mathbb{H}^n \text{ hyperbolic manifold} \\ \Lambda_{\Gamma} \subset \mathbb{S}^{n-1} = \partial \overline{\mathbb{H}^n} \text{ the limit set} \\ \delta := \dim_H(\Lambda_{\Gamma}) \in [0, n-1]$ 



Trapped geodesics: both endpoints in  $\Lambda_{\Gamma}$  Forward/backward trapped: one endpoint in  $\Lambda_{\Gamma}$ 

Semyon Dyatlov

Gaps and counting

#### Essential spectral gap

Essential spectral gap of size  $\beta > 0$ :

only finitely many resonances with  $\mathrm{Im}\,\lambda>-\beta$ 

One application: resonance expansions of waves with  $\mathcal{O}(e^{-\beta t})$  remainder

Patterson–Sullivan: the topmost resonance is  $\lambda = i(\delta - \frac{n-1}{2})$ , therefore there is a gap of size  $\beta = \max(0, \frac{n-1}{2} - \delta)$ 

See also Ikawa '88, Gaspard-Rice '89, Nonnenmacher-Zworski '09

### Essential spectral gap

Essential spectral gap of size  $\beta > 0$ :

only finitely many resonances with  $\mathrm{Im}\,\lambda>-\beta$ 

One application: resonance expansions of waves with  $\mathcal{O}(e^{-eta t})$  remainder

Patterson–Sullivan: the topmost resonance is  $\lambda = i(\delta - \frac{n-1}{2})$ , therefore there is a gap of size  $\beta = \max(0, \frac{n-1}{2} - \delta)$ 

See also Ikawa '88, Gaspard-Rice '89, Nonnenmacher-Zworski '09



Asymptotic spectral gap: finitely many resonances with Im  $\lambda > -\beta$ Standard gap:  $\beta_{std} = \max(0, \frac{n-1}{2} - \delta)$ Naud '04, Stoyanov '11 (using Dolgopyat '98): gap of of size  $\frac{n-1}{2} - \delta + \varepsilon$  for  $0 < \delta \leq \frac{n-1}{2}$  and  $\varepsilon > 0$  depending on M

#### Theorem 1 [D–Zahl '15]

There is a gap of size

$$\beta = \frac{3}{8} \left( \frac{n-1}{2} - \delta \right) + \frac{\beta_E}{16}$$

where  $\beta_E \in [0, \delta]$  is the improvement in the asymptotic of additive energy of the limit set. For surfaces, we furthermore have

$$\beta_E > \delta \exp\left[-K(1-\delta)^{-28}\log^{14}(1+C)\right]$$

where C is the constant in the  $\delta$ -regularity of the limit set and K is a global constant. This improves over  $\beta_{\rm std}$  for  $\delta = \frac{1}{2}$  and nearby surfaces, including some with  $\delta > \frac{1}{2}$ 

# Additive energy

 $X(y_0, \alpha) \subset (\alpha \mathbb{Z} \cap [-1, 1])^{n-1}$  discretization of  $\Lambda_{\Gamma}$  projected from  $y_0 \in \Lambda_{\Gamma}$ 



# Additive energy

 $X(y_0, \alpha) \subset (\alpha \mathbb{Z} \cap [-1, 1])^{n-1}$  discretization of  $\Lambda_{\Gamma}$  projected from  $y_0 \in \Lambda_{\Gamma}$ 

Additive energy:

1

$$\begin{aligned} \mathsf{E}_{\mathsf{A}}(y_0,\alpha) &= \#\{(\mathsf{a},\mathsf{b},\mathsf{c},\mathsf{d}) \in \mathsf{X}(y_0,\alpha)^4 \mid \mathsf{a}+\mathsf{b}=\mathsf{c}+\mathsf{d}\} \\ |\mathsf{X}(y_0,\alpha)| &\sim \alpha^{-\delta}, \quad \alpha^{-2\delta} \lesssim \mathsf{E}_{\mathsf{A}}(y_0,\alpha) \lesssim \alpha^{-3\delta} \end{aligned}$$

Definition

 $\Lambda_{\Gamma}$  has improved additive energy with exponent  $\beta_{E} \in [0, \delta]$ , if

$$E_A(y_0, \alpha) \leq C \alpha^{-3\delta + \beta_E}, \quad 0 < \alpha < 1,$$

where C does not depend on  $y_0$ 

Random sets have improved additive energy with  $\beta_E = \min(\delta, n - 1 - \delta)$ 

#### Theorem [D-Zahl '15]

For convex co-compact hyperbolic surfaces, there is a gap of size

$$\beta = \frac{3}{8} \left(\frac{1}{2} - \delta\right) + \frac{\beta_E}{16}$$

where  $\beta_E \in [0,\delta]$  is the improvement in the asymptotic of additive energy of the limit set



Denote by  $N_{[a,b]}(\sigma)$  the number of resonances with

$$\operatorname{\mathsf{Re}}\lambda\in[a,b],\quad\operatorname{\mathsf{Im}}\lambda\geq-\sigma$$



How fast do  $N_{[0,R]}(\sigma)$  and  $N_{[R,R+1]}(\sigma)$  grow as  $R \to \infty$ ?

Denote by  $N_{[a,b]}(\sigma)$  the number of resonances with

$${\sf Re}\,\lambda\in [{\it a},{\it b}],\quad {\sf Im}\,\lambda\geq -\sigma$$



How fast do  $N_{[0,R]}(\sigma)$  and  $N_{[R,R+1]}(\sigma)$  grow as  $R \to \infty$ ?



Denote by  $N_{[a,b]}(\sigma)$  the number of resonances with

$$\operatorname{\mathsf{Re}}\lambda\in[\mathsf{a},\mathsf{b}],\quad\operatorname{\mathsf{Im}}\lambda\geq-\sigma$$



How fast do  $N_{[0,R]}(\sigma)$  and  $N_{[R,R+1]}(\sigma)$  grow as  $R \to \infty$ ?



Denote by  $N_{[a,b]}(\sigma)$  the number of resonances with

$$\operatorname{\mathsf{Re}}\lambda\in[\mathsf{a},\mathsf{b}],\quad\operatorname{\mathsf{Im}}\lambda\geq-\sigma$$



How fast do  $N_{[0,R]}(\sigma)$  and  $N_{[R,R+1]}(\sigma)$  grow as  $R \to \infty$ ?



Semyon Dyatlov

### Fractal Weyl bounds

 $N_{[a,b]}(\sigma) = \#\{\text{resonances with } \operatorname{Re} \lambda \in [a,b], \ \operatorname{Im} \lambda > -\sigma\}$ 

#### Theorem 2 [D '15]

For 
$$\sigma$$
 fixed and  $R \to \infty$ ,  $N_{[R,R+1]}(\sigma) = \mathcal{O}(R^{m(\sigma,\delta)+})$ , where  
 $m(\sigma,\delta) = \min(2\delta + 2\sigma - (n-1), \delta).$ 

Note that m = 0 at  $\sigma = \frac{n-1}{2} - \delta$  and  $m = \delta$  starting from  $\sigma = \frac{n-1}{2} - \frac{\delta}{2}$ 



Zworski '99, Guillope–Lin–Zworski '04, Datchev–D '13:  $N_{[R,R+1]}(\sigma) = O(R^{\delta})$ See also Sjöstrand '90, Sjöstrand–Zworski '0 Nonnenmacher–Sjöstrand–Zworski '11, '14 Naud '14, Jakobson–Naud '14: For n = 2,

$$N_{[0,R]}(\sigma) = \mathcal{O}(R^{1+\gamma})$$
, for some  $\gamma(\sigma, M) < \delta$   
when  $\sigma < \frac{1}{2} - \frac{\delta}{2}$ 

# Fractal Weyl bounds

 $N_{[a,b]}(\sigma) = \#\{\text{resonances with } \operatorname{Re} \lambda \in [a,b], \ \operatorname{Im} \lambda > -\sigma\}$ 

#### Theorem 2 [D '15]

For 
$$\sigma$$
 fixed and  $R \to \infty$ ,  $N_{[R,R+1]}(\sigma) = \mathcal{O}(R^{m(\sigma,\delta)+})$ , where  
 $m(\sigma,\delta) = \min(2\delta + 2\sigma - (n-1), \delta).$ 

Note that m = 0 at  $\sigma = \frac{n-1}{2} - \delta$  and  $m = \delta$  starting from  $\sigma = \frac{n-1}{2} - \frac{\delta}{2}$ 



Zworski '99, Guillopé–Lin–Zworski '04, Datchev–D '13:  $N_{[R,R+1]}(\sigma) = O(R^{\delta})$ 

See also Sjöstrand '90, Sjöstrand–Zworski '07, Nonnenmacher–Sjöstrand–Zworski '11, '14

Naud '14, Jakobson–Naud '14: For n = 2,  $N_{[0,R]}(\sigma) = O(R^{1+\gamma})$ , for some  $\gamma(\sigma, M) < \delta$ when  $\sigma < \frac{1}{2} - \frac{\delta}{2}$ 

#### Fractal Weyl bounds in pictures



Semyon Dyatlov

#### Fractal Weyl bounds in pictures



Semyon Dyatlov

12 / 16

# Dynamics of the geodesic flow

 $M = \Gamma ackslash \mathbb{H}^n$  convex co-compact hyperbolic manifold The homogeneous geodesic flow

$$\varphi^t: T^*M \setminus 0 \to T^*M \setminus 0$$

is hyperbolic with weak (un)stable foliations  $L_u/L_s$ 

Incoming/outgoing tails:

$$\begin{aligned} \mathsf{\Gamma}_+ &= \{ (x,\xi) \mid \varphi^t(x,\xi) \not\to \infty \text{ as } t \to -\infty \} \\ \mathsf{\Gamma}_- &= \{ (x,\xi) \mid \varphi^t(x,\xi) \not\to \infty \text{ as } t \to +\infty \} \end{aligned}$$

On the cover  $T^* \mathbb{H}^n \setminus 0$ ,  $\Gamma_+/\Gamma_-$  are foliated by  $L_u/L_s$  and look similar to the limit set  $\Lambda_{\Gamma}$  in directions transversal to  $L_u/L$ 



# Dynamics of the geodesic flow

 $M = \Gamma ackslash \mathbb{H}^n$  convex co-compact hyperbolic manifold The homogeneous geodesic flow

$$\varphi^t: T^*M \setminus 0 \to T^*M \setminus 0$$

is hyperbolic with weak (un)stable foliations  $L_u/L_s$ 

Incoming/outgoing tails:

$$\Gamma_{+} = \{ (x,\xi) \mid \varphi^{t}(x,\xi) \not\to \infty \text{ as } t \to -\infty \}$$
  
$$\Gamma_{-} = \{ (x,\xi) \mid \varphi^{t}(x,\xi) \not\to \infty \text{ as } t \to +\infty \}$$

On the cover  $T^*\mathbb{H}^n \setminus 0$ ,  $\Gamma_+/\Gamma_-$  are foliated by  $L_u/L_s$  and look similar to the limit set  $\Lambda_{\Gamma}$  in directions transversal to  $L_u/L_s$ 



Assume  $\lambda = h^{-1} - i\nu$  is a resonance,  $0 < h \ll 1$ . There is a resonant state

$$\left(-\Delta_g-rac{(n-1)^2}{4}-\lambda^2
ight)u=0,\quad u ext{ outgoing at infinity},\quad \|u\|=1$$

Vasy '13: extend *u* to an eigenstate of a Fredholm problem on  $M_{ext} \supset \overline{M}$ Microlocally, *u* lives near  $\Gamma_+$ , has positive mass on  $\Gamma_-$ , and

$$u = e^{i\lambda t} U(t)u;$$
  $U(t) = e^{-it\sqrt{-\Delta_g - (n-1)^2/4}}$  quantizes  $arphi^t$ 

Assume  $\lambda = h^{-1} - i\nu$  is a resonance,  $0 < h \ll 1$ . There is a resonant state

$$\left(-\Delta_g-rac{(n-1)^2}{4}-\lambda^2
ight)u=0,\quad u ext{ outgoing at infinity},\quad \|u\|=1$$

Vasy '13: extend *u* to an eigenstate of a Fredholm problem on  $M_{ext} \supset \overline{M}$ Microlocally, *u* lives near  $\Gamma_+$ , has positive mass on  $\Gamma_-$ , and

$$u = e^{i\lambda t}U(t)u;$$
  $U(t) = e^{-it\sqrt{-\Delta_g - (n-1)^2/4}}$  quantizes  $\varphi^t$ 

Outgoing condition implies:

$$\begin{split} u &= \operatorname{Op}_{h}(\chi_{+})u + \mathcal{O}(h^{\infty}), \\ & \|\operatorname{Op}_{h}(\chi_{-})u\| \geq C^{-1} \\ & \operatorname{supp} \chi_{\pm} \subset \varepsilon \text{-neighborhood of } \Gamma_{\pm} \end{split}$$



Assume  $\lambda = h^{-1} - i\nu$  is a resonance,  $0 < h \ll 1$ . There is a resonant state

$$\left(-\Delta_g-rac{(n-1)^2}{4}-\lambda^2
ight)u=0,\quad u ext{ outgoing at infinity},\quad \|u\|=1$$

Vasy '13: extend *u* to an eigenstate of a Fredholm problem on  $M_{ext} \supset \overline{M}$ Microlocally, *u* lives near  $\Gamma_+$ , has positive mass on  $\Gamma_-$ , and

$$u = e^{i\lambda t}U(t)u;$$
  $U(t) = e^{-it\sqrt{-\Delta_g - (n-1)^2/4}}$  quantizes  $\varphi^t$ 

Propagation for time *t*:

$$\begin{split} u &= \operatorname{Op}_{h}(\chi_{+})u + \mathcal{O}(h^{\infty}), \\ \|\operatorname{Op}_{h}(\chi_{-})u\| &\geq C^{-1}e^{-\nu t} \\ \operatorname{supp} \chi_{\pm} \subset e^{-t} \text{-neighborhood of } \Gamma_{\pm} \end{split}$$



Assume  $\lambda = h^{-1} - i\nu$  is a resonance,  $0 < h \ll 1$ . There is a resonant state

$$\left(-\Delta_g-rac{(n-1)^2}{4}-\lambda^2
ight)u=0,\quad u ext{ outgoing at infinity},\quad \|u\|=1$$

Vasy '13: extend *u* to an eigenstate of a Fredholm problem on  $M_{ext} \supset \overline{M}$ Microlocally, *u* lives near  $\Gamma_+$ , has positive mass on  $\Gamma_-$ , and

$$u=e^{i\lambda t}U(t)u;$$
  $U(t)=e^{-it\sqrt{-\Delta_g-(n-1)^2/4}}$  quantizes  $q$ 

Propagation for time  $t = \log(1/h)$ :

$$u = \operatorname{Op}_{h}^{L_{u}}(\chi_{+})u + \mathcal{O}(h^{\infty}),$$
$$\|\operatorname{Op}_{h}^{L_{s}}(\chi_{-})u\| \geq C^{-1}e^{-\nu t} = C^{-1}h^{\nu}$$
supp  $\chi_{\pm} \subset h$ -neighborhood of  $\Gamma_{\pm}$ Use second microlocal calculi associated to  $L_{u}/$ In practice, we take  $t = \rho \log(1/h), \ \rho = 1 - \varepsilon$ 



Ls

$$u$$
 a resonant state at  $\lambda=h^{-1}-i
u, \quad \|u\|=1$ 

 $u = \operatorname{Op}_{h}^{L_{u}}(\chi_{+})u + \mathcal{O}(h^{\infty}), \quad \|\operatorname{Op}_{h}^{L_{s}}(\chi_{-})u\| \ge C^{-1}h^{\nu}$ 

 $\operatorname{supp}\chi_\pm \subset \ h ext{-neighborhood of } \Gamma_\pm \cap S^*M$ 

#### Proof of Theorem 1 (gaps)



- To get a gap of size  $\beta$ , enough to show a fractal uncertainty principle:  $\|\operatorname{Op}_{h}^{L_s}(\chi_{-})\operatorname{Op}_{h}^{L_u}(\chi_{+})\|_{L^2\to L^2} \ll h^{\beta}$
- A basic bound gives the standard gap  $\beta = \frac{n-1}{2} \delta$ :  $\|\operatorname{Op}_{h}^{L_{s}}(\chi_{-})\operatorname{Op}_{h}^{L_{u}}(\chi_{+})\|_{\mathrm{HS}} \leq Ch^{\frac{n-1}{2}-\delta}$  (1)
- $\bullet\,$  The bound via additive energy is obtained by harmonic analysis in  $L^4$

#### Proof of Theorem 2 (counting)

• First write for each resonant state,  $u = \mathcal{A}(\lambda)u$ ,  $\mathcal{A}(\lambda) = Y(\lambda) Op_h^{L_s}(\chi_-) Op_h^{L_u}(\chi_+) + \mathcal{O}(h^{\infty})$ ,  $||Y(\lambda)|| \le Ch^{-\nu}$ 

• Next estimate det $(I - A(\lambda)^2) \le \exp(\|A(\lambda)\|_{HS}^2)$  using (1)

$$u$$
 a resonant state at  $\lambda = h^{-1} - i 
u$ ,  $\|u\| = 1$ 

$$u = \operatorname{Op}_{h}^{L_{u}}(\chi_{+})u + \mathcal{O}(h^{\infty}), \quad \|\operatorname{Op}_{h}^{L_{s}}(\chi_{-})u\| \geq C^{-1}h^{\nu}$$

supp  $\chi_{\pm} \subset h$ -neighborhood of  $\Gamma_{\pm} \cap S^*M$ 

#### Proof of Theorem 1 (gaps)



- To get a gap of size  $\beta$ , enough to show a fractal uncertainty principle:  $\|\operatorname{Op}_{h}^{L_{s}}(\chi_{-})\operatorname{Op}_{h}^{L_{u}}(\chi_{+})\|_{L^{2}\to L^{2}} \ll h^{\beta}$
- A basic bound gives the standard gap  $\beta = \frac{n-1}{2} \delta$ :  $\|\operatorname{Op}_{h}^{L_{s}}(\chi_{-})\operatorname{Op}_{h}^{L_{u}}(\chi_{+})\|_{\mathrm{HS}} \leq Ch^{\frac{n-1}{2}-\delta}$  (1)
- The bound via additive energy is obtained by harmonic analysis in  $L^4$

#### Proof of Theorem 2 (counting)

- First write for each resonant state,  $u = \mathcal{A}(\lambda)u$ ,  $\mathcal{A}(\lambda) = Y(\lambda) \operatorname{Op}_{h}^{L_{s}}(\chi_{-}) \operatorname{Op}_{h}^{L_{u}}(\chi_{+}) + \mathcal{O}(h^{\infty}), \quad ||Y(\lambda)|| \leq Ch^{-\nu}$
- Next estimate  $\det(I \mathcal{A}(\lambda)^2) \le \exp(\|\mathcal{A}(\lambda)\|_{\mathsf{HS}}^2)$  using (1)

Thank you for your attention!