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Overview

Resonances: complex characteristic frequencies
describing exponential decay of waves in open systems

Re \; = rate of oscillation, —Im\; = rate of decay
Our setting: convex co-compact hyperbolic manifolds
The high frequency régime |[ImA| < C, |Re )| > 1
is governed by the set of trapped trajectories,

which in our case is determined by the limit set Ar

We give a new spectral gap and fractal Weyl bound
for resonances using a “fractal uncertainty principle”
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Setup

Hyperbolic manifolds

(M, g) = N'\H" convex co-compact hyperbolic manifold

An example: three-funnel surface with neck lengths /1, (5, (3

Resonances: poles of the scattering resolvent

(A (=12 N LA(M) = LP(M), ImA >0
R(\) = < Ag 4 A ) : {Lzomp(l\/l) R [_ﬁ)c([\/])’ mA < 0
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Setup

Hyperbolic manifolds

(M, g) = N'\H" convex co-compact hyperbolic manifold

An example: three-funnel surface with neck lengths /1, (5, (3

Resonances: poles of the scattering resolvent

Also correspond to poles of the Selberg zeta function

Existence of meromorphic continuation: Patterson '75,'76, Perry '87,'89,
Mazzeo—Melrose '87, Guillopé—Zworski '95, Guillarmou '05, Vasy '13
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Plots of resonances

Three-funnel surface with ¢1 =¥l = ¥3 =7
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Data courtesy of David Borthwick and Tobias Weich
See arXiv:1305.4850 and arXiv:1407.6134 for more
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Plots of resonances

Three-funnel surface with {1 =6, {pb = (3 =7
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Data courtesy of David Borthwick and Tobias Weich
See arXiv:1305.4850 and arXiv:1407.6134 for more
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Plots of resonances

Torus-funnel surface with 1 =0, =7, ¢ = /2,
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Data courtesy of David Borthwick and Tobias Weich

See arXiv:1305.4850 and arXiv:1407.6134 for more
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The limit set and ¢
M = T'\H" hyperbolic manifold

Ar € S"1 = OH" the limit set
§ :=dimy(Ar) € [0, n — 1]

Trapped geodesics: both endpoints in Ar
Forward/backward trapped: one endpoint in Ar
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Results: spectral gap

Essential spectral gap

Essential spectral gap of size 5 > 0:
only finitely many resonances with Im A > —f

One application: resonance expansions of waves with O(e~?) remainder
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Results: spectral gap

Essential spectral gap

Essential spectral gap of size 5 > 0:

only finitely many resonances with Im A > —f

One application: resonance expansions of waves with O(e~?) remainder

Patterson—Sullivan: the topmost resonance is A = i(J — "), therefore
there is a gap of size f = max (O, ”51 — 5)

See also lkawa '88, Gaspard—Rice '89, Nonnenmacher—Zworski '09
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Results: spectral gap

Asymptotic spectral gap: ﬁnitely many resonances with Im A > —3
Standard gap: Bsta = max(0, 25= — 6)

Naud '04, Stoyanov '11 (using Dolgopyat '98):
gap of of size ”51 —0+efor0<d < ”51 and € > 0 depending on M

Theorem 1 [D-Zahl '15]

There is a gap of size

. 3/n—1 ﬁE
b= §( 2 5) T
where g € [0, d] is the improvement in the asymptotic of additive energy

of the limit set. For surfaces, we furthermore have
Be > dexp [ — K(1—0)"*8log™(1 + ()]
where C is the constant in the §-regularity of the Iimit set and K is a

global constant. This i |mproves over Bgq for § = and nearby surfaces,
including some with § >

v
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Additive energy

X(yo,) C (aZ N [-1,1])""1 discretization of Ar projected from yg € Ar

Yo
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Additive energy

X(yo, ) C (aZ N [-1,1])"* discretization of Ar projected from yo € Ar

—+ e e
Additive energy:

Ea(yo,a) = #{(a,b,c,d) € X(yo,)* | a+ b=c+d}
’X(y()? a)| ~ aiéa a726 S; EA(YO; CL/) 5 a736

Definition
Ar has improved additive energy with exponent g € [0, 0], if

EA(yO,CE) < Ca_36+/BE’ 0<a<l,

where C does not depend on yy

Random sets have improved additive energy with Sg = min(d,n — 1 — 9)
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Theorem [D-Zahl '15]

For convex co-compact hyperbolic surfaces, there is a gap of size

=369

where g € [0, d] is the improvement in the asymptotic of additive energy
of the limit set )

O Y

Numerics for 3- and 4-funneled surfaces by Borthwick—Weich '14
+ our gap for Sg := § (representing some wishful thinking)
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Results: Weyl upper bounds

Counting resonances

A
Denote by N, (o) the number of Im A a b .
resonances with Re A
ReX € [a,b], ImA>—0o -0

How fast do Nig rj(c) and Nig ri1)(c) grow as R — oo?
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Results: Weyl upper bounds

Counting resonances

A
Denote by N, (o) the number of Im A a b .
resonances with Re A
ReX € [a,b], ImA>—0o -0
How fast do Nig rj(c) and Nig ri1)(c) grow as R — oo?
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Results: Weyl upper bounds

Counting resonances

A
Denote by N, (o) the number of Im A a b .
resonances with Re A
ReX € [a,b], ImA>—0o -0

How fast do Njg gj(c) and Nig r41j(c) grow as R — 00?
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Results: Weyl upper bounds

Counting resonances

A
Denote by N, (o) the number of Im A a b .
resonances with Re A
ReX € [a,b], ImA>—0o -0

How fast do Njg gj(c) and Nig r41j(c) grow as R — 00?

% linear fitto Npo, R]/R

o concave fitto N [R.R#1]

3 35 4 45 5
10g,(R)
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Fractal Weyl bounds

Nia,p)(0) = #{resonances with Re\ € [a,b], ImA > —0}
Theorem 2 [D '15]
For o fixed and R — oo, Nig p41)(0) = O(R™@9)+) where

m(c,d0) = min(20 + 20 — (n — 1), 6).

Note that m=0at 0 = ”51 — 0 and m = ¢ starting from o = "51 -

N[

m
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Fractal Weyl bounds

Nia,p)(0) = #{resonances with Re\ € [a,b], ImA > —0}
Theorem 2 [D '15]
For o fixed and R — oo, Nig p41)(0) = O(R™@9)+) where

m(c,d0) = min(20 + 20 — (n — 1), 6).

Note that m=0at 0 = ”51 — 0 and m = ¢ starting from o = ”51 —

m Zworski '99, Guillopé—Lin—Zworski '04,
Datchev-D '13: Nz r11j(0) = O(R°)

N[

See also Sjostrand '90, Sjostrand—Zworski '07,
Nonnenmacher-Sjéstrand—Zworski '11, '14

Naud '14, Jakobson—Naud '14: For n = 2,

Nio,r)(0) = O(R'™), for some (o, M) < 6
2 7 T2 when o < % — %
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Results: Weyl upper bounds

Fractal Weyl bounds in pictures

7 -
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The dashed lines are least squares linear fits to logyo Njo r)(0)
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Results: Weyl upper bounds

Fractal Weyl bounds in pictures

*

% linear fit to N[0 R]/R
O concave fit to N[R' R+1]
— — the bound of [GLZ '04]

— - — - the bound of [JN '14]
the bound of [D '15]

1

1

0.5-6

0.5-0.50

A comparison of numeric fits with the bounds of
Guillopé—Lin—Zworski '04, Jakobson—Naud '14, and D '15
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Method: fractal uncertainty

Dynamics of the geodesic flow

M = "\H" convex co-compact hyperbolic manifold

The homogeneous geodesic flow

A
\

' T*M\O0O— T*M\ 0

is hyperbolic with weak (un)stable foliations L, /Ls
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Method: fractal uncertainty

Dynamics of the geodesic flow

M = "\H" convex co-compact hyperbolic manifold

The homogeneous geodesic flow

A
\

o' T*"M\0— T*M\0

is hyperbolic with weak (un)stable foliations L, /Ls

Incoming/outgoing tails:

M ={(x,8) | ¢'(x,6) /> 00 as t = —oo}
M ={(x,&) ¢ (x,6) /> 00 as t — +oo}
On the cover T*H" \ 0,

[/l are foliated by L,/Ls and look similar to
the limit set Ar in directions transversal to L, /L
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Method: fractal uncertainty

Microlocalization of resonant states

Assume A = h~1 — jv is a resonance, 0 < h < 1. There is a resonant state

—1)2 :
(— Ay — % — )\2> u=0, uoutgoing at infinity, |[jul| =1

Vasy '13: extend u to an eigenstate of a Fredholm problem on Mg O M
Microlocally, u lives near ', has positive mass on I, and

u=e™MU(t)u; U(t) = e V2= (=1)*/4 quantizes
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Method: fractal uncertainty

Microlocalization of resonant states

Assume A = h~1 — jv is a resonance, 0 < h < 1. There is a resonant state
—1)2 .
(— Ay — % — )\2> u=0, uoutgoing at infinity, |[jul| =1

Vasy '13: extend u to an eigenstate of a Fredholm problem on Mg O M
Microlocally, u lives near 'y, has positive mass on I, and
u=e™MU(t)u; U(t) = e V2= (=1)*/4 quantizes

Outgoing condition implies:

u = Opp(x+)u+ O(h™),
10pA(x—)ul = C*
supp X+ C e-neighborhood of 1
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Method: fractal uncertainty

Microlocalization of resonant states

Assume A = h~1 — jv is a resonance, 0 < h < 1. There is a resonant state

—1)2 :
(— Ay — % — )\2> u=0, uoutgoing at infinity, |[jul| =1

Vasy '13: extend u to an eigenstate of a Fredholm problem on Mg O M

Microlocally, u lives near ', has positive mass on I, and

u=e™MU(t)u; U(t) = e V2= (=1)*/4 quantizes
Propagation for time t:

u = Opy(x+)u+ O(h™),
10p(x—)ul > Cte™
supp x+ C e ‘-neighborhood of I'L
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Method: fractal uncertainty

Microlocalization of resonant states

Assume A = h~1 — jv is a resonance, 0 < h < 1. There is a resonant state

—1)2 :
(— Ay — % — )\2> u=0, uoutgoing at infinity, |[jul| =1

Vasy '13: extend u to an eigenstate of a Fredholm problem on Mg O M
Microlocally, u lives near ', has positive mass on I, and
u=e™MU(t)u; U(t) = e V2= (=1)*/4 quantizes
Propagation for time t = log(1/h):
u=Opy*(x+)u+ O(h),
1P, (x-ull > C e " = Ch"
supp x+ C h-neighborhood of L
Use second microlocal calculi associated to L, /Ls
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Method: fractal uncertainty

u aresonant state at A= h"' —jv, |ul| =1
u=Op;“(x+)u+ O(h®),  [[Opy:(x-)ull = C*h"
supp x+ C h-neighborhood of 'L N S*M

Proof of Theorem 1 (gaps)
@ To get a gap of size 3, enough to show a fractal uncertainty principle:
10p;* (x=)OP5* (x+ )l 2si2 < K
@ A basic bound gives the standard gap 5 = "51 — 0
10} (x-)Opg (x+)llus < Ch*=~* (1)

@ The bound via additive energy is obtained by harmonic analysis in L*

v
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Method: fractal uncertainty

u aresonant state at A= h"' —jv, |ul| =1
u=Opy"(x+)u+O(h*), [[Opy(x—)ull = CHh
supp x+ C h-neighborhood of L. N S*M

Proof of Theorem 1 (gaps)
@ To get a gap of size 3, enough to show a fractal uncertainty principle:
10p;* (x=)OP5* (x+ )l 2si2 < K
@ A basic bound gives the standard gap 5 = ”51 — 0
|0p}* (x-)OPR* (x4 )llus < Ch"2 (1)

@ The bound via additive energy is obtained by harmonic analysis in L*

v

Proof of Theorem 2 (counting)

o First write for each resonant state, u = A(\)u,
AN) = Y(N)Opy:(x-)0p;(x+) + O(h), YN < Ch™
o Next estimate det(/ — A(A)?) < exp(||.A(N)[|3s) using (1)
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Thank you for your attention!
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