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Overview

Overview

Resonances: complex characteristic frequencies
describing exponential decay of waves in open systems
Reλj = rate of oscillation, − Imλj = rate of decay

Our setting: convex co-compact hyperbolic manifolds

The high frequency régime | Imλ| ≤ C , |Reλ| � 1
is governed by the set of trapped trajectories,

which in our case is determined by the limit set ΛΓ

We give a new spectral gap and fractal Weyl bound
for resonances using a “fractal uncertainty principle”
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Setup

Hyperbolic manifolds

(M, g) = Γ\Hn convex co-compact hyperbolic manifold
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An example: three-funnel surface with neck lengths `1, `2, `3

Resonances: poles of the scattering resolvent

R(λ) =
(
−∆g −

(n − 1)2

4
− λ2

)−1
:

{
L2(M)→ L2(M), Imλ > 0
L2

comp(M)→ L2
loc(M), Imλ ≤ 0
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An example: three-funnel surface with neck lengths `1, `2, `3

Resonances: poles of the scattering resolvent

Also correspond to poles of the Selberg zeta function
Existence of meromorphic continuation: Patterson ’75,’76, Perry ’87,’89,
Mazzeo–Melrose ’87, Guillopé–Zworski ’95, Guillarmou ’05, Vasy ’13
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Setup

Plots of resonances

Three-funnel surface with `1 = `2 = `3 = 7

Data courtesy of David Borthwick and Tobias Weich
See arXiv:1305.4850 and arXiv:1407.6134 for more
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Setup

Plots of resonances

Three-funnel surface with `1 = 6, `2 = `3 = 7

Data courtesy of David Borthwick and Tobias Weich
See arXiv:1305.4850 and arXiv:1407.6134 for more

Semyon Dyatlov Gaps and counting December 14, 2015 4 / 16



Setup

Plots of resonances

Torus-funnel surface with `1 = `2 = 7, ϕ = π/2, trivial representation

Data courtesy of David Borthwick and Tobias Weich
See arXiv:1305.4850 and arXiv:1407.6134 for more
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Setup

The limit set and δ

M = Γ\Hn hyperbolic manifold
ΛΓ ⊂ Sn−1 = ∂Hn the limit set
δ := dimH(ΛΓ) ∈ [0, n − 1]

`1 `2

`3

M`

Trapped geodesics: both endpoints in ΛΓ

Forward/backward trapped: one endpoint in ΛΓ
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Results: spectral gap

Essential spectral gap

Essential spectral gap of size β > 0:
only finitely many resonances with Imλ > −β

One application: resonance expansions of waves with O(e−βt) remainder

Patterson–Sullivan: the topmost resonance is λ = i(δ − n−1
2 ), therefore

there is a gap of size β = max
(
0, n−1

2 − δ
)

See also Ikawa ’88, Gaspard–Rice ’89, Nonnenmacher–Zworski ’09

δ − n−1
2

δ − n−1
2

δ > n−1
2 δ < n−1

2
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Results: spectral gap

Asymptotic spectral gap: finitely many resonances with Imλ > −β
Standard gap: βstd = max(0, n−1

2 − δ)

Naud ’04, Stoyanov ’11 (using Dolgopyat ’98):
gap of of size n−1

2 − δ+ ε for 0 < δ ≤ n−1
2 and ε > 0 depending on M

Theorem 1 [D–Zahl ’15]

There is a gap of size

β =
3
8

(n − 1
2
− δ
)

+
βE
16

where βE ∈ [0, δ] is the improvement in the asymptotic of additive energy
of the limit set. For surfaces, we furthermore have

βE > δ exp
[
− K (1− δ)−28 log14(1 + C )

]
where C is the constant in the δ-regularity of the limit set and K is a
global constant. This improves over βstd for δ = 1

2 and nearby surfaces,
including some with δ > 1

2
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Results: spectral gap

Additive energy

X (y0, α) ⊂ (αZ ∩ [−1, 1])n−1 discretization of ΛΓ projected from y0 ∈ ΛΓ

y0
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Results: spectral gap

Additive energy

X (y0, α) ⊂ (αZ ∩ [−1, 1])n−1 discretization of ΛΓ projected from y0 ∈ ΛΓ

Additive energy:

EA(y0, α) = #{(a, b, c , d) ∈ X (y0, α)4 | a + b = c + d}
|X (y0, α)| ∼ α−δ, α−2δ . EA(y0, α) . α−3δ

Definition
ΛΓ has improved additive energy with exponent βE ∈ [0, δ], if

EA(y0, α) ≤ Cα−3δ+βE , 0 < α < 1,

where C does not depend on y0

Random sets have improved additive energy with βE = min(δ, n − 1− δ)
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Results: spectral gap

Theorem [D–Zahl ’15]

For convex co-compact hyperbolic surfaces, there is a gap of size

β =
3
8

(1
2
− δ
)

+
βE
16

where βE ∈ [0, δ] is the improvement in the asymptotic of additive energy
of the limit set

δ

β

11
2

1
2

3+βE
16

Numerics for 3- and 4-funneled surfaces by Borthwick–Weich ’14
+ our gap for βE := δ (representing some wishful thinking)
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Results: Weyl upper bounds

Counting resonances

Denote by N[a,b](σ) the number of
resonances with

Reλ ∈ [a, b], Imλ ≥ −σ

Reλ

Imλ a b

−σ

How fast do N[0,R](σ) and N[R,R+1](σ) grow as R →∞?
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g

10
(N

[0
,R

](σ
))

σ  = 0.5 - 0.3δ
σ  = 0.5 - 0.4δ
σ  = 0.5 - 0.5δ
σ  = 0.5 - 0.6δ
σ  = 0.5 - 0.7δ
σ  = 0.5 - 0.8δ
σ  = 0.5 - 0.9δ
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Semyon Dyatlov Gaps and counting December 14, 2015 10 / 16



Results: Weyl upper bounds

Fractal Weyl bounds

N[a,b](σ) = #{resonances with Reλ ∈ [a, b], Imλ > −σ}

Theorem 2 [D ’15]

For σ fixed and R →∞, N[R,R+1](σ) = O(Rm(σ,δ)+), where

m(σ, δ) = min(2δ + 2σ − (n − 1), δ).

Note that m = 0 at σ = n−1
2 − δ and m = δ starting from σ = n−1

2 −
δ
2

σn−1
2 − δ

n−1
2 −

δ
2

δ

m Zworski ’99, Guillopé–Lin–Zworski ’04,
Datchev–D ’13: N[R,R+1](σ) = O(Rδ)

See also Sjöstrand ’90, Sjöstrand–Zworski ’07,
Nonnenmacher–Sjöstrand–Zworski ’11, ’14

Naud ’14, Jakobson–Naud ’14: For n = 2,
N[0,R](σ) = O(R1+γ), for some γ(σ,M) < δ

when σ < 1
2 −

δ
2
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Results: Weyl upper bounds

Fractal Weyl bounds in pictures
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The dashed lines are least squares linear fits to log10 N[0,R](σ)
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Results: Weyl upper bounds

Fractal Weyl bounds in pictures

0.5-δ 0.5-0.5δ

0

δ

linear fit to N[0, R]/R

concave fit to N[R, R+1]
the bound of [GLZ '04]
the bound of [JN '14]
the bound of [D '15]

A comparison of numeric fits with the bounds of
Guillopé–Lin–Zworski ’04, Jakobson–Naud ’14, and D ’15
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Method: fractal uncertainty

Dynamics of the geodesic flow

M = Γ\Hn convex co-compact hyperbolic manifold
The homogeneous geodesic flow

ϕt : T ∗M \ 0→ T ∗M \ 0

is hyperbolic with weak (un)stable foliations Lu/Ls

Incoming/outgoing tails:

Γ+ = {(x , ξ) | ϕt(x , ξ) 6→ ∞ as t → −∞}
Γ− = {(x , ξ) | ϕt(x , ξ) 6→ ∞ as t → +∞}

On the cover T ∗Hn \ 0,
Γ+/Γ− are foliated by Lu/Ls and look similar to
the limit set ΛΓ in directions transversal to Lu/Ls
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Method: fractal uncertainty

Microlocalization of resonant states

Assume λ = h−1 − iν is a resonance, 0 < h� 1. There is a resonant state(
−∆g −

(n − 1)2

4
− λ2

)
u = 0, u outgoing at infinity, ‖u‖ = 1

Vasy ’13: extend u to an eigenstate of a Fredholm problem on Mext ⊃ M

Microlocally, u lives near Γ+, has positive mass on Γ−, and

u = e iλtU(t)u; U(t) = e−it
√
−∆g−(n−1)2/4 quantizes ϕt
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Microlocalization of resonant states

Assume λ = h−1 − iν is a resonance, 0 < h� 1. There is a resonant state(
−∆g −

(n − 1)2

4
− λ2

)
u = 0, u outgoing at infinity, ‖u‖ = 1

Vasy ’13: extend u to an eigenstate of a Fredholm problem on Mext ⊃ M

Microlocally, u lives near Γ+, has positive mass on Γ−, and

u = e iλtU(t)u; U(t) = e−it
√
−∆g−(n−1)2/4 quantizes ϕt

Outgoing condition implies:

u = Oph(χ+)u +O(h∞),

‖Oph(χ−)u‖ ≥ C−1

suppχ± ⊂ ε-neighborhood of Γ±
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Microlocalization of resonant states

Assume λ = h−1 − iν is a resonance, 0 < h� 1. There is a resonant state(
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4
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)
u = 0, u outgoing at infinity, ‖u‖ = 1

Vasy ’13: extend u to an eigenstate of a Fredholm problem on Mext ⊃ M

Microlocally, u lives near Γ+, has positive mass on Γ−, and

u = e iλtU(t)u; U(t) = e−it
√
−∆g−(n−1)2/4 quantizes ϕt

Propagation for time t:

u = Oph(χ+)u +O(h∞),

‖Oph(χ−)u‖ ≥ C−1e−νt

suppχ± ⊂ e−t-neighborhood of Γ±
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Method: fractal uncertainty

Microlocalization of resonant states

Assume λ = h−1 − iν is a resonance, 0 < h� 1. There is a resonant state(
−∆g −

(n − 1)2

4
− λ2

)
u = 0, u outgoing at infinity, ‖u‖ = 1

Vasy ’13: extend u to an eigenstate of a Fredholm problem on Mext ⊃ M

Microlocally, u lives near Γ+, has positive mass on Γ−, and

u = e iλtU(t)u; U(t) = e−it
√
−∆g−(n−1)2/4 quantizes ϕt

Propagation for time t = log(1/h):

u = OpLuh (χ+)u +O(h∞),

‖OpLsh (χ−)u‖ ≥ C−1e−νt = C−1hν

suppχ± ⊂ h-neighborhood of Γ±

Use second microlocal calculi associated to Lu/Ls
In practice, we take t = ρ log(1/h), ρ = 1− ε
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Method: fractal uncertainty

u a resonant state at λ = h−1 − iν, ‖u‖ = 1

u = OpLuh (χ+)u +O(h∞), ‖OpLsh (χ−)u‖ ≥ C−1hν

suppχ± ⊂ h-neighborhood of Γ± ∩ S∗M

Proof of Theorem 1 (gaps)

To get a gap of size β, enough to show a fractal uncertainty principle:
‖OpLsh (χ−)OpLuh (χ+)‖L2→L2 � hβ

A basic bound gives the standard gap β = n−1
2 − δ:

‖OpLsh (χ−)OpLuh (χ+)‖HS ≤ Ch
n−1
2 −δ (1)

The bound via additive energy is obtained by harmonic analysis in L4

Proof of Theorem 2 (counting)

First write for each resonant state, u = A(λ)u,
A(λ) = Y (λ)OpLsh (χ−)OpLuh (χ+) +O(h∞), ‖Y (λ)‖ ≤ Ch−ν

Next estimate det(I −A(λ)2) ≤ exp(‖A(λ)‖2HS) using (1)
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Thank you for your attention!
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