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1 The objects

Expanders are remarkably ubiquitous objects, both in math-
ematics and computer science.
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Expanders are families of sparse but highly connected graphs.

Definition 1.1. A family (Xn)n>0 of finite, connected, d-
regular graphs is an expander if the following equivalent con-
ditions hold:

• The isoperimetric, or Cheeger constant h(Xn) is bounded
below by a positive constant: h(Xn) ≥ ε for every n.

• The first eigenvalue λ1(Xn) of the Laplace operator on
Xn, is bounded below by a positive constant: λ1(Xn) ≥ ε′

for every n.

We turn a family (Xn)n>0 of finite connected graphs (with un-
bounded diameter) into a metric space via the coarse disjoint
union: on X =

∐
nXn, put a metric d such that d|Xn

is the
graph metric, and

d(Xm, Xn) > max{diam(Xm), diam(Xn)}

for m 6= n.
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If G is a finitely generated, residually finite group, a filtration
of G is a decreasing sequence (Ni)i>0 of finite index normal
subgroups with ∩iNi = {1}. Let S be a finite, symmetric,
generating set of G.

Definition 1.2. The box space of G (w.r.t. the filtration
(Ni)i>0) is the coarse disjoint union of the Cayley graphs �(Ni)G =∐

iCay(G/Ni, S).

To get something more canonical, we occasionally consider
the full box space

�fG =
∐

N/G,[G:N ]<∞

Cay(G/N, S).

Up to coarse equivalence, box spaces do not depend on S.
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Recall the first explicit construction of expanders by Margulis
in 1973:

Theorem 1.3. Any box space of a countable, residually finite
group with Kazhdan’s property (T), is an expander.

Example 1. Let Γ(N) = ker[SLd(Z) → SLd(Z/NZ)] be a
congruence subgroup in SLd(Z). For d ≥ 3 and a prime p,
the box space �Γ(pn)SLd(Z) is an expander.
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2 Around the coarse Baum-Connes conjecture

The coarse Baum-Connes conjecture says that, for a discrete
metric space with bounded geometry, the “analytical index”
map

µX : Ktop
∗ (X)→ K∗(C

∗(X))

is an isomorphism. Here Ktop
∗ (X) is a topological gadget

(containing large scale, topological algebraic nature) while
K∗(C

∗(X)) is an analytic/algebraic gadget.

It’s not a conjecture anymore!

Theorem 2.1. (N. Higson, V. Lafforgue, G. Skandalis 2002)
Let X be any congruence box space of SLd(Z) (d ≥ 2). The
map µX is not surjective.

This seminal result (80 references according to MathSciNet!)
launched a wealth of activity:
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• The maximal coarse Baum-Connes conjecture holds for
certain expanders (H. Oyono-Oyono, G. Yu 2009)

• For expanders with large girth, the analytical index map
is injective but not surjective (R. Willett, G. Yu 2010)

• The maximal coarse Baum-Connes conjecture holds for
families of graphs with girth tending to infinity (R. Wil-
lett, G. Yu 2012)

• Introduction by P. Baum, E. Guentner and R. Willett
(2013) of the exact crossed product to reformulate the
Baum-Connes conjecture: all confirming examples remain
confirming examples, and some previous expander-based
counterexamples now become confirming examples.
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3 Coarse geometry

Let (X, dX), (Y, dY ) be unbounded metric spaces.

Definition 3.1. A map f : X → Y is a coarse embedding if,
for every two sequences (xn)n>0, (yn)n>0 in X:

dX(xn, yn)→ +∞⇐⇒ dY (f(xn), f(yn))→ +∞

With

ρ−(t) =: inf{dY (f(x), f(y)) : dX(x, y) ≥ t};

ρ+(t) =: sup{dY (f(x), f(y) : dX(x, y) ≤ t},
we get the equivalent definition

Definition 3.2. f is a coarse embedding if there exists control
functions ρ± : R+ → R, with limt→∞ ρ±(t) = +∞, such that
for every x, y ∈ X:

ρ−(dX(x, y)) ≤ dY (f(x), f(y)) ≤ ρ+(dX(x, y)).
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Definition 3.3. A coarse embedding f : X → Y is a coarse
equivalence if f is quasi-surjective, i.e. there exists R > 0
such that Y is the R-neighborhood of f(X).

A dictionary between coarse-geometry properties of �G and
group-theoretical properties of G:

The property (T) side:

�G G

�(Nk)G has geometric property (T)
G has property (T)
(Willett & Yu 2013)

�(Nk)G is an expander family
G has property (τ)

w.r.t. the filtration (Nk)k>0

(Lubotzky-Zimmer 1989)
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Turning to the amenability side:

�G G

�(Nk)G has linear diameter
G is virtually cyclic

(Khukhro & V. 2015)

�(Nk)G has Yu’s property A
G is amenable

(Roe 2003)

�(Nk)G admits a fibered
coarse embedding into L2

G is a-(T)-menable
(Chen-Wang-Wang 2013;

Finn-Sell 2013)

Note that SL2(Z) is a-(T)-menable but has property (τ) with
respect to congruence subgroups. If p is a prime, SL2(Z[

√
p])

is a-(T)-menable but has property (τ) (w.r.t all finite index
subgroups).
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4 How many expanders?

Theorem 4.1. (M. Mendel and A. Naor 2011) There exists
an expander X with unbounded girth, and Y an expander with
many short cycles, such that Y does not coarsely embed in X.

Geometric property (T) (R. Willett and G. Yu 2013) distin-
guishes expanders from property (T) groups, from expanders
from a-(T)-menable groups.

Theorem 4.2. (D. Hume 2014) There exists a continuum of
pairwise coarsely inequivalent expanders with unbounded girth.

This is proved using separation profile of Benjamini-Schramm-
Timar (2010).
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Theorem 4.3. (A. Khukhro-V. 2015)

1) For d ≥ 2: the group SLd(Z) admits a continuum of pair-
wise inequivalent box spaces which are expanders (in par-
ticular, for d ≥ 3: there exists a continuum of expanders
with geometric property (T)).

2) For m 6= n: a box space of SLm(Z) is not coarsely equiv-
alent to a box space of SLn(Z).

3) For p, q distinct primes: a box space of SL2(Z[
√
p] is not

coarsely equivalent to a box space of SL2(Z[
√
q]).

As Willett and Yu proved that a space with geometric prop-
erty (T) does not coarsely embed in a space admitting a
fibered coarse embedding into Hilbert space, we get:

Corollary 4.4. A box space of SLd(Z) (for d ≥ 3) does not
coarsely embed into a box space of SL2(Z[

√
p]).
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5 On the proofs

Let X =
∐

nXn and Y =
∐

n Yn be two coarse disjoint unions
of finite, connected graphs with degrees bounded by d, with
diam|Xn|, diam|Yn| → ∞.

Lemma 5.1. If f : X → Y is a coarse equivalence, then:

1. There exists A ≥ 1 such that for every n ≥ 1 and x, y ∈
Xn:

1

A
dXn

(x, y)− A ≤ dY (f(x), f(y)) ≤ AdXn
(x, y) + A

(f is a family of quasi-isometries with uniform constants)

2. f induces a bijection α between a co-finite set of compo-
nents of X and a co-finite set of components of Y (say
that α is an almost bijection).

3. There exists C ≥ 1 such that, for n� 0:

|Xn|
C
≤ |Yα(n)| ≤ C.|Xn|
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Proof:

1. For x, y ∈ Xn, we get by the triangle inequality: dY (f(x), f(y)) ≤
ρ+(1).dXn

(x, y). Using a quasi-inverse for f , get the con-
verse inequality.

2. For n� 0 we have f(Xn) ⊂ Ym. Set m = α(n).

For n, n′ � 0: Xn, Xn′ are far away, so not mapped to
the same component: α(n) 6= α(n′).

If Y is the R-neighborhood of f(X): for m� 0, we have
diam(Ym) ≥ R, so Ym meets f(X), i.e. m = α(n) for
some n.

3. Since f has uniformly bounded fibers: |Xn|
K ≤ |f(Xn)| ≤

|Yα(n)|. On the other hand |Yα(n)| ≤ |BTd(R)|.|f(Xn)| ≤
K ′.|Xn|. �
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Definition 5.2. A filtration (Ni)i>0 of G is strict, if the se-
quence (Ni) is strictly decreasing.

Lemma 5.3. Let (Mi)i>0, (Ni)i>0 be strict filtrations of G,H
respectively. Let f : �(Mi)G→ �(Ni)H be a coarse equivalence.
Then the almost bijection α has bounded displacement, i.e.
there is N ∈ N such that |α(n)− n| ≤ N for n� 0.

Sketch of Proof: Set Xi = G/Mi, Yi = H/Ni. By previous
lemma: | log2 |Xi| − log2 |Yα(i)|| ≤ K. Now |Xj| ≥ 2j−i|Xi| for
j ≥ i, hence log2 |Xj| − log2 |Xi| ≥ j − i. Take N > 2K, to
ensure log2 |Yα(i)| < log2 |Yα(j)| if i + N ≤ j, i.e. α(i) < α(j)
if i+N ≤ j. From this it follows that |α(i)− i| ≤ N . �

Hence necessary condition for coarse equivalence:

Proposition 5.4. If box spaces �(Mi)G,�(Ni)H (associated
with strict filtrations) are coarsely equivalent, then for some

almost bijection α the ratios |G/Mi|
|H/Nα(i)| and

|H/Nα(i)|
|G/Mi| are bounded.

�
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Now we deal with congruence box spaces of SLd(Z). For p
prime:

|SLd(Z/pkZ)| = pk(d2−1)(1− 1

pd
)(1− 1

pd−1
)...(1− 1

p2
)

From this we deduce:

Proposition 5.5. • For p, q primes, m,n ≥ 2, the coarse
disjoint unions

∐
k SLm(Z/pkZ) and

∐
k SLn(Z/q

kZ) (viewed
as box spaces of SLm(Z), SLn(Z) respectively) are coarsely
equivalent if and only if m = n and p = q.

• For s ≥ 1, set Nk(s) = 2[ks]. The expanders
∐

k SLm(Z/Nk(s)Z)
(viewed as box spaces of SLm(Z)) are pairwise coarsely
inequivalent for s ≥ 1. �
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6 Quasi-isometry of groups

Theorem 6.1. (suggested by R. Tessera) If box spaces �(Mi)G,
�(Hi)H are coarsely equivalent, then G and H are quasi-isometric.

R. Tessera has announced that his PhD student K. Das has
a stronger result: under the same assumption, G and H are
uniformly measure equivalent (in particular β

(2)
i (G) = 0 iff

β
(2)
i (H) = 0).

The Theorem above leads to the subject of quasi-isometric
rigidity, where many results are available:

• The quasi-isometry class of SL2(Z[
√
p]) remembers p (B.

Farb and R. Schwartz 1996);

• The quasi-isometry class of SLm(Z) remembers m (A.
Eskin 1998).
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Idea of proof: Let f : �(Mi)G→ �(Ni)H be a coarse equiv-
alence; so there exists A ≥ 1 such that, for i � 0, f is a
(A,A)-quasi-isometry G/Mi → H/Nα(i). Fix N ≥ 0. The
restriction f |G/Mi

maps the ball Bi(N) around 1 in G/Mi, to
the ball Bα(i)((A + 1)N) around 1 in H/Nα(i). For i � 0, by
residual finiteness, the ball BG(N) around 1 in G is isometric
to Bi(N), and the ball BH((A + 1)N) in H is isometric to
Bα(i)((A+ 1)N). So we get a family of maps fN,i : BG(N)→
BH((A+ 1)N) (one for every i� 0). There are finitely many
maps BG(N) → BH((A + 1)N). Using a diagonal argument,
we may extract from all these maps a (A,A)-quasi-isometry
G→ H. �
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7 Large diameter

Definition 7.1. Fix α ∈]0, 1]. A sequence (Xn)n>0 of finite,
connected, d-regular graphs, with |Xn| → ∞, satisfies property
(Dα) if for some constant C > 0 we have

diam(Xn) ≥ C.|Xn|α.

Recall that, for an expander, the diameter of Xn is logarithmic
in |Xn|, so property (Dα) is a strong form of non-expansion.

Theorem 7.2. (A.K & A.V. 2015) For G residually finite,
finitely generated: �(Ni)G has (D1) if and only if G is virtually
cyclic.

The proof uses the pre-Gromov result: a group with linear
growth is virtually cyclic.
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Theorem 7.3. ((1)⇒ (2): E. Breuillard & M. Tointon 2015;
(2) ⇒ (1): A.K& A.V., 2015) For G residually finite and
finitely generated, TFAE:

1. Some box space of G has (Dα), for some α ∈]0, 1].

2. G virtually maps onto Z.

Proof when G maps onto Z, i.e. G = HoZ. Then any α < 1
does the job.
Write Z =< t >. Let (Mn)n>0 be a filtration of G. Let kn
be a sequence of integers such that kn divides kn+1 and kn
is a multiple of the order of Ad(t) on H/(H ∩ Mn). Then
Nn =< H ∩Mn, t

kn > is a filtration of G and

diam(G/Nn) ≥ diam(Ckn) =
kn
2
.

So by assuming
kn ≥ |H ∩Mn|

α
1−α ,

we get (Dα). �
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Corollary 7.4. Fix α ∈]0, 1[. If M is a closed Riemannian
manifold, and π1(M) virtually maps onto a non-amenable,
residually finite group with infinite abelianization; then M ad-
mits a tower (Mn)n>0 of finite-sheeted coverings, with λ1(Mn) =
O(vol(Mn)

−α), such that the coarse union of the Mn’s is not
coarsely equivalent to any coarse union of finite-sheeted covers
of M obtained by (virtually) mapping π1(M) onto a residually
finite amenable group. �

This generalizes a result by G. Arzhantseva and E. Guentner
(2012), under stronger assumption that π1(M) virtually maps
onto F2.
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HAPPY BIRTHDAY GEORGES,
MANY HAPPY RETURNS!
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