Expanders and box spaces

Alain Valette

Luminy, 3 November 2015

1 The objects

Expanders are remarkably ubiquitous objects, both in mathematics and computer science.

Expanders Everywhere!

1-5 December 2014 Neuchâtel

Ragnar Freij, Aalto University Camilla Hollanti, Aalto University Pierre-Nicolas Jolissaint, Uni. de Neuchâtel Emmanuel Kowalski, ETH Zürich Damian Osajda, IMPAN and Uniwersytet Wrocławski Hervé Oyono-Oyono, Université de Lorraine Joachim Rosenthal, University of Zürich Alina Vdovina, University of Neucastle

Organisers:

Ana Khukhro, *Université de Neuchâtel* Alain Valette, *Université de Neuchâtel*

https://sites.google.com/site/expanderseverywhere/

(part of the Swiss Doctoral Program in Mathematics supported by CUSO)

Expanders are families of sparse but highly connected graphs.

Definition 1.1. A family $(X_n)_{n>0}$ of finite, connected, dregular graphs is an expander if the following equivalent conditions hold:

- The isoperimetric, or Cheeger constant $h(X_n)$ is bounded below by a positive constant: $h(X_n) \ge \epsilon$ for every n.
- The first eigenvalue $\lambda_1(X_n)$ of the Laplace operator on X_n , is bounded below by a positive constant: $\lambda_1(X_n) \ge \epsilon'$ for every n.

We turn a family $(X_n)_{n>0}$ of finite connected graphs (with unbounded diameter) into a metric space via the *coarse disjoint union*: on $X = \coprod_n X_n$, put a metric d such that $d|_{X_n}$ is the graph metric, and

 $d(X_m, X_n) > \max\{diam(X_m), diam(X_n)\}$

for $m \neq n$.

If G is a finitely generated, residually finite group, a *filtration* of G is a decreasing sequence $(N_i)_{i>0}$ of finite index normal subgroups with $\bigcap_i N_i = \{1\}$. Let S be a finite, symmetric, generating set of G.

Definition 1.2. The box space of G (w.r.t. the filtration $(N_i)_{i>0}$) is the coarse disjoint union of the Cayley graphs $\Box_{(N_i)}G = \coprod_i Cay(G/N_i, S).$

To get something more canonical, we occasionally consider the *full box space*

$$\Box_f G = \coprod_{N \triangleleft G, [G:N] < \infty} Cay(G/N, S).$$

Up to coarse equivalence, box spaces do not depend on S.

Recall the first explicit construction of expanders by Margulis in 1973:

Theorem 1.3. Any box space of a countable, residually finite group with Kazhdan's property (T), is an expander.

Example 1. Let $\Gamma(N) = \ker[SL_d(\mathbf{Z}) \to SL_d(\mathbf{Z}/N\mathbf{Z})]$ be a congruence subgroup in $SL_d(\mathbf{Z})$. For $d \geq 3$ and a prime p, the box space $\Box_{\Gamma(p^n)}SL_d(\mathbf{Z})$ is an expander.

2 Around the coarse Baum-Connes conjecture

The *coarse Baum-Connes conjecture* says that, for a discrete metric space with bounded geometry, the "analytical index" map

$$\mu_X : K^{top}_*(X) \to K_*(C^*(X))$$

is an isomorphism. Here $K_*^{top}(X)$ is a topological gadget (containing large scale, topological algebraic nature) while $K_*(C^*(X))$ is an analytic/algebraic gadget.

It's not a conjecture anymore!

Theorem 2.1. (N. Higson, V. Lafforgue, G. Skandalis 2002) Let X be any congruence box space of $SL_d(\mathbf{Z})$ $(d \ge 2)$. The map μ_X is not surjective.

This seminal result (80 references according to MathSciNet!) launched a wealth of activity:

- The *maximal* coarse Baum-Connes conjecture holds for certain expanders (H. Oyono-Oyono, G. Yu 2009)
- For expanders with large girth, the analytical index map is injective but not surjective (R. Willett, G. Yu 2010)
- The maximal coarse Baum-Connes conjecture holds for families of graphs with girth tending to infinity (R. Willett, G. Yu 2012)
- Introduction by P. Baum, E. Guentner and R. Willett (2013) of the *exact crossed product* to reformulate the Baum-Connes conjecture: all confirming examples remain confirming examples, and some previous expander-based counterexamples now become confirming examples.

3 Coarse geometry

Let $(X, d_X), (Y, d_Y)$ be unbounded metric spaces.

Definition 3.1. A map $f : X \to Y$ is a coarse embedding if, for every two sequences $(x_n)_{n>0}, (y_n)_{n>0}$ in X:

$$d_X(x_n, y_n) \to +\infty \iff d_Y(f(x_n), f(y_n)) \to +\infty$$

With

$$\rho_{-}(t) =: \inf\{d_{Y}(f(x), f(y)) : d_{X}(x, y) \ge t\};$$

$$\rho_{+}(t) =: \sup\{d_{Y}(f(x), f(y) : d_{X}(x, y) \le t\},$$

we get the equivalent definition

Definition 3.2. f is a coarse embedding if there exists control functions $\rho_{\pm} : \mathbf{R}^+ \to \mathbf{R}$, with $\lim_{t\to\infty} \rho_{\pm}(t) = +\infty$, such that for every $x, y \in X$:

$$\rho_{-}(d_X(x,y)) \le d_Y(f(x), f(y)) \le \rho_{+}(d_X(x,y)).$$

Definition 3.3. A coarse embedding $f : X \to Y$ is a coarse equivalence if f is quasi-surjective, i.e. there exists R > 0 such that Y is the R-neighborhood of f(X).

A dictionary between coarse-geometry properties of $\Box G$ and group-theoretical properties of G:

The property (T) side:

$\Box G$	G
$\Box_{(N_k)}G$ has geometric property (T)	G has property (T)
	(Willett & Yu 2013)
$\square_{(N_k)}G$ is an expander family	G has property (τ)
	w.r.t. the filtration $(N_k)_{k>0}$
	(Lubotzky-Zimmer 1989)

Turning to the amenability side:

$\Box G$	G
$\square_{(N_k)}G$ has linear diameter	G is virtually cyclic (Khukhro & V. 2015)
$\square_{(N_k)}G$ has Yu's property A	G is amenable (Roe 2003)
$\Box_{(N_k)}G$ admits a fibered coarse embedding into L^2	G is a-(T)-menable (Chen-Wang-Wang 2013; Finn-Sell 2013)

Note that $SL_2(\mathbf{Z})$ is a-(T)-menable but has property (τ) with respect to congruence subgroups. If p is a prime, $SL_2(\mathbf{Z}[\sqrt{p}])$ is a-(T)-menable but has property (τ) (w.r.t all finite index subgroups).

4 How many expanders?

Theorem 4.1. (M. Mendel and A. Naor 2011) There exists an expander X with unbounded girth, and Y an expander with many short cycles, such that Y does not coarsely embed in X.

Geometric property (T) (R. Willett and G. Yu 2013) distinguishes expanders from property (T) groups, from expanders from a-(T)-menable groups.

Theorem 4.2. (D. Hume 2014) There exists a continuum of pairwise coarsely inequivalent expanders with unbounded girth.

This is proved using *separation profile* of Benjamini-Schramm-Timar (2010).

Theorem 4.3. (A. Khukhro-V. 2015)

- 1) For $d \ge 2$: the group $SL_d(\mathbf{Z})$ admits a continuum of pairwise inequivalent box spaces which are expanders (in particular, for $d \ge 3$: there exists a continuum of expanders with geometric property (T)).
- 2) For $m \neq n$: a box space of $SL_m(\mathbf{Z})$ is not coarsely equivalent to a box space of $SL_n(\mathbf{Z})$.
- 3) For p, q distinct primes: a box space of $SL_2(\mathbf{Z}[\sqrt{p}] \text{ is not} coarsely equivalent to a box space of <math>SL_2(\mathbf{Z}[\sqrt{q}])$.

As Willett and Yu proved that a space with geometric property (T) does not coarsely embed in a space admitting a fibered coarse embedding into Hilbert space, we get:

Corollary 4.4. A box space of $SL_d(\mathbf{Z})$ (for $d \ge 3$) does not coarsely embed into a box space of $SL_2(\mathbf{Z}[\sqrt{p}])$.

5 On the proofs

Let $X = \coprod_n X_n$ and $Y = \coprod_n Y_n$ be two coarse disjoint unions of finite, connected graphs with degrees bounded by d, with $diam|X_n|, diam|Y_n| \to \infty.$

Lemma 5.1. If $f : X \to Y$ is a coarse equivalence, then:

1. There exists $A \ge 1$ such that for every $n \ge 1$ and $x, y \in X_n$:

$$\frac{1}{A}d_{X_n}(x,y) - A \le d_Y(f(x), f(y)) \le Ad_{X_n}(x,y) + A$$

(f is a family of quasi-isometries with uniform constants)

- 2. f induces a bijection α between a co-finite set of components of X and a co-finite set of components of Y (say that α is an almost bijection).
- 3. There exists $C \ge 1$ such that, for $n \gg 0$:

$$\frac{|X_n|}{C} \le |Y_{\alpha(n)}| \le C.|X_n|$$

Proof:

- 1. For $x, y \in X_n$, we get by the triangle inequality: $d_Y(f(x), f(y)) \leq \rho_+(1) d_{X_n}(x, y)$. Using a quasi-inverse for f, get the converse inequality.
- 2. For $n \gg 0$ we have $f(X_n) \subset Y_m$. Set $m = \alpha(n)$.

For $n, n' \gg 0$: $X_n, X_{n'}$ are far away, so not mapped to the same component: $\alpha(n) \neq \alpha(n')$.

If Y is the R-neighborhood of f(X): for $m \gg 0$, we have $diam(Y_m) \geq R$, so Y_m meets f(X), i.e. $m = \alpha(n)$ for some n.

3. Since f has uniformly bounded fibers: $\frac{|X_n|}{K} \leq |f(X_n)| \leq |Y_{\alpha(n)}|$. On the other hand $|Y_{\alpha(n)}| \leq |B_{T_d}(R)| \cdot |f(X_n)| \leq K' \cdot |X_n|$.

Definition 5.2. A filtration $(N_i)_{i>0}$ of G is strict, if the sequence (N_i) is strictly decreasing.

Lemma 5.3. Let $(M_i)_{i>0}$, $(N_i)_{i>0}$ be strict filtrations of G, H respectively. Let $f : \Box_{(M_i)}G \to \Box_{(N_i)}H$ be a coarse equivalence. Then the almost bijection α has bounded displacement, i.e. there is $N \in \mathbf{N}$ such that $|\alpha(n) - n| \leq N$ for $n \gg 0$.

Sketch of Proof: Set $X_i = G/M_i, Y_i = H/N_i$. By previous lemma: $|\log_2 |X_i| - \log_2 |Y_{\alpha(i)}|| \le K$. Now $|X_j| \ge 2^{j-i} |X_i|$ for $j \ge i$, hence $\log_2 |X_j| - \log_2 |X_i| \ge j - i$. Take N > 2K, to ensure $\log_2 |Y_{\alpha(i)}| < \log_2 |Y_{\alpha(j)}|$ if $i + N \le j$, i.e. $\alpha(i) < \alpha(j)$ if $i + N \le j$. From this it follows that $|\alpha(i) - i| \le N$. \Box

Hence necessary condition for coarse equivalence:

Proposition 5.4. If box spaces $\Box_{(M_i)}G$, $\Box_{(N_i)}H$ (associated with strict filtrations) are coarsely equivalent, then for some almost bijection α the ratios $\frac{|G/M_i|}{|H/N_{\alpha(i)}|}$ and $\frac{|H/N_{\alpha(i)}|}{|G/M_i|}$ are bounded.

Now we deal with congruence box spaces of $SL_d(\mathbf{Z})$. For p prime:

$$|SL_d(\mathbf{Z}/p^k\mathbf{Z})| = p^{k(d^2-1)}(1-\frac{1}{p^d})(1-\frac{1}{p^{d-1}})\dots(1-\frac{1}{p^2})$$

From this we deduce:

- **Proposition 5.5.** For p, q primes, $m, n \ge 2$, the coarse disjoint unions $\coprod_k SL_m(\mathbf{Z}/p^k\mathbf{Z})$ and $\coprod_k SL_n(\mathbf{Z}/q^k\mathbf{Z})$ (viewed as box spaces of $SL_m(\mathbf{Z})$, $SL_n(\mathbf{Z})$ respectively) are coarsely equivalent if and only if m = n and p = q.
 - For $s \ge 1$, set $N_k(s) = 2^{[ks]}$. The expanders $\coprod_k SL_m(\mathbf{Z}/N_k(s)\mathbf{Z})$ (viewed as box spaces of $SL_m(\mathbf{Z})$) are pairwise coarsely inequivalent for $s \ge 1$.

6 Quasi-isometry of groups

Theorem 6.1. (suggested by R. Tessera) If box spaces $\Box_{(M_i)}G$, $\Box_{(H_i)}H$ are coarsely equivalent, then G and H are quasi-isometric.

R. Tessera has announced that his PhD student K. Das has a stronger result: under the same assumption, G and H are uniformly measure equivalent (in particular $\beta_i^{(2)}(G) = 0$ iff $\beta_i^{(2)}(H) = 0$).

The Theorem above leads to the subject of quasi-isometric rigidity, where many results are available:

- The quasi-isometry class of $SL_2(\mathbf{Z}[\sqrt{p}])$ remembers p (B. Farb and R. Schwartz 1996);
- The quasi-isometry class of $SL_m(\mathbf{Z})$ remembers m (A. Eskin 1998).

Idea of proof: Let $f : \Box_{(M_i)}G \to \Box_{(N_i)}H$ be a coarse equivalence; so there exists $A \ge 1$ such that, for $i \gg 0$, f is a (A, A)-quasi-isometry $G/M_i \to H/N_{\alpha(i)}$. Fix $N \ge 0$. The restriction $f|_{G/M_i}$ maps the ball $B_i(N)$ around 1 in G/M_i , to the ball $B_{\alpha(i)}((A+1)N)$ around 1 in $H/N_{\alpha(i)}$. For $i \gg 0$, by residual finiteness, the ball $B_G(N)$ around 1 in G is isometric to $B_i(N)$, and the ball $B_H((A+1)N)$ in H is isometric to $B_{\alpha(i)}((A+1)N)$. So we get a family of maps $f_{N,i} : B_G(N) \to$ $B_H((A+1)N)$ (one for every $i \gg 0$). There are finitely many maps $B_G(N) \to B_H((A+1)N)$. Using a diagonal argument, we may extract from all these maps a (A, A)-quasi-isometry $G \to H$. \Box

7 Large diameter

Definition 7.1. Fix $\alpha \in [0,1]$. A sequence $(X_n)_{n>0}$ of finite, connected, d-regular graphs, with $|X_n| \to \infty$, satisfies property (D_{α}) if for some constant C > 0 we have

 $diam(X_n) \ge C.|X_n|^{\alpha}.$

Recall that, for an expander, the diameter of X_n is logarithmic in $|X_n|$, so property (D_α) is a strong form of non-expansion.

Theorem 7.2. (A.K & A.V. 2015) For G residually finite, finitely generated: $\Box_{(N_i)}G$ has (D_1) if and only if G is virtually cyclic.

The proof uses the pre-Gromov result: a group with linear growth is virtually cyclic.

Theorem 7.3. $((1) \Rightarrow (2): E.$ Breuillard & M. Tointon 2015; $(2) \Rightarrow (1): A.K \& A.V., 2015)$ For G residually finite and finitely generated, TFAE:

- 1. Some box space of G has (D_{α}) , for some $\alpha \in]0, 1]$.
- 2. G virtually maps onto \mathbf{Z} .

Proof when G maps onto **Z**, i.e. $G = H \rtimes \mathbf{Z}$. Then any $\alpha < 1$ does the job.

Write $\mathbf{Z} = \langle t \rangle$. Let $(M_n)_{n>0}$ be a filtration of G. Let k_n be a sequence of integers such that k_n divides k_{n+1} and k_n is a multiple of the order of Ad(t) on $H/(H \cap M_n)$. Then $N_n = \langle H \cap M_n, t^{k_n} \rangle$ is a filtration of G and

$$diam(G/N_n) \ge diam(C_{k_n}) = \frac{k_n}{2}.$$

So by assuming

$$k_n \ge |H \cap M_n|^{\frac{\alpha}{1-\alpha}},$$

 \square

we get (D_{α}) .

Corollary 7.4. Fix $\alpha \in]0,1[$. If M is a closed Riemannian manifold, and $\pi_1(M)$ virtually maps onto a non-amenable, residually finite group with infinite abelianization; then M admits a tower $(M_n)_{n>0}$ of finite-sheeted coverings, with $\lambda_1(M_n) = O(vol(M_n)^{-\alpha})$, such that the coarse union of the M_n 's is not coarsely equivalent to any coarse union of finite-sheeted covers of M obtained by (virtually) mapping $\pi_1(M)$ onto a residually finite amenable group.

This generalizes a result by G. Arzhantseva and E. Guentner (2012), under stronger assumption that $\pi_1(M)$ virtually maps onto \mathbf{F}_2 .

HAPPY BIRTHDAY GEORGES, MANY HAPPY RETURNS!

