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1 The objects

Expanders are remarkably ubiquitous objects, both in math-
ematics and computer science.






Expanders are families of sparse but highly connected graphs.

Definition 1.1. A family (X,,)n>0 of finite, connected, d-
reqular graphs is an expander if the following equivalent con-
ditions hold:

e The isoperimetric, or Cheeger constant h(X,,) is bounded
below by a positive constant: h(X,) > € for every n.

o The first eigenvalue A\i1(X,,) of the Laplace operator on
X, is bounded below by a positive constant: \(X,) > €
for every n.

We turn a family (X,,),¢ of finite connected graphs (with un-
bounded diameter) into a metric space via the coarse disjoint
union: on X =[], X,, put a metric d such that d|x, is the
graph metric, and

d(Xm, X;) > max{diam(X,,), diam(X,)}

for m # n.



If G is a finitely generated, residually finite group, a filtration
of G is a decreasing sequence (INV;);~o of finite index normal
subgroups with N;N; = {1}. Let S be a finite, symmetric,
generating set of G.

Definition 1.2. The boz space of G (w.r.t. the filtration
(Ny)is0) is the coarse disjoint union of the Cayley graphs Oy, G =

To get something more canonical, we occasionally consider
the full box space

0;G= ] Cay(G/N,S).

N<G,[G:N]<oo

Up to coarse equivalence, box spaces do not depend on S.



Recall the first explicit construction of expanders by Margulis
in 1973:

Theorem 1.3. Any box space of a countable, residually finite
group with Kazhdan’s property (T), is an expander.

Example 1. Let I'(N) = ker[SLy(Z) — SL4(Z/NZ)] be a
congruence subgroup in SLqy(Z). For d > 3 and a prime p,
the box space OrmSLy(Z) is an expander.



2 Around the coarse Baum-Connes conjecture

The coarse Baum-Connes conjecture says that, for a discrete
metric space with bounded geometry, the “analytical index”
map

px s K7 (X) = K (C™(X))

is an isomorphism. Here K[’(X) is a topological gadget
(containing large scale, topological algebraic nature) while
K.(C*(X)) is an analytic/algebraic gadget.

It’s not a conjecture anymore!

Theorem 2.1. (N. Higson, V. Lafforgue, G. Skandalis 2002)
Let X be any congruence boz space of SLq(Z) (d > 2). The
map px 1S5 not surjective.

This seminal result (80 references according to MathSciNet!)
launched a wealth of activity:



e The maximal coarse Baum-Connes conjecture holds for
certain expanders (H. Oyono-Oyono, G. Yu 2009)

e For expanders with large girth, the analytical index map
is injective but not surjective (R. Willett, G. Yu 2010)

e The maximal coarse Baum-Connes conjecture holds for
families of graphs with girth tending to infinity (R. Wil-
lett, G. Yu 2012)

e Introduction by P. Baum, E. Guentner and R. Willett
(2013) of the ezxact crossed product to reformulate the
Baum-Connes conjecture: all confirming examples remain
confirming examples, and some previous expander-based
counterexamples now become confirming examples.



3 Coarse geometry

Let (X, dx), (Y, dy) be unbounded metric spaces.

Definition 3.1. A map f: X — Y is a coarse embedding if,
for every two sequences (T)n>0, (Yn)n>0 0 X:

dx(Tn,yn) — +00 <= dy (f(zn), f(yn)) = +00
With
p—(t) = inf{dy (f(2), f(v)) : dx(z,y) > t};
p+(t) = sup{dy (f(v), f(y) : dx(v,y) < t},

we get the equivalent definition

Definition 3.2. f is a coarse embedding if there exists control
functions p+ : RT — R, with limy_, p+(t) = +00, such that
for every x,y € X:

p—(dx(z,y)) < dy(f(x), f(y)) < pr(dx(z,y)).



Definition 3.3. A coarse embedding f : X — Y is a coarse

equivalence if [ is quasi-surjective, i.e. there exists R > 0
such that 'Y is the R-neighborhood of f(X).

A dictionary between coarse-geometry properties of [JG' and
group-theoretical properties of G:

The property (T) side:
OG G

G has property (7T)

O, G has geometric property (T) (Willett & Yu 2013)

G has property (7)
O(w,)G is an expander family w.r.t. the filtration (Ng)g=o
(Lubotzky-Zimmer 1989)




Turning to the amenability side:

UG G

G is virtually cyclic

U(n,)G has linear diameter (Khukhro & V. 2015)

(G is amenable

[(n,)G has Yu’s property A (Roe 2003)

G is a-(T)-menable
(Chen-Wang-Wang 2013;
Finn-Sell 2013)
Note that SLy(Z) is a-(T)-menable but has property (7) with

respect to congruence subgroups. If p is a prime, SLy(Z[,/p])

is a-(T)-menable but has property (7) (w.r.t all finite index
subgroups).

OnoG  admits  a fibered
coarse embedding into L?




4 How many expanders?

Theorem 4.1. (M. Mendel and A. Naor 2011) There ezists
an expander X with unbounded girth, andY an expander with
many short cycles, such that'Y does not coarsely embed in X.

Geometric property (T) (R. Willett and G. Yu 2013) distin-
guishes expanders from property (T) groups, from expanders
from a-(T)-menable groups.

Theorem 4.2. (D. Hume 201/) There ezists a continuum of
pairwise coarsely inequivalent expanders with unbounded girth.

This is proved using separation profile of Benjamini-Schramm-
Timar (2010).



Theorem 4.3. (A. Khukhro-V. 2015)

1) Ford > 2: the group SLq(Z) admits a continuum of pair-
wise inequivalent box spaces which are expanders (in par-
ticular, for d > 3: there exists a continuum of expanders
with geometric property (T)).

2) For m # n: a box space of SLy,(Z) is not coarsely equiv-
alent to a box space of SL,(Z).

8) For p,q distinct primes: a box space of SLy(Z[,/p) is not
coarsely equivalent to a box space of SLy(Z[\/q)).

As Willett and Yu proved that a space with geometric prop-
erty (T) does not coarsely embed in a space admitting a
fibered coarse embedding into Hilbert space, we get:

Corollary 4.4. A box space of SLqy(Z) (for d > 3) does not
coarsely embed into a box space of SLy(Z[\/p]).



5 On the proofs

Let X =], X, and Y =[], Y, be two coarse disjoint unions
of finite, connected graphs with degrees bounded by d, with
diam|X,|, diam|Y,| — oo.

Lemma 5.1. If f : X — Y is a coarse equivalence, then:

1. There exists A > 1 such that for everyn > 1 and x,y €
Xy

1

A

(f is a family of quasi-isometries with uniform constants)

dx, (v,y) — A < dy(f(v), f(y)) < Adx,(z,y) + A

2. f induces a bijection o between a co-finite set of compo-
nents of X and a co-finite set of components of Y (say
that o is an almost bijection).

3. There exists C' > 1 such that, for n > 0:

R
C

< ’Ya(n)| < C‘Xn‘



Proof:

1. For z,y € X,,, we get by the triangle inequality: dy (f(x), f(y)) <
p+(1).dx, (z,y). Using a quasi-inverse for f, get the con-
verse inequality:.

2. For n > 0 we have f(X,) C Y,,. Set m = a(n).

For n,n’ > 0: X,,, X,, are far away, so not mapped to
the same component: a(n) # a(n’).

If Y is the R-neighborhood of f(X): for m > 0, we have
diam(Y,,) > R, so Y,, meets f(X), i.e. m = «a(n) for
some 1.

3. Since f has uniformly bounded fibers: ‘fg' < |f(X,)]
[Yom|- On the other hand |Y,,)| < |Br,(R)|.|f(X,)]
K'|X,|.

IRVARVAN



Definition 5.2. A filtration (N;);=o of G is strict, if the se-
quence (N;) is strictly decreasing.

Lemma 5.3. Let (M;)i=o, (IV;)i=o be strict filtrations of G, H
respectively. Let f: UG — U, H be a coarse equivalence.
Then the almost bijection o has bounded displacement, i.e.
there is N € N such that |a(n) — n| < N forn > 0.

Sketch of Proof: Set X; = G/M;,Y; = H/N;. By previous
lemma: |log, | X;| —logy |V || < K. Now |X;| > 2/7"|.X;| for
J > 1, hence log, | X;| — log, | X;| > j —i. Take N > 2K, to
ensure log, | Yo < logy [Yo)| if i + NV < j, ie. a(i) < a(j)
if i + N < j. From this it follows that |a(i) —i] < N. O

Hence necessary condition for coarse equivalence:

Proposition 5.4. If box spaces Uy, G, Oy H (associated

with strict filtrations) are coarsely equivalent, then for some

G /M; H/Nq
G/Mil g T/ Nag)

are bounded.
|H/Nol |G/ M;]

almost bijection o the ratios
O



Now we deal with congruence box spaces of SL4(Z). For p
prime:
1 1

1
|SLo(Z/p*Z)| = p" V(1 - E)(l - F)---(l - 2?)

From this we deduce:

Proposition 5.5. e For p,q primes, m,n > 2, the coarse
disjoint unions [ [, SLy(Z/p*Z) and |1, SL.(Z/q"Z) (viewed
as box spaces of S Ly, (Z), S L, (Z) respectively) are coarsely
equivalent if and only if m =n and p = q.

e Fors > 1, set Ni(s) = 2%, The expanders [, SLn(Z/Ni(s)Z)
(viewed as box spaces of SLy,(Z)) are pairwise coarsely
inequivalent for s > 1. Il



6 Quasi-isometry of groups

Theorem 6.1. (suggested by R. Tessera) If box spaces O, G,
Um,) H are coarsely equivalent, then G and H are quasi-isometric.

R. Tessera has announced that his PhD student K. Das has
a stronger result: under the same assumption, G and H are
uniformly measure equivalent (in particular 5;2)(G) = 0 iff
B (H) = 0).

7

The Theorem above leads to the subject of quasi-isometric
rigidity, where many results are available:

e The quasi-isometry class of SLy(Z[,/p]) remembers p (B.
Farb and R. Schwartz 1996);

e The quasi-isometry class of SL,,(Z) remembers m (A.
Eskin 1998).



Idea of proof: Let f : U, G — U, H be a coarse equiv-
alence; so there exists A > 1 such that, for : > 0, f is a
(A, A)-quasi-isometry G/M; — H/Ny;. Fix N > 0. The
restriction f|g/a;, maps the ball B;(/N) around 1 in G//M;, to
the ball B,;)((A+ 1)N) around 1 in H/N,). For i > 0, by
residual finiteness, the ball B;(N) around 1 in G is isometric
to B;(IN), and the ball By((A + 1)N) in H is isometric to
By ((A+1)N). So we get a family of maps fn,; : Bg(N) —
Br((A+1)N) (one for every i > 0). There are finitely many
maps Bg(N) — Bp((A+ 1)N). Using a diagonal argument,
we may extract from all these maps a (A, A)-quasi-isometry
G— H. O



7 Large diameter

Definition 7.1. Fiz o €]0,1]. A sequence (X,)n>0 of finite,
connected, d-reqular graphs, with | X,| — oo, satisfies property
(Dy,) if for some constant C' > 0 we have

diam(X,) > C.| X,|“.

Recall that, for an expander, the diameter of X, is logarithmic
in | X, |, so property (D,) is a strong form of non-expansion.

Theorem 7.2. (A.K & A.V. 2015) For G residually finite,
finitely generated: O(nG has (D1) if and only if G is virtually
cyclic.

The proof uses the pre-Gromov result: a group with linear
growth is virtually cyclic.



Theorem 7.3. ((1)= (2): E. Breuillard & M. Tointon 2015;
(2) = (1): A.K& A.V., 2015) For G residually finite and
finitely generated, TFAE:

1. Some box space of G has (D,), for some a €]0,1].
2. G wvirtually maps onto Z.

Proof when G maps onto Z, i.e. G = HxZ. Then any a < 1
does the job.
Write Z =<t >. Let (M,),~0 be a filtration of G. Let k,
be a sequence of integers such that k, divides k,,; and k,
is a multiple of the order of Ad(t) on H/(H N M,). Then
N, =< HN M,,t* > is a filtration of G and

kn

diam(G/N,) > diam(Cy,) = 5

So by assuming
ko > |H O M,| 7,

we get (D). O



Corollary 7.4. Fix a €)|0,1[. If M is a closed Riemannian
manifold, and m (M) wvirtually maps onto a non-amenable,
restdually finite group with infinite abelianization; then M ad-
mits a tower (My,)n~o of finite-sheeted coverings, with A1 (M,) =
O(vol(M,)~%), such that the coarse union of the M, ’s is not
coarsely equivalent to any coarse union of finite-sheeted covers
of M obtained by (virtually) mapping m (M) onto a residually
finite amenable group. ]

This generalizes a result by G. Arzhantseva and E. Guentner
(2012), under stronger assumption that 7y (M) virtually maps
onto Fs.



HAPPY BIRTHDAY GEORGES,
MANY HAPPY RETURNS!




