KK-theory for fundamental C*-algebras of graphs of C*-algebras

Pierre FIMA & Emmanuel GERMAIN

CIRM, November 5, 2015

Some History

Pimsner-Voiculescu's exact sequence

- $\bullet~$ 1980 Cross product by $\mathbb Z$
- 1982 Cross product by free group \mathbb{F}_n

Some History

Pimsner-Voiculescu's exact sequence

- 1980 Cross product by $\mathbb Z$
- 1982 Cross product by free group \mathbb{F}_n
- 1986 Anderson-Paschke HNN groups
- 1986 Pimsner KK-theory of cross product by groups acting on trees

Representations of free products

Tools

- Representation in the Calkin algebra (Voiculescu absorption theorem for extensions).
- **2** Voiculescu free product Hilbert space or Hilbert module.

Representations of free products

Tools

- Representation in the Calkin algebra (Voiculescu absorption theorem for extensions).
- **②** Voiculescu free product Hilbert space or Hilbert module.

Hypothesis

- Nuclearity.
- ② Existence of conditional expectations.

Cuntz Theorem

 A_1 and A_2 unital C*-algebras with one dimensional representations t_1 and t_2 .

Theorem (Cuntz 1982) $A_1 \underset{\mathbb{C}}{*} A_2$ is KK-equivalent to $A_1 \underset{\mathbb{C}}{\oplus} A_2$

Cuntz Theorem

 A_1 and A_2 unital C*-algebras with one dimensional representations t_1 and t_2 .

Theorem (Cuntz 1982)

 $A_1 \underset{\mathbb{C}}{*} A_2$ is KK-equivalent to $A_1 \underset{\mathbb{C}}{\oplus} A_2$

Path π_t of representations of $A = A_1 \underset{\mathbb{C}}{*} A_2$ between $Id_A \oplus t_1 * t_2$ and $Id_{A_1} * t_2 \oplus t_1 * Id_{A_2}$

$$\pi_t(a_1) = \begin{pmatrix} a_1 & 0\\ 0 & t_1(a_1) \end{pmatrix}$$
$$\pi_t(a_2) = \begin{pmatrix} \cos t & \sin t\\ -\sin t & \cos t \end{pmatrix} \begin{pmatrix} a_2 & 0\\ 0 & t_2(a_2) \end{pmatrix} \begin{pmatrix} \cos t & -\sin t\\ +\sin t & \cos t \end{pmatrix}$$

Graphs of C*-algebras

Definition

A finite graph G is a collection of vertices v and edges e together with source and range maps s and r. To each edge e we will always have an opposite edge \bar{e} such that source and range are interchanged.

Graphs of C*-algebras

Definition

A finite graph G is a collection of vertices v and edges e together with source and range maps s and r. To each edge e we will always have an opposite edge \bar{e} such that source and range are interchanged.

Definition (Graph of C*-algebras)

Given a finite graph \mathcal{G} we associate to each vertex v a unital C*-algebra A_v and to each edge e a unital C*-algebra $B_e = B_{\bar{e}}$ such that there exists unital injective morphisms s_e and r_e from B_e to $A_{s(e)}$ and $A_{r(e)}$ respectively. We will also require that there exists ucp maps E_e from A_v to any B_e such that s(e) = v with $E_e \circ s_e = Id_{B_e}$

(個) () ヨト (ヨト) ヨ

Fundamental C*-algebras

Definition

Choose a maximal tree Y in the graph \mathcal{G} . Then the full fundamental C*-algebra P_f is the universal unital C*-algebras generated by the A_v 's and unitaries U_e for any edge e such that

- $U_{\bar{e}} = U_e^*$
- $U_e \, s_e(b) \, U_e^* = r_e(b)$ for all $b \in B_e$
- $U_e = 1$ for all e in the tree Y

It is independent of the choice of Y.

Fundamental C*-algebras

Definition

Choose a maximal tree Y in the graph \mathcal{G} . Then the full fundamental C*-algebra P_f is the universal unital C*-algebras generated by the A_v 's and unitaries U_e for any edge e such that

- $U_{\bar{e}} = U_e^*$
- $U_e \, s_e(b) \, U_e^* = r_e(b)$ for all $b \in B_e$
- $U_e = 1$ for all e in the tree Y

It is independent of the choice of Y.

Example

- One geometric edge, two vertices : this is the full amalgamated free product $A_1 \underset{B}{*} A_2$
- One geometric edge , one vertex : this is the HNN extension $(A, s_e(B), \theta = r_e \circ s_e^{-1})$

Vertex representations

Choose a vertex v.

Via GNS for A_v and E_e , one gets a B_e -Hilbert module $K_e = 1_{A_v} B_e \oplus K_e^\circ$. To any path (e_1, e_2, \dots, e_n) such that $s(e_1) = v = r(e_n)$ and $r(e_i) = s(e_{i+1})$ one can also associate a A_v -Hilbert module :

$$\mathcal{K}_{e_1}^{\epsilon_1}\otimes_{B_{e_1}}\cdots\otimes_{B_{e_{n-1}}}\mathcal{K}_{e_n}^{\epsilon_n}\otimes_{B_{e_n}}\mathcal{A}_{v}$$

where ϵ_i is null or \circ according to the rule $\epsilon_i = \circ$ if $e_i = \bar{e}_{i-1}$. We call H_v the direct sum over all admissible paths of these Hilbert modules with convention that A_v is associated to the empty path.

Theorem

For any v, there exists a natural representation of P_f in $\mathcal{L}_{A_v}(H_v)$

Example (Cross product case)

It is a particular case of an HNN extension where A = B and θ is an isomorphism. Then $K_e = A$ and $K_e^{\circ} = 0$. Only the paths with no change of direction contribute and the associated Hilbert module is isomorphic to A. Hence $H_v = \ell^2(\mathbb{Z}) \otimes A$ and U_e is represented as the bilateral shift.

Example (Cross product case)

It is a particular case of an HNN extension where A = B and θ is an isomorphism. Then $K_e = A$ and $K_e^\circ = 0$. Only the paths with no change of direction contribute and the associated Hilbert module is isomorphic to A. Hence $H_v = \ell^2(\mathbb{Z}) \otimes A$ and U_e is represented as the bilateral shift.

Example (Free product case) $H_{1} = A_{1} \oplus \bigoplus_{\substack{1=i_{1}\neq i_{2}\neq \ldots\neq i_{n}\neq 1}} K_{i_{1}} \otimes_{B} K_{i_{2}}^{\circ} \otimes_{B} \cdots \otimes_{B} K_{i_{n}}^{\circ} \otimes_{B} A_{1}$ The action of A_{1} is straightforward and the action of A_{2} is obtained via the isomorphism $H_{1} \simeq K_{2} \otimes_{B} \left(B \oplus \bigoplus_{\substack{2\neq i_{1}\neq i_{2}\neq \ldots\neq i_{n}\neq 1}} K_{i_{1}}^{\circ} \otimes_{B} K_{i_{2}}^{\circ} \otimes_{B} \cdots \otimes_{B} K_{i_{n}}^{\circ} \right) \otimes_{B} A_{1}$

In the most degenerate case (E_e are morphisms), $H_1 = A_1$.

(日)、(型)、(E)、(E)、(E)、(O)へ(C)

Edge representations

Given an edge *e* such that s(e) = v, we can form $H_e = H_v \otimes_{E_e} B_e$

Theorem

- For any e, H_e is isomorphic to H_ē
- there exists a natural representation of P_f in $\mathcal{L}_{B_e}(H_e)$

Example (Free product case)

$$H_B = B \oplus \bigoplus_{i_1 \neq i_2 \neq \dots \neq i_n} K_{i_1}^{\circ} \otimes_B K_{i_2}^{\circ} \otimes_B \dots \otimes_B K_{i_n}^{\circ}$$

→ 3 → 4 3

Edge representations

Given an edge e such that s(e) = v, we can form $H_e = H_v \otimes_{E_e} B_e$

Theorem

- For any e, H_e is isomorphic to H_ē
- there exists a natural representation of P_f in $\mathcal{L}_{B_e}(H_e)$

Example (Free product case)

$$H_B = B \oplus \bigoplus_{i_1 \neq i_2 \neq \dots \neq i_n} K_{i_1}^{\circ} \otimes_B K_{i_2}^{\circ} \otimes_B \dots \otimes_B K_{i_n}^{\circ}$$

Theorem

If all the ucp maps E_e give a GNS-faithful representation of A_v on K_e then the image of P_f in all vertex or edge representations are isomorphic. This is the analogue of Voiculescu reduced free product.

イロト イポト イヨト イヨト

Vertex reduced free product

Definition

The quotient of $A_1 \underset{B}{*} A_2$ by the intersection of the kernel of the two vertex representations is the vertex reduced free product $A_1 \underset{B}{\overset{v}{*}} A_2$.

Vertex reduced free product

Definition

The quotient of $A_1 \underset{B}{*} A_2$ by the intersection of the kernel of the two vertex representations is the vertex reduced free product $A_1 \underset{B}{\overset{v}{*}} A_2$.

Example

When the ucp maps are morphisms we get $A_1 \overset{v}{\underset{B}{\overset{}}} A_2 \simeq A_1 \underset{B}{\oplus} A_2$.

(人間) トイヨト イヨト

Vertex reduced free product

Definition

The quotient of $A_1 \underset{B}{*} A_2$ by the intersection of the kernel of the two vertex representations is the vertex reduced free product $A_1 \underset{B}{\overset{v}{*}} A_2$.

Example

When the ucp maps are morphisms we get $A_1 \overset{v}{\underset{B}{*}} A_2 \simeq A_1 \underset{B}{\oplus} A_2$. For groups Γ_1 , Γ_2 , we get the four possibly distinct C*-algebras :

$$C^{*}(\Gamma_{1} * \Gamma_{2}) \xrightarrow{\sim} C^{*}_{r}(\Gamma_{1}) * C^{*}_{r}(\Gamma_{2}) \xrightarrow{\sim} C^{*}_{r}(\Gamma_{1} * \Gamma_{2})$$

$$C^{*}(\Gamma_{1}) \overset{\vee}{*} C^{*}(\Gamma_{2}) \xrightarrow{\sim} C^{*}_{r}(\Gamma_{1} * \Gamma_{2})$$

イロト イポト イヨト イヨト

The natural quotient map from $A_1 \underset{B}{*} A_2$ to $A_1 \underset{B}{\overset{\vee}{*}} A_2$ is always a KK-equivalence.

・ 戸 ト ・ ヨ ト ・ ヨ ト

The natural quotient map from $A_1 \underset{B}{*} A_2$ to $A_1 \underset{B}{\overset{\vee}{*}} A_2$ is always a KK-equivalence.

Example

• If A_1 and A_2 have one-dimensional representations then $A_1 * A_2$ is KK-equivalent to $A_1 \bigoplus_{\mathbb{C}} A_2$.

The natural quotient map from $A_1 \underset{B}{*} A_2$ to $A_1 \underset{B}{\overset{\vee}{*}} A_2$ is always a KK-equivalence.

Example

- If A_1 and A_2 have one-dimensional representations then $A_1 * A_2$ is KK-equivalent to $A_1 \bigoplus_{C} A_2$.
- C*(Γ₁ * Γ₂) is KK-equivalent to C*(Γ₁) * C*(Γ₂) and C_r^{*}(Γ₁) * C_r^{*}(Γ₂) is KK-equivalent to C_r^{*}(Γ₁ * Γ₂)

イベト イモト イモト

The natural quotient map from $A_1 \underset{B}{*} A_2$ to $A_1 \underset{B}{\overset{\vee}{*}} A_2$ is always a KK-equivalence.

Example

- If A_1 and A_2 have one-dimensional representations then $A_1 * A_2$ is KK-equivalent to $A_1 \bigoplus_{C} A_2$.
- C*(Γ₁ * Γ₂) is KK-equivalent to C*(Γ₁) * C*(Γ₂) and C_r^{*}(Γ₁) * C_r^{*}(Γ₂) is KK-equivalent to C_r^{*}(Γ₁ * Γ₂)

The proof is Julg-Valette for the Bass-Serre tree except that

- there is no tree
- there is no proper action even in the group case
- the homotopy is not a geometric one but a simple rotation argument

イロト イポト イヨト イヨト

The inverse of the quotient map

There are natural partial isometries $F_k \in \mathcal{L}_{A_k}(H_k, H_B \otimes_B A_k)$ between

$$H_k = A_k \oplus \bigoplus_{i_1 \neq i_2 \neq \dots \neq i_n \neq k} K_{i_1}^{\circ} \otimes_B K_{i_2}^{\circ} \otimes_B \dots \otimes_B K_{i_n}^{\circ} \otimes_B A_k$$

and

$$H_B \otimes_B A_k = A_k \oplus \bigoplus_{i_1 \neq i_2 \neq \dots \neq i_n} K_{i_1}^{\circ} \otimes_B K_{i_2}^{\circ} \otimes_B \dots \otimes_B K_{i_n}^{\circ} \otimes A_k$$

The inverse of the quotient map

There are natural partial isometries $F_k \in \mathcal{L}_{A_k}(H_k, H_B \otimes_B A_k)$ between

$$H_{k} = A_{k} \oplus \bigoplus_{i_{1} \neq i_{2} \neq \dots \neq i_{n} \neq k} K_{i_{1}}^{\circ} \otimes_{B} K_{i_{2}}^{\circ} \otimes_{B} \dots \otimes_{B} K_{i_{n}}^{\circ} \otimes_{B} A_{k}$$

and

$$H_B \otimes_B A_k = A_k \oplus \bigoplus_{i_1 \neq i_2 \neq \dots \neq i_n} K_{i_1}^{\circ} \otimes_B K_{i_2}^{\circ} \otimes_B \dots \otimes_B K_{i_n}^{\circ} \otimes A_k$$

Theorem

• $F_k^*F_k = Id \mod K(H_k)$

• $F_k F_k^* = P_k \otimes_{A_k} 1$ with $P_k \in \mathcal{L}_B H_B$ and $P_1 + P_2 = Id \mod K(H_B)$

• $[A_1, F_1] = 0$ and $[A_2, F_1] \subset K(H_1, H_B \otimes_B A_1)$

The inverse of the quotient map from $A_f = A_1 \underset{B}{*} A_2$ to $A = A_1 \underset{B}{*} A_2$ is the element of $KK^0(A, A_f)$ defined by

- the module $(H_1 \otimes_{A_1} A_f \oplus H_2 \otimes_{A_2} A_f) \oplus H_B \otimes_B A_f$
- the natural induced left action of A on H_1 , H_2 and H_B
- the fredholm operator

$$F = \begin{pmatrix} 0 & 0 & F_1^* \otimes_{A_1} 1 \\ 0 & 0 & F_2^* \otimes_{A_2} 1 \\ F_1 \otimes_{A_1} 1 & F_2 \otimes_{A_2} 1 & 0 \end{pmatrix}$$

Homotopy is the rotation present in Cuntz theorem. To prove it is defined on the vertex reduced free product we need

Theorem

The partial radial maps φ_k in $A_1 \overset{v}{\underset{B}{*}} A_2$ that is, for reduced words, the multiplication by r to the power the number of letters in A_k for 0 < r < 1 is UCP.

Homotopy is the rotation present in Cuntz theorem. To prove it is defined on the vertex reduced free product we need

Theorem

The partial radial maps φ_k in $A_1 \stackrel{v}{*}_B A_2$ that is, for reduced words, the multiplication by r to the power the number of letters in A_k for 0 < r < 1 is UCP.

Which is proven via free probability techniques using the isomorphism

$$(A_1 \stackrel{1}{*}_B A_2) \stackrel{e}{*}_{A_1} (A_1 \stackrel{1}{*}_B C([0,1];B)) \simeq A_1 \stackrel{1}{*}_B (A_2 \stackrel{e}{*}_B C([0,1];B))$$

Long exact sequence for fundamental C*-algebras

Choose a set E^+ of oriented edges, then for any separable D, there are long exact sequences for both the full and vertex reduced fundamental C*-algebras (P_f or P_v) analogous to Pimsner exact sequence for group acting on trees.

Long exact sequence for fundamental C*-algebras

Choose a set E^+ of oriented edges, then for any separable D, there are long exact sequences for both the full and vertex reduced fundamental C*-algebras (P_f or P_v) analogous to Pimsner exact sequence for group acting on trees.

Theorem

For any edge *e* belonging to the graph \mathcal{G} , there is a natural element $x_e^{\mathcal{G}} \in KK^1(P_v^{\mathcal{G}}, B_e)$ given by the projection in H_e on the direct sum of Hilbert modules associated to paths $(e_1, ..., e_n)$ with $e_n = e$.

For any edge *e* belonging to the graph \mathcal{G} , there is a natural element $x_e^{\mathcal{G}} \in KK^1(P_v^{\mathcal{G}}, B_e)$ given by the projection in H_e on the direct sum of Hilbert modules associated to paths $(e_1, ..., e_n)$ with $e_n = e$.

周下 イヨト イヨト

For any edge *e* belonging to the graph \mathcal{G} , there is a natural element $x_e^{\mathcal{G}} \in KK^1(P_v^{\mathcal{G}}, B_e)$ given by the projection in H_e on the direct sum of Hilbert modules associated to paths $(e_1, ..., e_n)$ with $e_n = e$.

Theorem

- $x_{\overline{e}} = -x_e$
- If \mathcal{G}_1 is a subgraph of \mathcal{G} and π_1 is the natural morphism from $\mathcal{P}_v^{\mathcal{G}_1}$ to $\mathcal{P}_v^{\mathcal{G}}$ then $[\pi_1] \otimes x_e^{\mathcal{G}} = x_e^{\mathcal{G}_1}$ if e belong to \mathcal{G}_1 and $[\pi_1] \otimes x_e^{\mathcal{G}} = 0$ otherwise

•
$$\sum_{e} x_{e}^{\mathcal{G}} \otimes [s_{e}] = 0$$
 in $KK^{1}(P_{v}^{\mathcal{G}}, \oplus_{v} A_{v})$.

イベト イモト イモト

For any edge *e* belonging to the graph \mathcal{G} , there is a natural element $x_e^{\mathcal{G}} \in KK^1(P_v^{\mathcal{G}}, B_e)$ given by the projection in H_e on the direct sum of Hilbert modules associated to paths $(e_1, ..., e_n)$ with $e_n = e$.

Theorem

- $x_{\overline{e}} = -x_e$
- If \mathcal{G}_1 is a subgraph of \mathcal{G} and π_1 is the natural morphism from $\mathcal{P}_v^{\mathcal{G}_1}$ to $\mathcal{P}_v^{\mathcal{G}}$ then $[\pi_1] \otimes x_e^{\mathcal{G}} = x_e^{\mathcal{G}_1}$ if e belong to \mathcal{G}_1 and $[\pi_1] \otimes x_e^{\mathcal{G}} = 0$ otherwise

•
$$\sum_{e} x_{e}^{\mathcal{G}} \otimes [s_{e}] = 0$$
 in $KK^{1}(P_{v}^{\mathcal{G}}, \oplus_{v} A_{v})$.

• The boundary maps in the long exact sequences is given by the Kasparov product with $x_e^{\mathcal{G}}$ for the vertex reduced case or with $[\pi] \otimes x_e^{\mathcal{G}}$ for the full case where π is the natural quotient map $P_f^{\mathcal{G}} \to P_v^{\mathcal{G}}$

・ 伊 ト ・ ヨ ト ・ ヨ ト … ヨ

The devissage

The only case to prove is the free product case.

< 🗗 🕨

The devissage

The only case to prove is the free product case. Let D be the C*-algebra of continuous functions from]-1,1[to $A_1 \underset{B}{*} A_2$ such that $f(]-1,0]) \subset A_1$, $f([0,1[) \subset A_2$ and $f(0) \in B$.

Theorem

The natural map from D to the suspension of $A_1 \underset{B}{*} A_2$ is a KK-equivalence.

The devissage

The only case to prove is the free product case. Let D be the C*-algebra of continuous functions from]-1,1[to $A_1 \underset{B}{*} A_2$ such that $f(]-1,0]) \subset A_1$, $f([0,1[) \subset A_2$ and $f(0) \in B$.

Theorem

The natural map from D to the suspension of $A_1 \underset{B}{*} A_2$ is a KK-equivalence.

The Kasparov triple for the inverse is $(H_1 \otimes C_0(] - 1, 0[) \oplus H_2 \otimes C_0(]0, 1[)) \oplus H_B \otimes C_0(] - 1, 1[)$ and Fredholm operator

$$G(t) = \begin{pmatrix} \cos^{-} \pi t & 0 & -F_{1}^{*} \otimes 1 \sin^{-} \pi t \\ 0 & -\cos^{+} \pi t & F_{2}^{*} \otimes 1 \sin^{+} \pi t \\ -F_{1} \otimes 1 \sin^{-} \pi t & F_{2} \otimes 1 \sin^{+} \pi t & Z(t) \end{pmatrix}$$

with $Z(t) = -P_1 \cos^- \pi t + P_2 \cos^+ \pi t - tP_0$ and $P_1 + P_2 + P_0 = Id_{H_B}$

Corollaries

Theorem

The full and the vertex reduced fundamental C*-algebras of a graph of C*-algebras are always KK-equivalent.

Corollaries

Theorem

- The full and the vertex reduced fundamental C*-algebras of a graph of C*-algebras are always KK-equivalent.
- Suppose we have a graph of C*- compact quantum groups. If all of the vertex algebras are K-amenable then the fundamental C*-algebra of the graph, which is again a compact quantum groups, is K-amenable

- A TE N - A TE N