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Geometry from the Quantum

The goal is to reconcile Quantum Mechanics and Gene-

ral Relativity by showing that the latter naturally arises

from a higher degree version of the Heisenberg com-

mutation relations.
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with A. Chamseddine and S. Mukhanov

We have discovered a geometric analogue of the Hei-

senberg commutation relations [p, q] = i~. The role of

the momentum p is played by the Dirac operator. It

plays the role of a measuring rod and at an intuitive

level it represents the inverse of the line element ds

familiar in Riemannian geometry

ds = •−−−−−−•
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Spectral triples

(A,H, D) , ds = D−1 ,

d(A,B) = Sup {|f(A)− f(B)| ; f ∈ A , ‖[D, f ]‖ ≤ 1 }

Meter → Wave length (Krypton (1967) spectrum of 86Kr then

Caesium (1984) hyperfine levels of C133)
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Classical Quantum

Real variable Self-adjoint
f : X → R operator in Hilbert space

Infinitesimal Compact
ds2 = gµνdxµdxν operator ds := D−1

Integral of
∫
−ds4 = coefficient of

function
∫
f(x)dx log(Λ) in TrΛ(ds4)
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Line Element
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Inner automorphisms

and internal symmetries

Let us consider the simplest example

A = C∞(M,Mn(C)) = C∞(M)⊗Mn(C)

Algebra of n× n matrices of smooth functions on ma-
nifold M .

The group Inn(A) of inner automorphisms is locally iso-
morphic to the group G of smooth maps from M to the
small gauge group SU(n)

1→ Inn(A)→ Aut(A)→ Out(A)→ 1

becomes identical to

1→Map(M,G)→ G → Diff(M)→ 1.
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Spectral Action

and Einstein–Yang-Mills

We have shown with A. Chamseddine that the spectral

action on this space yields Einstein gravity on M mi-

nimally coupled with Yang-Mills theory for the gauge

group SU(n). The Yang-Mills gauge potential appears

as the inner part of the metric, in the same way as the

group of gauge transformations (for the gauge group

SU(n)) appears as the group of inner diffeomorphisms.
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Real Structure J

The restriction to spin manifolds is obtained by requi-

ring a real structure i.e. an antilinear unitary operator J

acting in H which plays the same role and has the same

algebraic properties as the charge conjugation operator

in physics.

In the even case the chirality operator γ plays an impor-

tant role, both γ and J are decorations of the spectral

triple.
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The following further relations hold for D, J and γ

J2 = ε , DJ = ε′JD, J γ = ε′′γJ, Dγ = −γD

The values of the three signs ε, ε′, ε′′ depend only, in the

classical case of spin manifolds, upon the value of the

dimension n modulo 8 and are given in the following

table :

n 0 1 2 3 4 5 6 7

ε 1 1 -1 -1 -1 -1 1 1
ε′ 1 -1 1 1 1 -1 1 1
ε′′ 1 -1 1 -1
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The three roles of J

— In physics J is the charge conjugation operator.

— It is deeply related to Tomita’s operator which

conjugates the algebra with its commutant. The

basic relation always satisfied is Tomita’s rela-

tion :

[a, bop] = 0 , ∀a, b ∈ A, bop := Jb∗J−1.

— KO-homology, one obtains a KO-homology cycle

for the algebra A⊗Aop and an intersection form :

K(A)⊗K(A)→ Z, Index(De⊗f)
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Metric dimension, KO-dimension

In the classical case of spin manifolds there is a relation

between the metric (or spectral) dimension given by the

rate of growth of the spectrum of D and the integer

modulo 8 which appears in the above table. For more

general spaces however the two notions of dimension

(the dimension modulo 8 is called the KO-dimension

because of its origin in K-theory) become independent

since there are spaces F of metric dimension 0 but of

arbitrary KO-dimension.
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Fine Structure

Starting with an ordinary spin geometry M of dimen-

sion n and taking the product M × F , one obtains a

space whose metric dimension is still n but whose KO-

dimension is the sum of n with the KO-dimension of

F .

As it turns out the Standard Model with neutrino mixing

favors the shift of dimension from the 4 of our familiar

space-time picture to 10 = 4 + 6 = 2 modulo 8.
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Finite spaces

In order to learn how to perform the above shift of di-

mension using a 0-dimensional space F , it is important

to classify such spaces. This was done in joint work with

A. Chamseddine. We classified there the finite spaces

F of given KO-dimension. A space F is finite when the

algebra AF of coordinates on F is finite dimensional.

We found among the choices of KO-dimension 6

AF = M2(H)⊕M4(C)

but we had no uniqueness statement.
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Feynman slash of

position variables

The role of the position variable q in the higher analogue

of [p, q] = i~ was the most difficult to uncover.

The answer is to encode the analogue of the position

variable q in the same way as the Dirac operator en-

codes the components of the momenta, just using the

Feynman slash.
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Motivating examples

Geometry of circle of length 2π :

U∗[D,U ] = 1

Geometry of 2-sphere

M2(C) ? e, e = e∗ = e2
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Feynman Slash

We let Y ∈ A ⊗ Cκ be of the Feynman slashed form

Y = Y AΓA, and fulfill the equations

Y 2 = κ, Y ∗ = κY (1)

Here κ = ±1 and Cκ ⊂ Ms(C), s = 2n/2, is the Clifford

algebra on n+ 1 gamma matrices Γa, 0 ≤ a ≤ n

ΓA ∈ Cκ,
{

ΓA,ΓB
}

= 2κ δAB, (ΓA)∗ = κΓA
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Higher Heisenberg equation

The one-sided higher analogue of the Heisenberg com-

mutation relations is

1

n!
〈Y [D,Y ] · · · [D,Y ]〉 =

√
κ γ (n terms [D,Y ]) (2)

where the notation 〈T 〉 means the normalized trace of

T = Tij with respect to the above matrix algebra Ms(C)

(1/s times the sum of the s diagonal terms Tii).
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Volume is quantized

For even n, equation (2), together with the hypothesis

that the eigenvalues of D grow as in dimension n, imply

that the volume, expressed as the leading term in the

Weyl asymptotic formula for counting eigenvalues of

the operator D, is “quantized” by being equal to the

index pairing of the operator D with the K-theory class

of A defined by the projection e = (1 +
√
κY )/2.
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Theorem 1 : spheres

Let M be a spin Riemannian manifold of even dimension

n and (A,H, D) the associated spectral triple. Then a

solution of the one-sided equation exists if and only if

M breaks as the disjoint sum of spheres of unit volume.

On each of these irreducible components the unit vo-

lume condition is the only constraint on the Riemannian

metric which is otherwise arbitrary for each component.
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We recall that given a smooth compact oriented spin

manifold M , the associated spectral triple (A,H, D) is

given by the action in the Hilbert space H = L2(M,S)

of L2-spinors of the algebra A = C∞(M) of smooth

functions on M , and the Dirac operator D which in

local coordinates is of the form

D = γµ
(
∂

∂xµ
+ ωµ

)
where γµ = e

µ
aγ

a and ωµ is the spin-connection
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We can assume that κ = 1 since the other case follows

by multiplication by i =
√
−1. Equation (1) shows that

a solution Y of the above equations gives a map Y :

M → Sn from the manifold M to the n-sphere. Let us

compute the left hand side of (2). The normalized trace

of the product of n+ 1 Gamma matrices is the totally

antisymmetric tensor

〈ΓAΓB · · ·ΓL〉 = in/2εAB...L, A,B, . . . , L ∈ {1, . . . , n+ 1}
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One has

[D,Y ] = γµ
∂Y A

∂xµ
ΓA = ∇Y AΓA

where we let ∇f be the Clifford multiplication by the

gradient of f . Thus one gets at any x ∈M the equality

〈Y [D,Y ] · · · [D,Y ]〉 = in/2εAB...LY
A∇Y B · · ·∇Y L
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Given n operators Tj ∈ C in an algebra C the multiple

commutator

[T1, . . . , Tn] :=
∑

ε(σ)Tσ(1) · · ·Tσ(n)

(where σ runs through all permutations of {1, . . . , n}) is

a multilinear totally antisymmetric function of the Tj ∈
C. In particular, if the Ti = a

j
iSj are linear combinations

of n elements Sj ∈ C one gets

[T1, . . . , Tn] = Det(aji)[S1, . . . , Sn] (3)
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For fixed A, and x ∈M the sum over the other indices

εAB...LY
A∇Y B · · ·∇Y L = (−1)AY A[∇Y 1,∇Y 2, . . . ,∇Y n+1]

where all other indices are 6= A. At x ∈ M one has

∇Y j = γµ∂µY j and by (3) the multi-commutator (with

∇Y A missing) gives

[∇Y 1,∇Y 2, . . . ,∇Y n+1] = εµν...λ∂µY
1 · · · ∂λY n+1[γ1, . . . , γn]
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Since γµ = e
µ
aγa and in/2[γ1, . . . , γn] = n!γ one thus gets

〈Y [D,Y ] · · · [D,Y ]〉 = n!γDet(eαa)ω

where

ω = εAB...LY
A∂1Y

B · · · ∂nY L

so that ωdx1 ∧ · · · ∧ dxn is the pullback Y #(ρ) by the

map Y : M → Sn of the rotation invariant volume form

ρ on the unit sphere Sn given by

ρ =
1

n!
εAB...LY

AdY B ∧ · · · ∧ dY L
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Thus, using the inverse vierbein, the one-sided equation

(2) is equivalent to

det
(
eaµ
)
dx1 ∧ · · · ∧ dxn = Y #(ρ)

This equation implies that the Jacobian of the map

Y : M → Sn cannot vanish anywhere, and hence that

the map Y is a covering.
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Since the sphere Sn is simply connected for n > 1, this

implies that on each connected component Mj ⊂ M

the restriction of the map Y to Mj is a diffeomorphism.

Moreover the equation shows that the volume of each

component Mj is the same as the volume
∫
Sn ρ of the

sphere.
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Conversely it was shown that, for n = 2,4, each Rie-

mannian metric on Sn whose volume form is the same

as for the unit sphere gives a solution to the above

equation. In fact the above discussion gives a direct

proof of this fact for all (even) n.
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Two kinds of quanta

It would seem at this point that only disconnected geo-

metries fit in this framework but this is ignoring an es-

sential piece of structure of the NCG framework, which

allows one to refine (2). It is the real structure J, an

antilinear isometry in the Hilbert space H which is the

algebraic counterpart of charge conjugation.
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Two sided equation

This leads to refine the quantization condition by taking

J into account as the two-sided equation

1

n!
〈Z [D,Z] · · · [D,Z]〉 = γ Z = 2EJEJ−1 − 1, (4)

where E is the spectral projection for {1, i} ⊂ C of the

double slash Y = Y+ ⊕ Y− ∈ C∞(M,C+ ⊕ C−). More

explicitly E = 1
2(1 + Y+)⊕ 1

2(1 + iY−).
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Geometry gives Standard Model !

It turns out that in dimension 4, i.e. for 5 gamma :

C+ = M2(H), C− = M4(C)

which give the algebraic constituents of the Standard

Model exactly in the form of our previous work ! ! ! !
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The two maps Y± : M → Sn

One now gets two maps Y± : M → Sn while (4) be-

comes,

det
(
eaµ
)

= Ω+ + Ω−, (5)

with Ω± the Jacobian of Y± (the pullback of the volume

form of the sphere).

36



Lemma

In the 4-dimensional case one has〈
Z [D,Z]4

〉
=

1

2

〈
Y [D,Y ]4

〉
+

1

2

〈
Y ′
[
D,Y ′

]4〉
.

In the next theorem the algebraic relations between Y±,

D, J, C±, γ are assumed to hold.
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Theorem 2 : n = 4

(i) In any operator representation of the two sided equa-

tion (4) in which the spectrum of D grows as in di-

mension 4 the volume (the leading term of the Weyl

asymptotic formula) is quantized.

(ii) Let M be a compact oriented spin Riemannian ma-

nifold of dimension 4. Then a solution of (5) exists if

and only if the volume of M is quantized to belong to

the invariant qM ⊂ Z.
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The invariant qM ⊂ Z

D(M) set of pairs of smooth maps φ± : M → Sn such

that the differential form

φ#
+(α) + φ#

− (α) = ω

does not vanish anywhere on M (α is the volume form

of sphere Sn).

qM := {deg(φ+)+deg(φ−) | (φ+, φ−) ∈ D(M)}

where deg(φ) is the topological degree of φ.
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The invariant qM makes sense in any dimension. For

n = 2,3, and any M , it contains all sufficiently large

integers. The case n = 4 is more difficult and we showed

that for any Spin manifold it contains all integers m > 4.

This uses fine results on existence of ramified covers

of the sphere and on immersion theory going back to

Smale, Milnor and Poenaru.
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Theorem

Let M be a smooth connected oriented compact spin

4-manifold. Then qM contains all integers m ≥ 5.
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Necessary condition

Jean-Claude Sikorav and Bruno Sevennec found the

following obstruction which implies for instance that

D(CP2) = ∅.

Let M be an oriented compact smooth 4-dimensional

manifold, then, with w2 the second Stiefel-Whitney class

of the tangent bundle,

D(M) 6= ∅ =⇒ w2
2 = 0

One has a cover of M by two open sets on which the

tangent bundle is stably trivialized. Thus the product

of any two Stiefel-Whitney classes vanishes.
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Basic Lemma

Let φ : M → S4 be a smooth map such that φ#(α)(x) ≥
0 ∀x ∈ M and let R = {x ∈ M | φ#(α)(x) = 0}. Then

there exists a map φ′ such that φ#(α)+φ′#(α) does not

vanish anywhere if and only if there exists an immersion

f : V → R4 of a neighborhood V of R. Moreover if this

condition is fulfilled one can choose φ′ to be of degree

0.
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Spectral Action

The bothering cosmological leading term of the spec-

tral action is now quantized and thus it no longer ap-

pears in the variation of the spectral action which now

reproduces the Einstein equations coupled with mat-

ter. The geometry appears from the joint spectrum of

the Y± and is a 4-dimensional immersed submanifold in

the 8-dimensional product S4×S4. One has the strong

Whitney embedding theorem : M4 ⊂ R4×R4 ⊂ S4×S4.
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Standard Model Spectral Action

Higgs Boson Inner metric(0,1)

Gauge bosons Inner metric(1,0)

Fermion masses Dirac(0,1) in ↑
u, ν

CKM matrix Dirac(0,1) in (↓ 3)
Masses down

Lepton mixing Dirac(0,1) in (↓ 1)
Masses leptons e
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Standard Model Spectral Action

Majorana Dirac(0,1) on
mass matrix ER ⊕ JFER

Gauge couplings Fixed at
unification

Higgs scattering Fixed at
parameter unification

Tadpole constant −µ2
0 |H|2
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General Case

The components of the connection A which are tenso-

red with the Clifford gamma matrices γµ are the gauge

fields of the Pati–Salam model with the symmetry of

SU (2)R × SU (2)L × SU (4) .

The non-vanishing components of the connection which

are tensored with the gamma matrix γ5 are given by

(A)
.
bJ
aI ≡ γ5Σ

.
bJ
aI , (A)b

′J ′
aI = γ5HaIbJ , (A)

.
b
′
J ′.

aI
≡ γ5H .

aI
.
bJ

where HaIbJ = HbJaI and H .
aI

.
bJ

= H .
bJ

.
aI

, which is the

most general Higgs structure possible.
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These correspond to the representations with respect

to SU (2)R × SU (2)L × SU (4) :

Σ
.
bJ
aI = (2R,2L,1) + (2R,2L,15)

HaIbJ = (1R,1L,6) + (1R,3L,10)

H .
aI

.
bJ

= (1R,1L,6) + (3R,1L,10)
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Three models

1) Left-right symmetric Pati–Salam model with funda-

mental Higgs fields Σ
.
bJ
aI , HaIbJ and H .

aI
.
bJ
. In this model

the field HaIbJ should have a zero vev.

2) A Pati–Salam model where the Higgs field HaIbJ
that couples to the left sector is set to zero which is
desirable because there is no symmetry between the left
and right sectors at low energies.

3) If one starts with (DF )
.
bJ
aI or (DF )b

′J ′
aI or (DF )

.
b
′
J ′.

aI
whose values are given by those that were derived for

the Standard Model, then the Higgs fields Σ
.
bJ
aI , HaIbJ

and H .
aI

.
bJ

will become composite and expressible in
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terms of more fundamental fields ΣJ
I , ∆ .

aJ and φb.
a

in

the following way :

ΣbJ.
aI

=
(
kνφb.

a
+ keφ̃b.

a

)
ΣJ
I +

(
kuφb.

a
+ kdφ̃b.

a

) (
δJI −ΣJ

I

)
H .
aI

.
bJ

= k∗νR∆ .
aJ∆ .

bI
.

The field φ̃b.
a

is not an independent field and is given by

φ̃b.
a

= σ2φ
b.
aσ2.



Depending on the precise particle content we determine

the coefficients bR, bL, b in

16π2dg

dt
= −bg3

that control the RG flow of the Pati–Salam gauge cou-

plings gR, gL, g. We run them to look for unification of

the coupling gR = gL = g. The boundary conditions are

taken at the intermediate mass scale µ = mR to be the

usual

1

g2
1

=
2

3

1

g2
+

1

g2
R

,
1

g2
2

=
1

g2
L

,
1

g2
3

=
1

g2
,

in terms of the Standard Model gauge couplings g1, g2, g3.

51



At the mass scale mR the Pati–Salam symmetry is bro-

ken to that of the Standard Model, and we take it to

be the same scale that is present in the see-saw mecha-

nism. It should thus be of the order 1011−1013Gev. We

now discuss the three models, in order of complexity.
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Pati–Salam with composite Higgs fields

We first consider the case of a finite Dirac operator for

which the Standard Model subalgebra C⊕HL⊕M3(C) ⊂
AF satisfies the first-order condition.

The inner perturbations ΣbJ.
aI

and H .
aI

.
bJ

are composite

and expressible in terms of more fundamental fields ΣJ
I ,

∆ .
aJ and φb.

a

particle SU(2)R SU(2)L SU(4)
φbȧ 2 2 1

∆ȧI 2 1 4
ΣI
J 1 1 15

53



The β-functions for the Pati–Salam couplings gR, gL, g

with the above particle content are found to be

(bR, bL, b) =
(

7

3
,3,

31

3

)
The solutions of the RG-equations are found to be

gR(µ)−2 = gR(mR)−2 +
1

8π2

7

3
log

µ

mR
,

gL(µ)−2 = gL(mR)−2 +
1

8π2
3 log

µ

mR
,

g(µ)−2 = g(mR)−2 +
1

8π2

31

3
log

µ

mR

We impose the boundary conditions at the mass scale

µ = mR. We find a unification scale Λ ≈ 2.5× 1015Gev

if we set mR = 4.25× 1013Gev
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Pati–Salam with fundamental Higgs fields

Next, we consider the case of a more general finite

Dirac operator, not satisfying the first-order condition

with respect to the Standard Model subalgebra.

The inner perturbations ΣbJ.
aI

and H .
aI

.
bJ

are now them-

selves fundamental Higgs fields and their representa-

tions are listed in the following table :

particle SU(2)R SU(2)L SU(4)
ΣbJ
ȧJ 2 2 1 + 15

HȧIḃJ

{
3
1

1
1

10
6
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The β-functions are computed to be

(bR, bL, b) =
(
−

26

3
,−2,2

)

Here is the running of coupling constants for the spec-

tral Pati–Salam model with fundamental Higgs fields :

g1, g2, g3 for µ < mR and gR, gL, g for µ > mR.

The unification scale is Λ ≈ 6.3 × 1016Gev if we set

mR = 1.5× 1011Gev.
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Left right symmetric model

As a final possibility we consider the most general case

for DF which gives in addition to the fundamental Higgs

fields in the table

particle SU(2)R SU(2)L SU(4)
ΣbJ
ȧJ 2 2 1 + 15

HȧIḃJ

{
3
1

1
1

10
6

the field HaIbJ in the (1R,3L,10) + (1R,1L,6) represen-

tation, which gives left-right symmetry.
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The β-functions become

(bR, bL, b) =
(
−

26

3
,−

26

3
,−

4

3

)

Adopting once more the approximation that we made

use of in the previous sections, we run the Pati–Salam

gauge couplings from mR.

We find the unification scale to be Λ ≈ 2.7 × 1015Gev

if we set mR = 5.1× 1013Gev.
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A first shot at QG

Three “variables”, in a fixed Hilbert space with fixed

representation of C±, γ, J :

(D,Y+, Y−)

〈Z [D,Z] · · · [D,Z]〉 = γ

where Z = 2EJEJ−1−1 and E is the spectral projection

for {1, i} ⊂ C of Y = Y+ ⊕ Y−.
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Whitney strong embedding

Let us explain why it is natural from the point of view

of differential geometry also, to consider the two sets of

Γ-matrices and then take the operators Y± as being the

correct variables for a first shot at a theory of quantum

gravity. The first question which comes in this respect

is if, given a compact 4-dimensional manifold M one

can find a map (Y+, Y−) : M → S4 × S4 which embeds

M as a submanifold of S4 × S4.
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Reconstruction of M

A : It is true that the joint spectrum of the Y a+ and

Y b− is of dimension 4 while one has 8 variables.

B : It is it true that the non-commutative integral∫
−γ 〈Y [D,Y ]n〉

remains quantized.
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Why joint spectrum of dimension 4

The reason why A holds in the case of classical mani-

folds is that in that case the joint spectrum of the Y A

and Y ′B is the subset of Sn × Sn which is the image of

the manifold M by the map x ∈M 7→ (Y (x), Y ′(x)) and

thus its dimension is at most n.

The reason why A holds in general is because of the

assumed boundedness of the commutators [D,Y ] and

[D,Y ′] together with the commutativity [Y, Y ′] = 0 (or-

der zero condition) and the fact that the spectrum of

D grows like in dimension n.
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Why is the volume quantized

The reason why B holds in the general case is that all

the lower components of the operator theoretic Chern

character of the idempotent e = 1
2(1 + Y ) vanish and

this allows one to apply the operator theoretic index

formula which in that case gives (up to suitable norma-

lization)

2−n/2−1
∫
−γ 〈Y [D,Y ]n〉D−n = Index (De)

66



This follows from the local index formula of Connes-

Moscovici but in fact one does not need the technical

hypothesis since, when the lower components of the

operator theoretic Chern character all vanish, one can

use the non-local index formula in cyclic cohomology

and the determination in the 1994 book of the Hoch-

schild class of the index cyclic cocycle.
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Vanishing of lower classes

To be more precise one introduces the following trace

operation, given an algebra A over R (not assumed

commutative) and the algebra Mn(A) of matrices of

elements of A, one defines

tr : Mn(A)⊗Mn(A)⊗ · · · ⊗Mn(A)→ A⊗A⊗ · · · ⊗ A

by the rule, using Mn(A) = Mn(R)⊗A

tr ((a0 ⊗ µ0)⊗ (a1 ⊗ µ1)⊗ · · · ⊗ (am ⊗ µm)) =

Trace(µ0 · · ·µm)a0 ⊗ a1 ⊗ · · · ⊗ am

where Trace is the ordinary trace of matrices.
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Let us denote by ιk the operation which inserts a 1 in

a tensor at the k-th place. So for instance

ι0(a0 ⊗ a1 ⊗ · · · ⊗ am) = 1⊗ a0 ⊗ a1 ⊗ · · · ⊗ am

One has tr ◦ ιk = ιk ◦ tr since (taking k = 0)

tr ◦ ι0 ((a0 ⊗ µ0)⊗ (a1 ⊗ µ1)⊗ · · · ⊗ (am ⊗ µm)) =

= tr ((1⊗ 1)⊗ (a0 ⊗ µ0)⊗ (a1 ⊗ µ1)⊗ · · · ⊗ (am ⊗ µm))

= Trace(1µ0 · · ·µm)1⊗ a0 ⊗ a1 ⊗ · · · ⊗ am =

= ι0 (tr ((a0 ⊗ µ0)⊗ (a1 ⊗ µ1)⊗ · · · ⊗ (am ⊗ µm)))
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The components of the Chern character of an idem-

potent e ∈ Ms(A) are then given up to normalization

by

Chm(e) := tr ((2e− 1)⊗ e⊗ e⊗ · · · ⊗ e) ∈ A⊗A⊗ . . .⊗A

with m even and equal to the number of terms e in the

right hand side.
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Theorem

Let A be an algebra (over R) and Y =
∑
Y AΓA with

Y A ∈ A and ΓA ∈ C+ ⊂Mw(C) as above, n+ 1 gamma

matrices. Assume that Y 2 = 1. Then for any even in-

teger m < n one has Chm(e) = 0 where e = 1
2(1 + Y ).
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It follows that the component Chn(e) is a Hochschild

cycle and that for any cyclic n-cocycle φn the pairing

< φn, e > is the same as < I(φn),Chn(e) > where I(φn)

is the Hochschild class of φn. This applies to the cyclic

n-cocycle φn which is the Chern character φn in K-

homology of the spectral triple (A,H, D) with grading

γ where A is the algebra generated by the components

Y A of Y and Y ′A of Y ′.
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Local Index

The Hochschild class of φn is given, up to a normaliza-

tion factor, by the Hochschild n-cocycle :

τ(a0, a1, . . . , an) =
∫
−γa0[D, a1] · · · [D, an]D−n, ∀aj ∈ A.

Thus one gets that, by the index formula, for any idem-

potent e ∈Ms(A)

< τ,Chn(e) >=< φn, e >= Index (De) ∈ Z

Now since D commutes with the two Clifford algebras

C±, one gets, with Y = 2e− 1 as above, the formula

< τ,Chn(e) >=
∫
−γ 〈Y [D,Y ]n〉D−n

The same applies to Y ′ and we get
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Theorem

The quantization equation implies that (up to norma-

lization) ∫
−D−n ∈ N
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