
From groups to semigroups and groupoids

Claire Anantharaman-Delaroche
Université d’Orléans
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CANCELLATIVE SEMIGROUPS

A left cancellative semigroup P is a set P equipped with an associative
operation (a, b) 7→ ab such that ca = cb ⇒ a = b.

Examples :

P = N ⊂ Z additive

P = Nx ⊂ Qx multiplicative

Pn =

n times︷ ︸︸ ︷
N ∗ N ∗ · · · ∗ N ⊂ Fn

P = No Nx ⊂ QoQx

P = R o Rx ⊂ Q(R) oQ(R)x where R is an integral domain and
Q(R) its field of fractions

......
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INVERSE SEMIGROUPS

An inverse semigroup S is a semigroup such that for each s ∈ S there
exists a unique s∗ ∈ S such that ss∗s = s and s∗ss∗ = s∗.

The set E =
{

s ∈ S : s2 = s
}

of idempotents is a commutative
sub-semigroup of S .

Examples :

Discrete groups = inverse semigroups with a unique idempotent

Cuntz and Cuntz-Krieger inverse semigroups

Graph inverse semigroups

Tiling inverse semigroups

Free inverse semigroups

Inverse semigroups of partial isometries in a Hilbert space
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Examples :

Inverse semigroup Inv(X ) of partial bijections of a set X .

Every inverse semigroup S is isomorphic to an inverse sub-semigroup of
Inv(S).

Inverse hull of a cancellative semigroup.

Let P be a left cancellative semigroup. For p ∈ P, we denote by
Lp∈ Inv(P) the bijection x 7→ px from P onto pP.

The left inverse hull of P is the inverse sub-semigroup S(P) of Inv(P)
generated by the partial bijections Lp, p ∈ P.
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C ∗-ALGEBRAS OF AN INVERSE SEMIGROUP S

`1(S) is a Banach ∗-algebra with respect to the operations

(f ∗ g)(s) =
∑
uv=s

f (u)g(v), f ∗(s) = f (s∗)

The full C ∗-algebra C ∗(S) of S is the enveloping C ∗-algebra of `1(S). It is
the universal C ∗-algebra for the representations of S by partial isometries.

The left regular representation π2 : S → B(`2(S)) is defined by

π2(s)δt = δst if (s∗s)t = t, π2(s)δt = 0 otherwise

The reduced C ∗-algebra C ∗r (S) of S is the C ∗-algebra generated by
π2(S).
π2 is faithful on `1(S), and so S is isomorphic to an inverse semigroup of
partial isometries.
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C ∗-ALGEBRAS OF A SEMIGROUP P embeddable in a group G

The reduced or Toeplitz C ∗-algebra C ∗r (P) is the sub-C ∗-algebra of
B(`2(P)) generated by the isometries Vs : δt 7→ δst , s ∈ P.

The full C ∗-algebra of P may be defined as C ∗(S(P)).

The Wiener-Hopf C ∗-algebra W (P,G ) is the sub-C ∗-algebra of
B(`2(P)) generated by the operators Wg = EPλgEP , g ∈ G , where λ is
the left regular representation of G , and EP : `2(G )→ `2(P) is the
orthogonal projection.

We have

C ∗(P) = C ∗(S(P))−� C ∗r (S(P))
h
−� C ∗r (P)

κ
↪→W (P,G )

where h(π2(Lp)) = Vp for p ∈ P.
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C ∗(P) = C ∗(S(P))−� C ∗r (S(P))
h
−� C ∗r (P)

κ
↪→W (P,G )

When is h injective ?, κ surjective ?

What are the relations between :

(1) P left amenable

(2) C ∗r (P) nuclear

(3) C ∗(P) = C ∗r (P) (weak containment property)

For P = Pn, one has the exact sequence

0→ K(`2(Pn))→ C ∗r (Pn)→ O(n)→ 0

Therefore C ∗r (Pn) is nuclear. Moreover Pn has the weak containment
property.

(1) ⇒ (2) but (2) ; (1) (Pn is not left amenable).

If h is injective, we have (2) ⇒ (3), but (3) ⇒ (2) is open.
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ETALE GROUPOIDS

A groupoid G is a small category in which every morphism is invertible.

We have a set G(0) ⊂ G of objects (or units), and four maps

r : G → G(0), s : G → G(0), m : G(2) → G, i : G → G,

called source, target, multiplication and inverse where

G(2) =
{

(γ, γ′) : s(γ) = r(γ′)
}

(composable morphisms). We write m(γ, γ′) = γγ′ and i(γ) = γ−1.

These structure maps are required to obey obvious axioms.

A locally compact groupoid is a groupoid endowed with a locally
compact topology such that the structure maps are continuous. It is said
to be étale if s and r are local homeomorphisms. Then G(0) is a closed
and open subset of G and the fibers Gx = r−1(x), Gx = s−1(x) are
discrete for x ∈ G(0).
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Examples of étale groupoids :
• Locally compact spaces X = G = G(0).

• Discrete groups.

• Bundle of discrete groups. They are étale groupoids such that r = s.
Then r−1(x) is a group for each unit x .

• Groupoids of partial actions. A partial action of a discrete group G
on a locally compact space X is a family (θg )g∈G of homeomorphisms
θg : Dg → Dg−1 between open subsets of X such that θe = IdX , θgh
extends θg ◦ θh. Then

X o G = {(x , g , y) ∈ X × G × X : g ∈ G , y ∈ Dg , x = gy}

is an étale groupoid, with the induced topology, and
r(x , g , y) = (x , e, x), s(x , g , y) = (y , e, y), (x , g , y)(y , h, z) = (x , gh, z),
(x , g , y)−1 = (y , g−1, x).
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Examples of étale groupoids :
• Groupoids of inverse semigroup actions. An action of an inverse
semigroup S on a locally compact space X is an homomorphism θ from S
into the inverse semigroup Inv(X ) such that for every a ∈ S , the domain
Da of θa is open and θa is an homeomorphism from Da onto Da∗ .

The groupoid G of germs of θ is the quotient of {(a, x) : a ∈ S , x ∈ Da}
with respect to the equivalence relation

(a, x) ∼ (b, y)⇔ x = y and ∃e ∈ E with x ∈ De , ae = be.

We have

s([a, x ]) = [e, x ] ≡ x , r([a, x ]) = θa(x), [a, x ][b, y ] = [ab, y ], ....

(where e is any idempotent such that x ∈ De). A basis of the (not always
Hausdorff) topology of G is given by the

Θ(a,U) = {[a, x ], x ∈ U}

for a ∈ S and U open subset of Da.
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GROUPOID GS OF AN INVERSE SEMIGROUP S .

Let E be the sub-semigroup of idempotents in S , and let Ê ⊂ {0, 1}E be
the locally compact totally discontinuous set of nonzero elements χ
satisfying χ(ef ) = χ(e)χ(f ) for all e, f ∈ E .

S acts on Ê as follows. For a ∈ S ,

Da = {χ : χ(a∗a) = 1}, θa(χ)(e) = χ(a∗ea).

GS is the groupoid associated to this action.

A result of Khoshkam-Skandalis shows that for many inverse semigroups,
GS is Hausdorff and Morita equivalent to a group action.



C ∗-ALGEBRAS OF A GROUPOID 1 G

• Groupoid ∗-algebra Cc(G) : it is the ∗-algebra of continuous compactly
supported functions on G with product and ∗-operation given by

(f ∗ g)(γ) =
∑

γ1γ2=γ

f (γ1)g(γ2), f ∗(γ) = f (γ−1).

• Full C ∗-algebra C ∗(G) : it is the universal completion of Cc(G) with
respect to its representations.

• Reduced C ∗-algebra C ∗r (G). For x ∈ X = G(0), define the
representation πx of Cc(G) in `2(Gx) by A

∀ξ ∈ `2(Gx), γ ∈ Gx , (πx(f )ξ)(γ) =
∑

s(γ1)=s(γ)

f (γγ−1
1 )ξ(γ1)

C ∗r (G) is the completion of Cc(G) with respect to the norm

‖f ‖r = sup
x∈X
‖πx(f )‖

1. assuming that G is Hausdorff
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Paterson, Khoshkam-Skandalis : If GS is the groupoid associated to an
inverse semigroup S we have

C ∗(S) = C ∗(GS), C ∗r (S) = C ∗r (GS).

In case where P is a sub-semigroup of a group, we have therefore

C ∗(P) = C ∗(S(P)) = C ∗(GS(P))−� C ∗r (GS(P)) = C ∗r (S(P))
h
−� C ∗r (P)

κ
↪→

κ
↪→W (P,G ).

The groupoid approach in the study of semigroup C ∗-algebras was
initiated by Muhly-Renault, carried on by Nica, Renault and many others,
recently Xin Li, Sundar,...

So the weak containment problem for P or S is closely related to the same
problem for étale groupoids, and similarly for the study of nuclearity.
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AMENABILITY for GROUPOIDS

There are many equivalent definitions, as in the group case. We only
mention one of them.

A function k : G → C is said to be positive definite if for every
x ∈ X = G(0) and every finite subset F of Gx the matrix [k(γ−1γ′]γ,γ′∈F is
positive definite.

G is amenable iff there exists a net (ki ) of continuous positive definite
functions in Cc(G) such that

k
(0)
i ≤ 1, where k

(0)
i is the restriction of ki to G(0) ;

limi ki = 1 uniformly on every compact subset of G.



Let G be an étale groupoid and let us consider the following conditions :

(1) G is amenable

(2) C ∗r (G) is nuclear

(3) C ∗(G) = C ∗r (G) (weak containment property)

Then we have (1)⇔ (2)⇒ (3)

We left unsolved the problem of whether the equality
C ∗(G) = C ∗r (G) implies the amenability of G.

A possible obstruction for (3) ⇒ (1) : let F be an invariant (that is
r(γ) ∈ F ⇔ s(γ) ∈ F ) closed subspace of X = G(0) and let
G(F ) = r−1(F ) be the restriction of G to F .

If (3) ⇒ (1), then the weak containment property for G must imply the
same property for G(F ) for every such F , since amenability is preserved
under restriction.
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Let F be an invariant closed subset of X = G(0) and set U = X \ F . The
following diagram is commutative

0 // C ∗(G(U))

��

// C ∗(G)

p

��

// C ∗(G(F )) //

pF
��

0

0 // C ∗r (G(U)) // C ∗r (G) // C ∗r (G(F )) // 0

where the first line is exact. Assume that p is injective. Then the second
line is also exact if and only if pF is injective.



Let G be an exact étale groupoid which is a bundle of groups. Then G has
the weak containment property if and only if G is amenable.

Indeed, for x ∈ X = G(0) :

0 // C ∗(G(X \ {x}))

��

// C ∗(G)

p

��

// C ∗(G(x)) //

px
��

0

0 // C ∗r (G(X \ {x})) // C ∗r (G) // C ∗r (G(x)) // 0

px is injective whenever p is injective and the second line is exact.



Another example where weak containment implies amenability :

Let Γ be a discrete group. Then C ∗(∂Γ o Γ) = C ∗r (∂Γ o Γ) iff the groupoid
∂Γ o Γ is amenable.

Indeed, if C ∗(∂Γ o Γ) = C ∗r (∂Γ o Γ), using the commutativity of the
diagram

0 // C ∗(Γ o Γ)

��

// C ∗(βΓ o Γ)

��

// C ∗(∂Γ o Γ) 0

0 // C ∗r (Γ o Γ) // C ∗r (βΓ o Γ) // C ∗r (∂Γ o Γ) // 0

we see that the bottom line is exact.

Then a result of Roe-Willett (2013) states that this property implies that
the metric space Γ has Yu’s property A.
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Let Γ be a discrete group. Then C ∗(∂Γ o Γ) = C ∗r (∂Γ o Γ) iff the groupoid
∂Γ o Γ is amenable.

Indeed, if C ∗(∂Γ o Γ) = C ∗r (∂Γ o Γ), using the commutativity of the
diagram

0 // C ∗(Γ o Γ)

��

// C ∗(βΓ o Γ)

��

// C ∗(∂Γ o Γ) 0

0 // C ∗r (Γ o Γ) // C ∗r (βΓ o Γ) // C ∗r (∂Γ o Γ) // 0

we see that the bottom line is exact.

Then a result of Roe-Willett (2013) states that this property implies that
the metric space Γ has Yu’s property A.



The first example of non exactness of such sequence

0 // C ∗r (G(U)) // C ∗r (G) // C ∗r (G(F )) // 0

of reduced C ∗-algebras is due to Skandalis (1991).

Since then, looking for counterexamples to Baum-Connes conjectures,
many examples of non exact Hausdorff étale groupoids have been
constructed.



GROUPOIDS ASSOCIATED WITH METRIC SPACES

Given a countable metric space X with bounded geometry,
Skandalis-Tu-Yu have constructed an étale Hausdorff principal groupoid
G (X ) (which is βΓ o Γ when X = |Γ|), whose reduced C ∗-algebra is the
uniform Roe C ∗-algebra C ∗u (X ).

One has the following equivalent properties :

(1) X has Yu’s property A ;

(2) the groupoid G (X ) is amenable ;

(3) C ∗r (G (X )) = C ∗u (X ) is nuclear ;

(4) C ∗r (G (X )) = C ∗u (X ) is exact.

That (1) ⇔ (2) is due to Skandalis-Tu-Yu, and the equivalence with (4) is
a recent result of Sako.
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Example : box spaces
Let Γ be a finitely generated residually finite group and let
Γ = N0 ⊃ N1 · · · ⊃ Nk ⊃ · · · be a decreasing sequence of finite index
normal subgroups with ∩kNk = {e}. 2

Set X = tkΓ/Nk endowed with the following metric : on the finite groupe
Γk := Γ/Nk it is the distance function associated with a generating set of
Γ, and the distance between Γ/Nk and Γ/Nk tends to infinity when k, l
tend to infinity.

Higson proved that when Γ has Kazhdan property T, the C ∗-algebra
C ∗u (X ) is not exact and showed that X provides a counterexample to the
coarse Baum-Connes conjecture.

The representation π = ⊕k∈Nλk (where λk is the quasi-regular
representation of Γ in `2(Γk)) in `2(X ) = ⊕k∈N`

2(Γk) plays a crucial role.

2. (Nk) is called an approximating sequence
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The representation π = ⊕k∈Nλk (where λk is the quasi-regular
representation of Γ in `2(Γk)) into `2(X ) = ⊕k∈N`

2(Γk) plays a crucial
role. Indeed we have

C ∗π(Γ) := π(C ∗(Γ)) ⊂ C ∗u (X ) ⊂ B(`2(X )),

and C ∗π(Γ) is not exact when Γ has property T.

In fact C ∗π(Γ) is exact iff the group Γ is amenable.



Example : Higson-Lafforgue-Skandalis groupoids
Let Γ be a residually finite group and (Nk)k∈N an approximating sequence
as above. We set Γk = Γ/Nk and Γ∞ = Γ and denote by qk : Γ→ Γk the
quotient map. Let N̂ = N∪ {∞} be the Alexandroff compactification of N.
Let G be the quotient of N̂× Γ by the equivalence relation

(k, s) ∼ (l , t) if k = l and qk(s) = qk(t).

Equipped with the quotient topology, G is an étale Hausdorff groupoid, a
bundle of groups, whose fibre (i.e. isotropy) at k is G(k) = Γk .

F

For f ∈ Cc(G), recall that πk(f ) acts on `2(Γk) and we have

πk(C ∗r (G)) = λk(C ∗r (Γ))

where λk is the quasi-regular representation of Γ in `2(Γk).



Higson-Lafforgue-Skandalis groupoids

C ∗r (G) is a lower semicontinuous field of C ∗-algebras over N̂ with fibre
C ∗r (Γk) at k ∈ N̂. We have C ∗r (G(N)) =

⊕
k∈N C ∗r (Γk).

Let π = ⊕k∈Nλk . Higson-Lafforgue-Skandalis have proved that whenever
the trivial representation of Γ is isolated in the support of π (e.g. if Γ has
Kazhdan property T) then, not only

0 −→ C ∗r (G(N)) −→ C ∗r (G) −→ C ∗r (G(∞)) = C ∗r (Γ) −→ 0

is not exact in the middle, but also

K0

(
C ∗r (G(N))

)
−→ K0

(
C ∗r (G)

)
−→ K0

(
C ∗r (G(∞))

)
is not exact in the middle.



Higson-Lafforgue-Skandalis groupoids

C ∗r (G) is a lower semicontinuous field of C ∗-algebras over N̂ with fibre
C ∗r (Γk) at k ∈ N̂. We have C ∗r (G(N)) =

⊕
k∈N C ∗r (Γk).

Let π = ⊕k∈Nλk . Higson-Lafforgue-Skandalis have proved that whenever
the trivial representation of Γ is isolated in the support of π (e.g. if Γ has
Kazhdan property T) then, not only

0 −→ C ∗r (G(N)) −→ C ∗r (G) −→ C ∗r (G(∞)) = C ∗r (Γ) −→ 0

is not exact in the middle, but also

K0

(
C ∗r (G(N))

)
−→ K0

(
C ∗r (G)

)
−→ K0

(
C ∗r (G(∞))

)
is not exact in the middle.



The restriction map f ∈ Cc(G) 7→ f|G(∞)
from Cc(G) onto C[Γ] induces an

isomorphism from C ∗r (G)/C ∗r (G(N)) onto C ∗π(Γ) := π(C ∗(Γ)).

So we have the following commutative diagram

0 // C ∗(G(N)) // C ∗(G)

p

��

// C ∗(Γ) //

pπ
��

0

0 // C ∗r (G(N)) // C ∗r (G)

��

// C ∗π(Γ)

��

// 0

0 // C ∗r (G(N)) // C ∗r (G) // C ∗r (Γ) // 0

where the two first lines are exact.
In particular we see that p is injective (i.e. G has the weak containment
property) iff pπ is injective, that is

∀a ∈ C ∗(Γ), ‖a‖C∗(Γ) = sup
k
‖λk(a)‖.
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G has the weak containment property iff

∀a ∈ C ∗(Γ), ‖a‖C∗(Γ) = sup
k
‖λk(a)‖ (1)

G is amenable iff the group Γ is amenable

Willett has recently (2015) provided an example of a non amenable group
Γ (namely Γ = F2) and an approximating sequence (Nk)k≥0 of subgroups
for which (1) holds, that is the irreducible representations of Γ that factors
through some Nk are dense in the dual of Γ.

Note that in this example the second line of the diagram below is not
exact in the middle :
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��

0
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A positive result :

Matsumura proved (2012) that if Γ is an exact discrete group acting by
homeomorphisms on a compact space X , then the weak containment
property of the transformation groupoid G = X o Γ implies the nuclearity
of C ∗r (G). His method consists in showing that the embedding of C ∗r (G) in
its bidual is nuclear.

It is likely that this fact extends to the case of étale groupoids satisfying
an appropriate definition of exactness.



EXACT DISCRETE GROUPS

Let us recall that for a discrete group Γ the following conditions are
equivalent :

(1) Γ acts amenably on a compact space ;

(2) Γ is exact in the sense of Kirchberg-Wassermann, that is, for every
exact sequence of Γ-C ∗-algebras,

0 −→ I −→ A −→ B −→ 0

the corresponding sequence

0 −→ I or Γ −→ A or Γ −→ B or Γ −→ 0

of reduced crossed product C ∗-algebras is exact ;

(3) the reduced C ∗-algebra C ∗r (Γ) is exact.



What about exact étale groupoids ?

For an étale groupoid G, we may in the same way consider the following
conditions :

(1) G acts amenably on a fibre space Y
p→ G(0) such that p is proper ;

(2) G is exact in the sense of Kirchberg-Wassermann ;

(3) the reduced C ∗-algebra C ∗r (G) is exact.

We have (1) ⇒ (2) ⇒ (3), but except in particular cases (for instance if G
is Morita equivalent to a transformation groupoid) I don’t know much
about the converse.

For instance, if G = X o Γ for a partial action of an exact group Γ, then
C ∗r (G) is exact, but I don’t know whether G is exact in the sense of
Kirchberg-Wassermann.


