
Deciding the Bell number for hereditary graph properties
• A. Atminas, A. Collins, J. Foniok, V. Lozin – DIMAP and Mathematics Institute, University

of Warwick

Abstract: A graph property is a set of graphs closed under isomorphism. A property is
hereditary if it is closed under taking induced subgraphs. Given a graph property X , we
write Xn for the number of graphs in X with vertex set {1, 2, . . . , n} and following [1] we
call Xn the speed of the property X .

The paper [2] identifies a jump in the speed of hereditary graph properties to the Bell
number Bn and provides a partial characterization of the family of minimal classes whose
speed is at least Bn. In the present work we give a complete characterization of this
family. Since this family is infinite, the decidability of the problem of determining if the
speed of a hereditary class is above or below the Bell number is questionable. We answer
this question positively by showing that there exists an algorithm which, given a finite
set F of graphs, decides whether the speed of the class of graphs containing no induced
subgraphs from the set F is above or below the Bell number. For properties defined by
infinitely many minimal forbidden subgraphs, the speed is known to be above the Bell
number.

By the structural results obtained, it turns out that the boundary of the Bell number
is a partial boundary for well-quasi-ordering by the induced subgraph relation. We show
that all the classes below the Bell number are defined by finitely many minimal forbidden
induced subgraphs and are all well-quasi-ordered by the induced subgraph relation, while
the finitely defined classes which are above the Bell number and have finite distinguishing
number are not well-quasi-ordered by the induced subgraph relation. This result gives us
some insight how one can approach the question of deciding well-quasi-ordering by the
induced subgraph relation in its full generality.
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Recoloring bounded treewidth graphs
• Marthe Bonamy – LIRMM, Université Montpellier 2, Montpellier, France. bonamy@lirmm.fr

• Nicolas Bousquet – Department of Mathematics and Statistics, McGill University, and

GERAD, Montréal. nicolas.bousquet2@mail.mcgill.ca

ANR Project EGOS (2012-2015) 12 JS02 002 01

Abstract: Let k be an integer. Two vertex k-colorings of a graph are adjacent if they
di↵er on exactly one vertex. A graph is k-mixing if any proper k-coloring can be trans-
formed into any other through a sequence of adjacent proper k-colorings. Any graph is
(tw+ 2)-mixing, where tw is the treewidth of the graph (Cereceda 2006). We prove that
the shortest sequence between any two (tw+2)-colorings is at most quadratic, a problem
left open in Bonamy et al. (2012).

Jerrum proved that any graph is k-mixing if k is at least the maximum degree plus
two. We improve Jerrum’s bound using the grundy number, which is the worst number
of colors in a greedy coloring.
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Induced cycles and coloring
• M. Chudnovsky – Princeton University

• A. Scott – University of Oxford

• P. Seymour – Princeton University

Abstract: A hole in a graph is an induced cycle of length at least four, and an odd hole
is a hole of odd length. A famous conjecture of A. Gyárfás [1] from 1985 asserts:

Conjecture 1: For all integers k, l there exists n(k, l) such that every graph G with no
clique of carnality more than k and no odd hole of length more than l has chromatic
number at most n(k, l).

In other words, the conjecture states that the family of graphs with no long odd holes
is �-bounded. Little progress was made on this problem until recently Scott and Seymour
proved that Conjecture 1 is true for all pairs (k, l) when l = 3 (thus excluding all odd
holes guarantees �-boundedness) [3].

No other cases have been settled, and here we focus on the case k = 2. We resolve
the first open case, when k = 2 and l = 5, proving that

Theorem 1. Every graph with no triangle and no odd hole of length > 5 is 82200-
colorable.

Conjecture 1 has a number of other interesting special cases that still remain open;
for instance

• Conjecture: For all l every triangle-free graph G with su�ciently large chromatic
number has an odd hole of length more than l;

• Conjecture: For all k, l every graph with no clique of size more than k and su�-
ciently large chromatic number has a hole of length more than l.

We prove both these statements with the additional assumption that G contains no
5-hole. (The latter one was proved, but not published, by Scott earlier, improving on [2]).

All the proofs follows a similar outline. We start with a leveling of a graph with high
chromatic number, that is a classification of the vertices by their distance from a fixed
root. Then the graph undergoes several rounds of “trimming” that allows us to focus
on a subgraph M with high chromatic number that is, in some sense, minimal. We also
ensure that certain pairs of vertices with a neighbor in M can be joined by a path whose
interior is anticomplete to M . It is now enough to find two long paths between some
such pair of vertices, both with interior in M and of lengths of di↵erent parity, to obtain
a long odd hole.
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Comparing tree-width and clique-width for degree-
constrained graphs
• Bruno Courcelle – Bordeaux

Abstract: We will review some results that bound clique-width in terms of tree-width
and vice-versa, for graphs of bounded degree and for incidence graphs. For an example,
if a graph has tree-width k and maximal degree d, then its clique-width is at most
20.d.(k + 1) + 2 (which is better than the general exponential bound).

We also examine how the trees underlying the graph decompositions are transformed
in the corresponding proofs. This aspect is important for the construction (or the compar-
ison) of FPT graph algorithms using tree-width or clique-width as parameters because,
in most cases, input graphs must be given to the algorithms by their decompositions or
by algebraic terms representing them.

The clique-width of the incidence graph of a graph of tree-width k is at most k + 3
(T. Bouvier, 2014). This result makes possible to check monadic second-order (MSO)
properties expressed with edge quantifications for graphs of bounded tree-width with
the existing tools (finite automata that compute their transitions, called fly-automata)
developped for checking MSO properties expressed without edge quantifications for graphs
of bounded clique-width.
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Computational Complexity of Threshold Editing
• P. G. Drange – University of Bergen, Norway

• M. S. Dregi – University of Bergen, Norway

• D. Lokshtanov – University of Bergen, Norway

• B. D. Sullivan – North Carolina State Univerity, USA

Abstract: We show that the problem of editing to a threshold graph, i.e., adding and
deleting as few edges as possible to obtain a threshold graph is NP-complete, thereby
solving a long-standing open problem in the field of graph modification problems. This
problem has been repeatedly stated as open [2, 5, 6, 8], and renewed interest appeared
very recently in the field of social network theory [1], where it has been suggested as
a good basis for an axiomatic centrality measure. Coincidentally, the related problem
Trivially Perfect Editing, which was recently shown NP-hard, and to admit a poly-
nomial kernel [3], has recently been suggested as a good measure for hierarchyness of
social networks [7]. Both these classes are chordal cographs, and the main technique
applied for obtaining polynomial kernels is that of a vertex modulator which allows for
extracting structure.

Theorem 1. Threshold Editing is NP-complete.

More interestingly, on the positive side we show that the problems Threshold Editing,
Completion, and Deletion all admit polynomial kernels with O(k2) vertices. This
answers a recent question by Liu, Wang and Guo [4], who asked whether the previously
known kernel for Threshold Completion could be improved from O(k3) to O(k2).

Theorem 2. Threshold Editing admits a quadratic kernel.

Finally, we show that we can solve Threshold Editing in parameterized subexpo-

nential time 2O(

p
k log k) · nO(1). The subexponential time algorithm uses a decomposition

of almost-threshold graphs; We are able to decompose any yes instance into subexponen-
tially many “unbreakable” segments, each of which we are able to solve in subexponential
time. Applying dynamic programming, we manage to glue a select few such unbreakable
segments back together to obtain our target graph.

Theorem 3. Threshold Editing is solvable in 2O(

p
k log k) · poly(n) time.
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Strongly sublinear separators and polynomial expansion
• Zdeněk Dvořák – Charles University, Prague, Czech Republic.

E-mail: rakdver@iuuk.mff.cuni.cz

• Sergey Norin – McGill University, Montreal, Canada

Abstract: A k-minor of a graph G is any graph obtained from G by contracting pairwise
vertex-disjoint subgraphs of radius at most k and removing vertices and edges. A graph
G has expansion bounded by function f : N ! R if for every k � 0, every k-minor of G
has average degree at most f(k).

There is a natural connection between bounded expansion and small separators.
Building upon a result of Plotkin et al., Nešetřil and Ossona de Mendez proved that for
every subexponential function f : N ! R, there exists a sublinear function s : N ! N
such that every graph G with expansion bounded by f has a balanced separator of order
at most s(|V (G)|). We prove an approximate converse to this claim: For every " > 0 and
a function s(n) = O(n1�"), there exists a polynomial f such that if every subgraphH ✓ G
has a balanced separator of order at most s(|V (H)|), then G has expansion bounded by
f .

Uniform Kernelization Complexity of Hitting Forbidden Mi-
nors
• Archontia Giannopoulou – Durham University

Abstract: The F -Minor-Free Deletion problem asks, for a fixed set F and an input
consisting of a graph G and integer k, whether k vertices can be removed from G such that
the resulting graph does not contain any member of F as a minor. It generalizes classic
graph problems such as Vertex Cover and Feedback Vertex Set. Fomin et al. (FOCS
2012) showed that the special case Planar-F -Minor-Free Deletion (when F contains at
least one planar graph) has a kernel of polynomial size: instances (G, k) can e�ciently be
reduced to equivalent instances (G0, k) of size f(F )kg(F ) for some functions f and g. The
degree g of the polynomial grows very quickly; it is not even known to be computable.
Fomin et al. left open whether Planar-F -Minor-Free Deletion has kernels whose size is
uniformly polynomial, i.e., of the form f(F )kc for some universal constant c that does
not depend on F . In this talk we discuss to what extent provably e↵ective and e�cient
preprocessing is possible for F -Minor-Free Deletion. In particular, we show that not all
Planar-F-Minor-Free Deletion problems admit uniformly polynomial kernels but also that
there exist problems that do admit uniformly polynomial kernels.
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Hypertree Decompositions
• G. Gottlob – University of Oxford

• Nicola Leone – University of Calabria

• Francesco Scarcello – University of Calabria

Abstract: One of the best-known methods for decomposing graphs is the method of
tree-decompositions introduced by Robertson and Seymour. Many NP-hard problems
become polynomially solvable if restricted to instances whose underlying graph structure
has bounded treewidth. The notion of treewidth can be straightforwardly extended to
hypergraphs by simply considering the treewidth of their primal graphs or, alteratively,
of their incidence graphs. However, doing so comes along with a loss of information on
the structure of a hypergraph with the e↵ect that many polynomially solvable problems
cannot be recognized as such because the treewidth of the underlying hypergraphs is
unbounded. In particular, the treewidth of the class of acyclic hypergraphs is unbounded.
In this talk, I will describe more appropriate measures for hypergraph acyclicity, and,
in particular, the method of hypertree decompositions and the associated concept of
hypertree width. After giving general results on hypertree decompositions, I will report
on game-theoretic characterizations of hypergraph decomposition methods, give a survey
on more recent results, and state some open problems.
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On the structure of 1-perfectly orientable graphs
• Martin Milanič – University of Primorska, UP IAM, Muzejski trg 2, SI6000 Koper, Slovenia

University of Primorska, UP FAMNIT, Glagoljaška 8, SI6000 Koper, Slovenia

IMFM, Jadranska 19, 1000 Ljubljana, Slovenia

martin.milanic@upr.si

• Tatiana Romina Hartinger – University of Primorska, UP IAM, Muzejski trg 2, SI6000

Koper, Slovenia

tatiana.hartinger@iam.upr.si

Abstract: We study the class of 1-perfectly orientable graphs. Following the terminol-
ogy of Kammer and Tholey [1], we say that an orientation of a graph is 1-perfect if the
out-neighborhood of every vertex induces a tournament, and that a graph is 1-perfectly
orientable (1-p.o. for short) if it has a 1-perfect orientation. The notion of 1-p.o. graphs
was introduced by Skrien [2] (under the name {B

2

}-graphs), where the problem of char-
acterizing 1-p.o. graphs was posed. By definition, 1-p.o. graphs are exactly the graphs
that admit an orientation that is an out-tournament. (A simple arc reversal argument
shows that that 1-p.o. graphs are exactly the graphs that admit an orientation that is an
in-tournament. Such orientations were called fraternal orientations in several papers.)

1-p.o. graphs form a common generalization of chordal graphs and circular arc graphs.
While they can be recognized in polynomial time via a reduction to 2-SAT [3], little is
known about their structure. We prove several results related to the structure of 1-
p.o. graphs. First, we give a characterization of 1-p.o. graphs in terms of edge clique
covers, similar to a known characterization of squared graphs due to Mukhopadhyay.
We exhibit several examples of 1-p.o. and non-1-p.o. graphs. The examples of non-1-
p.o. graphs include two infinite families: the complements of even cycles of length at least
6, and the complements of odd cycles augmented by a component consisting of a single
edge. We identify several graph transformations preserving the class of 1-p.o. graphs. In
particular, we show that the class of 1-p.o. graphs is closed under taking induced minors.
We also study the behavior of 1-p.o. graphs under some operations that in general do not
preserve the class, such as pasting along a clique and the join. The result for the join
motivates the problem of characterizing the 1-p.o. co-bipartite graphs. We show that all
the presented examples of non-1-p.o. graphs are minimal forbidden induced minors for
the class of 1-p.o. graphs. As our main results we obtain complete characterizations of
1-p.o. graphs within the classes of complements of forests and of cographs.

References

[1] Kammer, F. and Tholey, T., Approximation algorithms for intersection graphs, Algorithmica
68 (2), 312–336, 2014.

[2] Skrien, D. J., A relationship between triangulated graphs, comparability graphs, proper in-
terval graphs, proper circular-arc graphs, and nested interval graphs, J. Graph Theory, 6 (3),
309–316, 1982.

[3] Bang-Jensen, J.; Huang, J. and Prisner, E., In-tournament digraphs, J. Combin. Theory Ser.
B 59 (2), 267–287, 1993.

This work is supported in part by the Slovenian Research Agency (research program P1-0285,
research projects J1-5433, J1-6720, and J1-6743, and a Young Researchers Grant).

10



A (2 � ✏)-Hall’s theorem with an application to space com-
plexity.
• Ilario Bonacina – Sapienza University of Rome

• Nicola Galesi – Sapienza University of Rome

• Tony Huynh – Sapienza University of Rome

• Paul Wollan – Sapienza University of Rome

Abstract: Let G be a bipartite graph with bipartition (L,R) and left-degree at most
3. A (2, 4)-matching is a set of vertex disjoint paths, each of length 2 or 4 and each
beginning and ending in R. We prove a variant of Hall’s theorem for (2, 4)-matchings.
That is, if every subset A of L satisfies |NG(A)| � (2 � ✏)|A| for a fixed ✏ < 1

23

, then G
has a (2, 4)-matching covering all the vertices of L.

Using our (2 � ✏)-Hall’s theorem, we then give an application in the theory of space
complexity. Specifically, we prove a ⌦(n2/ log2 n) lower bound for the total space needed
in Resolution to refute a random 3-CNF formula � in n variables. Previously, no lower
bound for refuting any family of 3-CNFs was known for the total space in resolution or
for the monomial space in algebraic systems.

In this talk, no knowledge of space complexity will be assumed.

The Erdős-Pósa property of odd and long cycles through
prescribed vertices
• Felix Joos – Universität Ulm

Abstract: A result by Erdős and Pósa says that for every graph G and every integer k,
the graph G has k disjoint cycles or a set X of vertices of size O(k log k) such that G�X
is a forest. This result is the origin for the notion Erdős-Pósa property, which is defined
as follows: a family H of graphs is said to have it if there is a function f : N ! N so
that any graph contains k disjoint subgraphs that are isomorphic to graphs in H, or it
contains a vertex set of size f(k) meeting all such subgraphs.

For a vertex set S, let an S-cycle be a cycle that contains at least one vertex of S.
All cycles of length at least ` and, stretching the definition a bit, S-cycles are just two

of many examples having the Erdős-Pósa property. Others include:

• the family of cycles of length 0 mod m for any integer m � 2,

• the family of cycles of length not equal to 0 mod m for any odd integer m � 3,

• the family of graphs that can be contracted to a specific planar graph,

• and the family of all (directed) cycles in a digraph.

In this talk we present a result that brings together two lines of research by showing
that the class of all S-cycles of length at least ` has the Erdős-Pósa property. Moreover, we
show that odd S-cycles also have it if we strict ourselves to graphs with high connectivity.

The first result is joint work with Henning Bruhn and Oliver Schaudt.
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Upper Bounds on the Size of Obstructions for linear rank-
width and linear branch-width of representable matroids
• O-joung Kwon– Department of Mathematical Sciences, KAIST

• Mamadou Moustapha Kanté – Université Blaise Pascal, LIMOS, CNRS

Abstract: We prove that the size of the pivot-minor obstructions for linear rank-width
k is bounded by 22

O(k)
. Our techniques are similar to the ones used by Lagergren in [1]

to bound the sizes of graph minor obstructions for path-width. Our basic tools are the
algebraic operations introduced by Courcelle and Kanté in [2], then generalised to edge-
coloured graphs by Kanté and Rao in [3], and an analogue of the Tutte linking Theorem
for rank-width. The proof ideas are as follows:

1. encode each linear layout of width k of an obstruction G in a compact way using
the algebraic operations,

2. define a quasi-order . on graphs (using the encodings) such that (1) if H is a
pivot-minor of G, then H . G, (2) if lrwd(G ⌦ H)  k and G0 . G, then
lrwd(G0 ⌦H)  k,

3. prove that the maximal chain with respect to . is bounded.

We then prove that for every F-representable matroid M one can associate a bipartite
graph B(M) whose adjacency matrix over F is skew-symmetric and vice-versa, and such
that

1. lbwd(M) = lrwd(B(M)) + 1,

2. if N is a matroid minor of M, then B(N ) is a pivot-minor of B(M).

As a consequence, the size of obstructions for linear branch-width k on F-representable
matroids is bounded by |F||F|O(k)

, which is finite whenever F is finite.
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Algorithmic Applications of Tree-Cut Width
• Robert Ganian and Stefan Szeider Vienna University of Technology

• Eun Jung Kim – CNRS-Paris Dauphine University

Abstract: Wollan [1] has recently introduced the graph parameter tree-cut width, which
plays a similar role with respect to immersions as the graph parameter treewidth plays
with respect to minors. In this paper we provide the first algorithmic applications of tree-
cut width to hard combinatorial problems. Tree-cut width is known to be lower-bounded
by a function of treewidth, but it can be much larger and hence has the potential to
facilitate the e�cient solution of problems which are not believed to be fixed-parameter
tractable (FPT) when parameterized by treewidth.

We briefly outline the methodology used to obtain our algorithmic results. As a first
step, we develop the notion of nice tree-cut decompositions1 and show that any tree-cut
decomposition can be transformed into a nice one in polynomial time. These nice tree-cut
decompositions are of independent interest, since they provide a means of simplifying the
complex structure of tree-cut decompositions. Secondly, we introduce a general three-
stage dynamic framework for the design of FPT algorithms on nice tree-cut decomposi-
tions and apply it to our problems. The crucial part of this framework is the computation
of the “joins.” We show that the children of any node in a nice tree-cut decomposition
can be partitioned into (i) a bounded number of children with complex connections to
the remainder of the graph, and (ii) a potentially large set of children with only simple
connections to the remainder of the graph. We then process these by a combination of
branching techniques applied to (i) and integer linear programming applied to (ii). The
specifics of these procedures di↵er from problem to problem. We provide FPT algorithms
for the showcase problems Capacitated Vertex Cover, Capacitated Dominating
Set and Imbalance parameterized by the tree-cut width of an input graph G.

On the other hand, we show that List Coloring, Precoloring Extension and
Boolean CSP (the latter parameterized by the tree-cut width of the incidence graph)
are W[1]-hard and hence unlikely to be fixed parameter tractable when parameterized by
tree-cut width.
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We call them “nice” as they serve a similar purpose as the nice tree decompositions [2], although the

definitions are completely unrelated.
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Width Parameters for Matroids
• D. Král’ – University of Warwick

Abstract: Many results on graph decompositions are motivated by their applications in
algorithm design. It is natural to investigate to what extent such algorithmic results can
be extended to matroids, a generalization of the notion of graphs. The first result in this
direction was obtained by Hliněný [2] who proved the analogue of the celebrated result of
Courcelle on testing monadic second order properties of graphs with bounded tree-width
for matroids representable over finite fields.

In this talk, we survey width parameters for matroids with the related algorithmic
applications. We start with mentioning classical results related to the notion of matroid
branch-width, which can be viewed as the most appropriate matroid analogue of graph
tree-width. We will then survey results on extending the result of Hliněný to matroids
non-representable over finite fields [3, 4] and results on testing first order properties of
matroids [1]. At the end of the talk, we will mention the role played by matroid branch-
depth, the analogue of graph tree-depth, in relation to matroid limits [5].

References
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The Directed Grid Theorem
• Ken-ichi Kawarabayashi – National Institut of Informatics, Tokyo

• S. Kreutzer – Technical University Berlin

Abstract: The grid theorem, originally proved by Robertson and Seymour in Graph
Minors V [5] in 1986, is one of the fundamental results in the study of graph minors. It
has found numerous applications in algorithmic graph structure theory, for instance in
bidimensionality theory, and it is the basis for several other structure theorems developed
in the graph minors project.

In the mid-90s, Reed [4] and Johnson, Robertson, Seymour and Thomas [1], inde-
pendently, conjectured an analogous theorem for directed graphs, i.e. the existence of a
function f : N� > N such that every digraph of directed tree-width at least f(k) con-
tains a directed grid of order k. In an unpublished manuscript from 2001 [2], Johnson,
Robertson, Seymour and Thomas give a proof of this conjecture for planar digraphs. A
proof of the full conjecture was announced by Kawarabayashi and Kreutzer in 2014 [3].

In this talk we will give an introduction to directed tree width and present the main
ideas of the proof of the directed grid theorem.
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Characterizing the linear rank-width of distance-hereditary
graphs via split decompositions
• Isolde Adler – Institut für Informatik, Goethe-Universität, Frankfurt, Germany.

•Mamadou Moustapha Kanté – Clermont-Université, Université Blaise Pascal, LIMOS, CNRS,

France.

• O-joung Kwon – Department of Mathematical Sciences, KAIST, South Korea.

Abstract: Linear rank-width is the linearized variant of rank-width, similar to path-
width, which can be seen as the linearized variant of tree-width. While path-width is a
well-studied notion, much less is known about linear rank-width. A graph G is distance-
hereditary, if for any two vertices u and v of G, the distance between u and v in any
connected, induced subgraph of G that contains both u and v, is the same as the distance
between u and v in G. Distance-hereditary graphs are exactly the graphs of rank-width
at most 1 [4].

We present a characterization of the linear rank-width of distance-hereditary graphs.
The characterization is similar to the known characterization of path-width on trees [1,3],
and we develop modifications of canonical split decompositions to obtain our result.
Using the characterization, we show that the linear rank-width of every n-vertex distance-
hereditary graph can be computed in time O(n2 · log(n)), and a linear layout witnessing
the linear rank-width can be computed with the same time complexity.

We prove three structural results related to linear rank-width of distance-hereditary
graphs. First, we provide a set of distance-hereditary graphs that contains the set of
distance-hereditary vertex-minor obstructions for bounded linear rank-width. It general-
izes the constructions given by Jeong, Kwon, and Oum [2]. Second, we prove that for any
fixed tree T , if a distance-hereditary graph of linear rank-width at least 3 · 25|V (T )| � 2,
then it contains a vertex-minor isomorphic to T . Finally, we characterize graphs of linear
rank-width at most 1 in terms of canonical split decompositions and give a linear time
algorithm to recognize this class.
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Erdős-Pósa Property for Topological Minors
• Chun-Hung Liu – Department of Mathematics, Princeton University, USA

• Luke Postle – Department of Combinatorics and Optimization, University of Waterloo, Canada

• Paul Wollan – Department of Computer Science, University of Rome “La Sapienza”, Italy

Abstract: A family F of graphs has the Erdős-Pósa property if there exists a function
f such that for every integer k, every graph either contains k disjoint members of F or
contains f(k) vertices that intersect in every subgraph isomorphic to a member of F .

Robertson and Seymour [1] proved that for every graph H, the set M(H) of graphs
which contain H as a minor has the Erdős-Pósa property if and only if H is planar. Let
T M(H) be the set of graphs containing H as a topological minor. In the same paper,
Robertson and Seymour posed the problem of characterizing for which H does T M(H)
have the Erdős-Pósa property. We will provide such a characterization in this talk.

Note that such a characterization is expected to be complicated as Thomassen [2]
showed that there exists a tree T such that T M(T ) does not have the Erdős-Pósa prop-
erty. Our characterization requires a couple of definitions to be formally stated. Roughly
speaking, for a connected graph H, T M(H) has the Erdős-Pósa property if and only if
the following hold.

1. H can be drawn in the plane such that every vertex of degree at least four is incident
with the infinite face.

2. Every “partition” of H does not contain three pairwise incomparable parts with
respect to the “rooted topological minor containment.”

3. For every “partition” of H, the maximal parts with respect to the “rooted topolog-
ical minor containment” are “symmetric.”

This characterization can be generalized to graphs with more than one components.
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Tree Decompositions and Graph algorithms
• D. Lokshtanov – University of Bergen

Abstract: A central concept in graph theory is the notion of tree decompositions -
these are decompositions that allow us to split a graph up into “nice” pieces by “small”
cuts. It is possible to solve many algorithmic problems on graphs by decomposing the
graph into “nice” pieces, finding a solution in each of the pieces, and then gluing these
solutions together to form a solution to the entire graph. Examples of this approach
include algorithms for deciding whether a given input graph is planar, the k-Disjoint
paths algorithm of Robertson and Seymour, as well as many algorithms on graphs of
bounded tree-width.

In this talk we will look at a way to compare two tree decompositions of the same
graph and decide which of the two is “better”. It turns out that for every cut size k,
every graph G has a tree decomposition with (approximately) this cut size, such that this
tree-decomposition is “better than” every other tree-decomposition of the same graph
with cut size at most k. We will discuss some consequences of this result, as well as
possible improvements and research directions.

The Parameterized Complexity of Graph Cyclability

• Petr A. Golovach, Marcin Kamiński, Spyridon Maniatis, Dimitrios M. Thilikos
• Spyridon Maniatis – University of Athens

Abstract: The cyclability of a graph is the maximum integer k for which every k vertices
lie on a cycle. The algorithmic version of the problem, given a graph G and a non-negative
integer k, decide whether the cyclability of G is at least k, is NP-hard. We prove that
this problem, parameterized by k, is co-W[1]-hard. We give an FPT algorithm for planar

graphs that runs in time 22
O(k2 log k) · n2. Our algorithm is based on a series of graph

theoretical results on cyclic linkages in planar graphs.
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Optimal parameterized algorithms for planar facility loca-
tion problems using Voronoi diagrams and sphere cut de-
compositions
• Dániel Marx – MTA SZTAKI, Hungarian Academy of Sciences

• Micha l Pilipczuk – University of Warsaw

Abstract: We study a general family of facility location problems defined on planar
graphs and on the 2-dimensional plane. In these problems, a subset of k objects has to
be selected, satisfying certain packing (disjointness) and covering constraints. Our main
result is showing that, for each of these problems, the nO(k) time brute force algorithm of

selecting k objects can be improved to nO(

p
k) time. The algorithm is based on the idea

of focusing on the Voronoi diagram of a hypothetical solution of k objects and defining
subproblems that correspond to the possible separators of a sphere cut decomposition
of the Voronoi diagram (similar techniques were used before for the design of geometric
QPTASs, but not for exact algorithms and for planar graphs).

The following list is an exemplary selection of concrete consequences of our main

result. We can solve each of the following problems in time nO(

p
k), where n is the total

size of the input:

• d-Scattered Set: find k vertices in an edge-weighted planar graph that pairwise
are at distance at least d from each other (d is part of the input).

• d-Dominating Set (or (k, d)-Center): find k vertices in an edge-weighted planar
graph such that every vertex of the graph is at distance at most d from at least one
selected vertex (d is part of the input).

• Given a set D of connected vertex sets in a planar graph G, find a set of k pairwise
disjoint vertex sets in D.

• Given a set D of disks in the plane (of possibly di↵erent radii), find a set of k
pairwise disjoint disks in D.

• Given a set D of simple polygons in the plane, find a set of k pairwise disjoint
polygons in D.

• Given a set D of disks in the plane (of possibly di↵erent radii) and a set P of points,
find a set of k disks in D that together cover the maximum number of points in P.

• Given a set D of axis-parallel squares in the plane (of possibly di↵erent sizes) and
a set P of points, find a set of k squares in D that together cover the maximum
number of points in P.

It is known that, assuming the Exponential Time Hypothesis (ETH), there is no

f(k)no(
p
k) time algorithm for any computable function f for any of these problems.

Furthermore, we give evidence that packing problems have nO(

p
k) time algorithms for a

much more general class of objects than covering problems have. For example, we show
that assuming ETH, the problem where a set D of axis-parallel rectangles and a set P of
points are given and the task is to select k rectangles that together cover the entire point
set does not admit an f(k)no(k) time algorithm for any computable function f .
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Saturation in the Hypercube
• J. Noel – University of Oxford

• A. Scott – University of Oxford

• N. Morrison – University of Oxford

Abstract: Let Qd denote the hypercube of dimension d. Given d � m, a spanning
subgraph G of Qd is said to be (Qd, Qm)-saturated if it does not contain Qm as a subgraph
but adding any edge of E(Qd)\E(G) creates a copy of Qm in G. We say G is weakly
(Qd, Qm)-saturated if the edges of E(Qd)\E(G) can be added to G one at a time so that
each additional edge creates a new copy of Qm.

In this talk we answer two questions of Johnson and Pinto [1]. First we show that for
fixed m � 2 the minimum number of edges in a (Qd, Qm)-saturated graph is ⇥(2d). We
also determine the minimum number of edges in a weakly (Qd, Qm)-saturated graph for
all d � m � 1.
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Subdivisions in 4-connected graphs of large tree-width
• I. Muzi – University of Rome ”La Sapienza”

• P. Wollan – University of Rome ”La Sapienza”

Abstract: The grid theorem of Robertson and Seymour [1] proves that graphs of suf-
ficiently large treewidth contain a r ⇥ r grid as a minor. The same does not hold true
for grid subdivisions, as any graph G of maximum degree 3 constitutes a counterexam-
ple regardless of its treewidth. By restricting the problem to 4-connected graphs, we
prove that graphs of su�ciently large treewidth contain either a large grid or a graph
obtained by adding an apex vertex to a 3-regular graph of large treewidth. Using analo-
gous techniques we prove that nonplanar graphs of su�ciently large treewidth contain K

5

as a subdivision. This problem is connected to a well known conjecture posed indepen-
dently by Seymour (1975) [2] and Kelmans (1979) [3] that states that every 5-connected
nonplanar graph contains K

5

as a subdivision. This is joint work with Paul Wollan.
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Constructive algorithm for path-width and branch-width of
matroids and rank-width of graphs
• Jisu Jeong – KAIST

• Eun Jung Kim – CNRS-LAMSADE

• Sang-il Oum – KAIST

Abstract: We present, for a constant k, an explicit and constructive algoritm that
decides whether a given input matroid represented over a fixed finite field has branch-width
(or path-width) at most k and if so, find a branch-decomposition (or a path-decomposition)
of width at most k. In addition, as a corollary, we obtain an explicit algorithm to decide
whether an input graph has rank-width at most k and if so, find a rank-decomposition of
width at most k.

No such algorithms were known; all known algorithms are indirect and based on the
finiteness of forbidden minors (or vertex-minors) and use dynamic programming to test
forbidden minors (or vertex-minors) [2].

Our approach is based on the dynamic programming combined with the idea of Bod-
laender and Kloks [1] for their work on tree-width of graphs.
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Amalgams and �-boundedness
• Irena Penev– ENS de Lyon

Abstract: A class of graphs is hereditary if it is closed under isomorphism and induced
subgraphs. A hereditary class G is �-bounded if there exists a non-decreasing function
f : N ! N (called a �-bounding function for G) such that every graph G in G satisfies
�(G)  f(!(G)), where �(G) is the chromatic number of G, and !(G) is the clique
number (i.e. the maximum size of a clique) of G. For many hereditary classes of
graphs, there is a decomposition theorem of the following form: every graph in the
class either belongs to some class of well-understood basic graphs, or it admits one of
several decompositions. This raises the following question: which graph decompositions
preserve �-boundedness? Formally, we say that a graph decomposition D preserves
�-boundedness if for all hereditary classes G and G⇤ such that G is �-bounded and
every graph in G⇤ either belongs to G or admits the decomposition D, we have that
G⇤ is �-bounded (however, the optimal �-bounding functions for G and G⇤ need not
be the same). This can be generalized to several decompositions: we say that graph
decompositions D

1

, . . . , Dk together preserve �-boundedness if for all hereditary classes G
and G⇤ such that G is �-bounded and every graph in G⇤ either belongs to G or admits at
least one of D

1

, . . . , Dk, we have that G⇤ is �-bounded. The fact that each of D
1

, . . . , Dk

individually preserves �-boundedness does not imply that D
1

, . . . , Dk together preserve
it (this essentially follows from the fact that the preservation of �-boundedness does not
entail the preservation of the optimal �-bounding function).

Our main result is that proper homogeneous sets, clique-cutsets, and amalgams
together preserve �-boundedness. This generalizes two earlier results: that proper ho-
mogeneous sets and clique-cutsets together preserve �-boundedness (due to Chudnovsky,
Penev, Scott, and Trotignon), and that 1-joins preserve �-boundedness (due to Dvor̆ák
and Král’). As an application of this result, as well as of a decomposition theorem for
“cap-free” graphs (due to Conforti, Cornuéjols, Kapoor, and Vušković), we show that the
class of graphs that do not contain any subdivision of the “house” (i.e. the complement
of the four-edge path) as an induced subgraph is �-bounded.
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Fixed-parameter tractable canonization and isomorphism
test for graphs of bounded treewidth
• Daniel Lokshtanov – University of Bergen, Norway

• Marcin Pilipczuk – University of Warwick, UK

• Micha l Pilipczuk – University of Warsaw, Poland

• Saket Saurabh – Institute of Mathematical Sciences, India and University of Bergen, Norway

Abstract: We give a fixed-parameter tractable algorithm that, given a parameter k and
two graphs G

1

, G
2

, either concludes that one of these graphs has treewidth at least k,
or determines whether G

1

and G
2

are isomorphic. The running time of the algorithm
on an n-vertex graph is 2O(k5 log k) · n5, and this is the first fixed-parameter algorithm for
Graph Isomorphism parameterized by treewidth.

Our algorithm in fact solves the more general canonization problem. We namely
design a procedure working in 2O(k5 log k) ·n5 time that, for a given graph G on n vertices,
either concludes that the treewidth of G is at least k, or:

• finds in an isomorphic-invariant way a graph c(G) that is isomorphic to G;

• finds an isomorphism-invariant construction term — an algebraic expression that
encodes G together with a tree decomposition of G of width O(k4).

Hence, the isomorphism test reduces to verifying whether the computed isomorphic copies
or the construction terms for G

1

and G
2

are equal.
At the heart of our result lies an isomorphic-invariant approximation algorithm for

treewidth, based on the well-known constant approximation algorithm of Robertson and
Seymour. That is, we show how to modify the Robertson-Seymour algorithm so that it
does not make any choices depending on the representation of the graph in the memory
(like, e.g., “take an arbitrary vertex”), at the cost of worse approximation guarantee.

The work, available at arXiv (1404.0818), has been presented at FOCS 2014. The
talk is meant as a follow-up to the invited talk of Daniel Lokshtanov, where the result
will be introduced in a survey manner. The talk aims at providing all important and
novel parts of the proof in bigger detail.
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Kernelization of Dominating Set in sparse graph classes
• P̊al Grøn̊as Drange – University of Bergen

• Markus S. Dregi – University of Bergen

• Fedor V. Fomin – University of Bergen

• Stephan Kreutzer – Technische Universität Berlin

• Daniel Lokshtanov – University of Bergen

• Marcin Pilipczuk – University of Warwick

• Micha l Pilipczuk – University of Warsaw

• Felix Reidl – RWTH Aachen University

• Saket Saurabh – University of Bergen and IMSc Chennai

• Fernando Sánchez Villaamil – RWTH Aachen University

• Somnath Sikdar – RWTH Aachen University

Abstract: In this work we show that for every graph class G of bounded expansion there
exists a polynomial-time algorithm that, given a graph G 2 G and integer k, outputs a
subset of vertices S ✓ V (G) of size linear in k such that G has a dominating set of size at
most k if and only if G[S] does. In the language of Parameterized Complexity, we thus
give the first linear kernel for the Dominating Set problem on graph classes of bounded
expansion. At the cost of having a slightly super-linear size of the kernel, we can also
handle the more general case when class G is nowhere dense.

In the prior work, linear kernels for Dominating Set were consecutively given for
planar [1], bounded genus [2], apex-minor-free [3], H-minor-free [4], and H-topological-
minor-free graphs [5]. However, all these results exploit topological features of the con-
sidered graph classes, in particular the concept of bidimensionality, as well as use deep
decomposition theorems for graphs excluding (topological) minors. Our approach for
bounded expansion graphs avoids all these arguments and uses only basic tools from
the theory of sparse graphs. Thus, while subsumming all the previous results, the new
approach yields a simpler and cleaner analysis.
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Multigraphs without large bonds are wqo by contraction
• Marcin Kamiński – Institute of Computer Science, University of Warsaw, Poland.

• Jean-Florent Raymond – LIRMM – Université Montpellier 2, France and Institute of Com-

puter Science, University of Warsaw, Poland.

• Théophile Trunck – LIP, ÉNS de Lyon, France.

Abstract: A well-quasi-order (wqo for short) is a quasi-order which contains no infinite
decreasing sequence, nor infinite collection of pairwise incomparable elements. One of
the most significant results in this field is the theorem by Robertson and Seymour which
states that graphs are well-quasi-ordered by the minor relation [6].

Nonetheless, most of graph containment relations do not well-quasi-order the class of
all graphs. For example, graphs are not well-quasi-ordered by (induced) subgraphs or
topological minors. This initiated two antipodal lines of research for such relations: a
quest for subclasses that are well-quasi-ordered (see for instance [1, 2, 4]), and a study of
infinite antichains [3] (which are obstructions of being well-quasi-order).

We show that a class of multigraphs is well-quasi-ordered by edge contraction i↵ for
some p, k 2 N none of its members have more than p connected components or a bond
of size more than k. (A bond is a minimal non-empty edge cut.) Our proof relies on
a decomposition theorem by Tutte [7] and on a result by Oporowski et al. on typical
subgraphs of 3-connected graphs [5]. We also characterize canonical antichains for this
relation and show that they are fundamental.
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FPT algorithm for a generalized cut problem and some ap-
plications
• Ignasi Sau – CNRS, LIRMM, Montpellier, France

Abstract: An r-allocation of a set S is an r-tuple V = (V
1

, . . . , Vr) of possibly empty
sets that are pairwise disjoint and whose union is the set S. We refer to the elements of
V as the parts of V and we denote by V(i) the i-th part of V, i.e., V(i) = Vi. We define
the following parameterized problem:

List Allocation
Input: A tuple I = (G, r,�,↵), where G is a graph, r 2 Z�1

, � : V (G) ! 2[r], and

↵ :
�
[r]
2

�
! Z�0

.
Parameter: k =

P
↵.

Question: Find an r-allocation V of V (G) such that

1. 8{i, j} 2
�
[r]
2

�
, |�(V(i),V(j))| = ↵(i, j) and

2. 8v 2 V (G), 8i 2 [r], if v 2 V(i) then i 2 �(v),

or correctly report that such an r-allocation does not exist. (Here, |�(V(i),V(j))| denotes
the number of edges in G with an endpoint in V(i) and the other in V(j).) Using, among
others, the techniques introduced by Chitnis et al. [1], we are able to prove the following
theorem, where n = |V (G)|.

Theorem 1. The List Allocation problem can be solved in time 2O(k2 log k) ·n4 · log n.

Besides being a natural and quite general cut problem by itself, the relevance of List
Allocation is best demonstrated by the following three corollaries of Theorem 1, which
we obtain by reducing in FPT time each corresponding problem to particular cases of
List Allocation.

1. Our first application concerns a generalization of Digraph Homomorphism where,
given two directed graphs G and H where G is simple and H may have loops but
not multiple directed edges, we are also given a list � : V (G) ! 2V (H) of allowed
images for every vertex in G and a function ↵ bounding the maximum number
of arcs in G mapped to each arc of H. The objective is to decide whether there
exists a homomorphism from G to H respecting the constraints imposed by � and
↵. We call this problem Arc-Bounded List Digraph Homomorphism, and we
consider as parameter k the sum of the values taken by the function ↵ over all the
arcs of H.

Corollary 1. Arc-Bounded List Digraph Homomorphism can be solved in
time f(k) · nO(1).

2. We also consider a parameterization of a special graph partitioning problem.

Min-Max Graph Partitioning

Input: An undirected graph G, w, r 2 Z�0

, and a set T ✓ V (G), where |T | = r.

Parameter: k = w · r.
Question: Find a partition {P

1

, . . . ,Pr} of V (G) such that for every i 2 [r], it
holds that |Pi \ T | = 1 and |�(Pi, V (G) \ Pi)|  w, or correctly report that such a
partition does not exist.

26



Corollary 2. Min-Max Graph Partitioning can be solved in time f(k) ·nO(1).

3. Our last application deals with tree-cut width, a graph invariant recently introduced
by Wollan [2] and that has proved of fundamental importance in the structure of
graphs not admitting a fixed graph as an immersion. We prove that following result.

Corollary 3. There exists an algorithm that, given a graph G and a k 2 Z�0

, in

time 2O(k2·log k) · n5 · log n either outputs a tree-cut decomposition of G with width
at most 2k, or correctly reports that no tree-cut decomposition of G with width at
most k exists.

This is joint work with EunJung Kim, Sang-Il Oum, Christophe Paul, and Dimitrios M.
Thilikos.
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Colouring graphs with no odd holes, and other stories
• Paul Seymour – Princeton

Abstract: The chromatic number �(G) of a graph G is always at least the size of its
largest clique (denoted by !(G)), and there are graphs G with !(G) = 2 and �(G)
arbitrarily large.

On the other hand, the perfect graph theorem asserts that if neither G nor its com-
plement has an odd hole, then �(G) = !(G). (A “hole” is an induced cycle of length at
least four, and “odd holes” are holes of odd length.) What happens in between?

With Alex Scott, we recently proved the following, a 1985 conjecture of Gyárfás:

For graphs G with no odd hole, �(G) is bounded by a function of !(G).

Gyárfás also made the stronger conjecture that for every integer k and for all graphs
G with no odd hole of length more than k, �(G) is bounded by a function of k and
!(G). This is far from settled, and indeed the following much weaker statement is not
settled: for every integer k, every triangle-free graph with no hole of length at least k
has chromatic number bounded by a function of k. We give a partial result towards the
latter:

For all k, every triangle-free graph with no hole of length at least k admits a tree-
decomposition into bags with chromatic number bounded by a function of k.

Both results have quite pretty proofs, which will more-or-less be given in full.

28



Solving #SAT and MaxSAT by dynamic programming
• Sigve Hortemo Sæther
• Martin Vatshelle
• Jan Arne Telle, all at University of Bergen, Norway

Abstract: In this paper we look at dynamic programming algorithms for propositional
model counting, also called #SAT, and MaxSAT. We focus on the minimal information
that any e�cient dynamic programming approach to these problems must maintain, and
develop an algorithm that uses only this information.

A subset of clauses of a CNF formula F is called projection satisfiable if there is some
complete assignment satisfying these clauses only. The ps-value of F is the number of
projection satisfiable subsets of clauses. We relate the ps-value of F to the mim-value
of F , which is the size of a maximum induced matching, a set of edges incident to no
other edges, in the incidence graph of F . We show that the ps-value of F is upper
bounded by the number of clauses of F raised to the power of its mim-value, plus one.
Families of CNF formulas with small mim-value, and thus small ps-value, are themselves
of algorithmic interest, but in this paper we focus on even larger families of CNF formulas.

Applying the notion of branch decompositions to CNF formulas and using ps-value
as cut function, we define the ps-width of a formula. A crucial property of such decom-
positions is that a formula with ps-value exponential, in formula size, may have ps-width
polynomial. For a formula given with a branch decomposition of polynomial ps-width we
show dynamic programming algorithms, working along the branch decomposition, solving
weighted MaxSAT and #SAT in polynomial time.

Combining with results of ’Belmonte and Vatshelle, Graph classes with structured
neighborhoods and algorithmic applications, Theor. Comput. Sci. 511: 54-65 (2013)’
we relate ps-width of a formula to mim-width, tree-width and clique-width of its incidence
graph. We show that our algorithms extend all previous results for MaxSAT and #SAT
achieved by dynamic programming along structural decompositions of the incidence graph
of the input formula.

For certain classes of formulas we get polynomial-time algorithms assuming only the
formula as input. For example, we get O(m2(m + n)s) algorithms for formulas F of m
clauses and n variables and total size s, whenever F has a total ordering of its variables
and clauses such that for any variable x occurring in clause C, if x appears before C then
any variable between them also occurs in C, and if C appears before x then x occurs also
in any clause between them. We show that the class of incidence graphs of such formulas
does not have bounded clique-width.

Induced Cycles Modulo 3
• Stéphan Thomassé– ENS de Lyon

Abstract: Studying the length of induced cycles modulo 3 in a graph is definitively an
exotic goal. The aim of this talk is to provide some motivation for it. In particular,
this notion plays an important role when studying the stable set complex of a graph.
After a brief introduction to the subject, I will sketch the proof of our main theorem,
obtained in collaboration with Pierre Charbit and Marthe Bonamy : Every graph with
high chromatic number contains an induced cycle of length 0 mod 3.
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Large Induced Subgraphs Via Triangulations and CMSO
• Fedor V. Fomin – University of Bergen, Norway

• Ioan Todinca – Univ. Orléans, France

• Yngve Villanger – University of Bergen, Norway

Abstract: Consider the following optimization problem. Let ' be a Counting Monadic
Second Order Logic formula and t be an integer. Given a graph G = (V,E), the task is to
find two vertex subsets X ✓ F ✓ V such that the induced subgraph G[F ] has treewidth
at most t, the structure (G[F ], X) models ' and X is of maximum size under these
constraints. Note that our generic problem encompasses many classical optimization
problems like Feedback Vertex Set, Longest Induced Path, Maximum Induced
Matching, Independent H-packing, etc.

Using the theory of potential maximal cliques, we provide an algorithm for this prob-
lem with running time O(|⇧G| ·nt+4) where ⇧G is the set of potential maximal cliques of
G. The hidden constant depends on t and '.

As a consequence, the generic problem can be solved in polynomial time for classes of
graphs with polynomially many minimal separators, and in time O(1.7347n) for arbitrary
graphs.
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décomposition de graphes

Organizers: KREUTZER Stephan (University of Berlin) PAUL Christophe (CNRS
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Montpellier GONÇALVES Daniel, Univ. Montpellier HARUTYUNYAN Ararat, ENS
Lyon HAVET Frédéric, Univ. Nice Sophia Antipolis HOSSEINI Lucas, EHESS - Charles
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