Étale Difference Algebraic Groups

Michael Wibmer

RWTH Aachen

Model Theory, Difference/Differential Equations and Applications

April 9, 2015, Luminy

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivation: σ -Galois theory of linear differential equations Joint work with Lucia Di Vizio and Charlotte Hardouin

Difference algebraic geometry

The limit degree and algebraic σ -groups

A decomposition theorem for σ -étale σ -algebraic groups

Motivation: σ -Galois theory of linear differential equations Joint work with Lucia Di Vizio and Charlotte Hardouin

Difference algebraic geometry

The limit degree and algebraic σ -groups

A decomposition theorem for σ -étale σ -algebraic groups

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

The Bessel function $J_{\alpha}(x)$ solves

$$x^{2}y'' + xy' + (x^{2} - \alpha^{2})y = 0$$

and satisfies

$$xJ_{\alpha+2}(x)-2(\alpha+1)J_{\alpha+1}(x)+xJ_{\alpha}(x)=0.$$

The σ -Galois group of Bessel's equation is

 $G = \{g \in \mathsf{SL}_2 \mid \sigma(g) = g\} \leq \mathsf{SL}_2$.

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

The Bessel function $J_{\alpha}(x)$ solves

$$x^{2}y'' + xy' + (x^{2} - \alpha^{2})y = 0$$

and satisfies

$$xJ_{\alpha+2}(x)-2(\alpha+1)J_{\alpha+1}(x)+xJ_{\alpha}(x)=0.$$

The σ -Galois group of Bessel's equation is

$$G = \{g \in \mathsf{SL}_2 \mid \sigma(g) = g\} \leq \mathsf{SL}_2.$$

(ロ)、(型)、(E)、(E)、(E)、(Q)、(Q)

An application of the σ -Galois theory of linear differential equations: σ -independence of special functions

Theorem

Let Ai(x) and Bi(x) be two \mathbb{C} -linearly independent solutions of y'' = xy. Then

Ai(x), Bi(x), Ai'(x), Ai(x + 1), Bi(x + 1), Ai'(x + 1), Ai(x + 2), ...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

are algebraically independent over $\mathbb{C}(x)$.

Motivation: σ -Galois theory of linear differential equations Joint work with Lucia Di Vizio and Charlotte Hardouin

Difference algebraic geometry

The limit degree and algebraic σ -groups

A decomposition theorem for σ -étale σ -algebraic groups

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

A difference ring (σ -ring) is a ring R together with a ring endomorphism $\sigma \colon R \to R$.

Example

$$R = \mathbb{C}^{\mathbb{N}}$$
, $\sigma((a_n)_{n \in \mathbb{N}} = (a_{n+1})_{n \in \mathbb{N}}$

k a σ -field, e.g., $k = \mathbb{C}(\alpha)$ with $\sigma(f(\alpha)) = f(\alpha + 1)$. The σ -polynomial ring over k is

$$k\{y\} = k\{y_1, \ldots, y_n\} = k[y_1, \ldots, y_n, \sigma(y_1), \ldots, \sigma(y_n), \sigma^2(y_1), \ldots].$$

 $F \subset k\{y\}, R \text{ a } k-\sigma\text{-algebra}$

$$\mathbb{V}_R(F) = \{a \in R^n | f(a) = 0 \forall f \in F\}$$

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

A difference ring (σ -ring) is a ring R together with a ring endomorphism $\sigma \colon R \to R$.

Example

$$R = \mathbb{C}^{\mathbb{N}}$$
, $\sigma((a_n)_{n \in \mathbb{N}} = (a_{n+1})_{n \in \mathbb{N}}$

k a σ -field, e.g., $k = \mathbb{C}(\alpha)$ with $\sigma(f(\alpha)) = f(\alpha + 1)$. The σ -polynomial ring over *k* is

$$k\{y\} = k\{y_1,\ldots,y_n\} = k[y_1,\ldots,y_n,\sigma(y_1),\ldots,\sigma(y_n),\sigma^2(y_1),\ldots].$$

 $F \subset k\{y\}$, R a k- σ -algebra

$$\mathbb{V}_R(F) = \{a \in R^n | f(a) = 0 \forall f \in F\}$$

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

Example

$$a_{n+2} = a_{n+1} + a_n \rightsquigarrow \sigma^2(y_1) - \sigma(y_1) - y_1$$

$$k = \mathbb{C}, \ R = \mathbb{C}^{\mathbb{N}} \rightsquigarrow \text{Fibonacci-sequence} \in \mathbb{V}_R(\sigma^2(y_1) - \sigma(y_1) - y_1)$$

Definition

A functor X of the form $R \rightsquigarrow X(R) = \mathbb{V}_R(F)$ is called a σ -variety.

$$\mathbb{I}(X) := \{ f \in k\{y\} | \ f(a) = 0 \ \forall \ a \in X(R), \ \forall \ R\} \subset k\{y\}$$
$$k\{X\} := k\{y\} / \mathbb{I}(X) \quad \text{coordinate ring of } X$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ つへぐ

Example

$$a_{n+2} = a_{n+1} + a_n \rightsquigarrow \sigma^2(y_1) - \sigma(y_1) - y_1$$

$$k = \mathbb{C}, \ R = \mathbb{C}^{\mathbb{N}} \rightsquigarrow \text{Fibonacci-sequence} \in \mathbb{V}_R(\sigma^2(y_1) - \sigma(y_1) - y_1)$$

Definition

A functor X of the form $R \rightsquigarrow X(R) = \mathbb{V}_R(F)$ is called a σ -variety.

$$\mathbb{I}(X) := \{ f \in k\{y\} | f(a) = 0 \forall a \in X(R), \forall R \} \subset k\{y\}$$
$$k\{X\} := k\{y\} / \mathbb{I}(X) \quad \text{coordinate ring of } X$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A σ -algebraic group G is a group object in the category of σ -varieties.

Examples

$$G(R) = \{g \in \mathsf{SL}_2(R) | \sigma(g) = g\} \le \mathsf{SL}_2(R)$$

$$G(R) = \{g \in R^{\times} | g\sigma^2(g)^3 = 1\} \le \mathbb{G}_m(R)$$

$$G(R) = \{g \in R | \sigma^n(g) + \lambda_{n-1}\sigma^{n-1}(g) + \ldots + \lambda_0 y = 0\} \le \mathbb{G}_a(R)$$

$$G(R) = \{g \in \mathsf{GL}_n(R) | g\sigma(g)^{\mathsf{T}} = \sigma(g)^{\mathsf{T}}g = I_n\} \le \mathsf{GL}_n(R)$$

A σ -algebraic group G is a group object in the category of σ -varieties.

Examples

(Affine) algebraic groups

 $G(R) = \{g \in \mathsf{SL}_2(R) | \ \sigma(g) = g\} \le \mathsf{SL}_2(R)$

 $G(R) = \{g \in R^{\times} | g\sigma^2(g)^3 = 1\} \leq \mathbb{G}_m(R)$

 $G(R) = \{g \in R \mid \sigma^n(g) + \lambda_{n-1}\sigma^{n-1}(g) + \ldots + \lambda_0 y = 0\} \leq \mathbb{G}_a(R)$

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

 $G(R) = \{g \in \operatorname{GL}_n(R) | g\sigma(g)^{\mathsf{T}} = \sigma(g)^{\mathsf{T}}g = I_n\} \leq \operatorname{GL}_n(R)$

A σ -algebraic group G is a group object in the category of σ -varieties.

Examples

(Affine) algebraic groups

$$G(R) = \{g \in \mathsf{SL}_2(R) | \ \sigma(g) = g\} \le \mathsf{SL}_2(R)$$

 $G(R) = \{g \in R^{\times} | g\sigma^2(g)^3 = 1\} \leq \mathbb{G}_m(R)$

 $G(R) = \{g \in R | \sigma^n(g) + \lambda_{n-1}\sigma^{n-1}(g) + \ldots + \lambda_0 y = 0\} \le \mathbb{G}_a(R)$

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

 $G(R) = \{g \in \mathsf{GL}_n(R) | g\sigma(g)^\mathsf{T} = \sigma(g)^\mathsf{T}g = I_n\} \le \mathsf{GL}_n(R)$

A σ -algebraic group G is a group object in the category of σ -varieties.

Examples

(Affine) algebraic groups

$$G(R) = \{g \in \mathsf{SL}_2(R) | \ \sigma(g) = g\} \le \mathsf{SL}_2(R)$$

 $G(R) = \{g \in R^{\times} | g\sigma^2(g)^3 = 1\} \leq \mathbb{G}_m(R)$

 $G(R) = \{g \in R | \sigma^n(g) + \lambda_{n-1}\sigma^{n-1}(g) + \ldots + \lambda_0 y = 0\} \le \mathbb{G}_a(R)$

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

 $G(R) = \{g \in \operatorname{GL}_n(R) | g\sigma(g)^{\mathsf{T}} = \sigma(g)^{\mathsf{T}}g = I_n\} \leq \operatorname{GL}_n(R)$

A σ -algebraic group G is a group object in the category of σ -varieties.

Examples

(Affine) algebraic groups

$$G(R) = \{g \in \mathsf{SL}_2(R) | \ \sigma(g) = g\} \le \mathsf{SL}_2(R)$$

 $G(R) = \{g \in R^{\times} | g\sigma^2(g)^3 = 1\} \leq \mathbb{G}_m(R)$

$$G(R) = \{g \in R | \sigma^n(g) + \lambda_{n-1}\sigma^{n-1}(g) + \ldots + \lambda_0 y = 0\} \le \mathbb{G}_a(R)$$

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ● 回 ● ● ● ●

 $G(R) = \{g \in \mathsf{GL}_n(R) | g\sigma(g)^\mathsf{T} = \sigma(g)^\mathsf{T}g = I_n\} \le \mathsf{GL}_n(R)$

A σ -algebraic group G is a group object in the category of σ -varieties.

Examples

(Affine) algebraic groups

$$G(R) = \{g \in \mathsf{SL}_2(R) | \sigma(g) = g\} \le \mathsf{SL}_2(R)$$

$$G(R) = \{g \in R^{\times} | g\sigma^2(g)^3 = 1\} \leq \mathbb{G}_m(R)$$

$$G(R) = \{g \in R | \sigma^n(g) + \lambda_{n-1}\sigma^{n-1}(g) + \ldots + \lambda_0 y = 0\} \leq \mathbb{G}_a(R)$$

 $G(R) = \{g \in \operatorname{GL}_n(R) | g\sigma(g)^{\mathsf{T}} = \sigma(g)^{\mathsf{T}}g = I_n\} \leq \operatorname{GL}_n(R)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Facts:

- The category of σ-varieties is anti–equivalent to the category of finitely σ-generated k-σ-algebras.
- The category of σ-algebraic groups is anti–equivalent to the category of finitely σ-generated k-σ-Hopf algebras.

 $G \leftrightarrow k\{G\}$

Facts:

- The category of σ-varieties is anti-equivalent to the category of finitely σ-generated k-σ-algebras.
- The category of σ-algebraic groups is anti-equivalent to the category of finitely σ-generated k-σ-Hopf algebras.

 $G \leftrightarrow k\{G\}$

Facts:

- The category of σ-varieties is anti-equivalent to the category of finitely σ-generated k-σ-algebras.
- The category of σ-algebraic groups is anti-equivalent to the category of finitely σ-generated k-σ-Hopf algebras.

 $G \leftrightarrow k\{G\}$

Motivation: σ -Galois theory of linear differential equations Joint work with Lucia Di Vizio and Charlotte Hardouin

Difference algebraic geometry

The limit degree and algebraic σ -groups

A decomposition theorem for σ -étale σ -algebraic groups

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

The limit degree

Theorem

Any σ -algebraic group is isomorphic to a σ -algebraic subgroup of some GL_n .

Fix an embedding $G \hookrightarrow GL_n$.

$$\mathbb{I}(G) \subset k\{\mathrm{GL}_n\} = k\{X, \frac{1}{\det(X)}\}$$

For $i \ge 0$ the ideal

 $\mathbb{I}(G) \cap k[X, 1/\det(X), \dots, \sigma^{i}(X), 1/\det(\sigma^{i}(X))]$

defines an algebraic subgroup G[i] of GL_n^{i+1} and we have morphisms

$$\pi_i\colon G[i]\to G[i-1], \ (g_0,\ldots,g_i)\mapsto (g_0,\ldots,g_{i-1}).$$

Theorem (Existence of the limit degree)

 $Id(G) = \lim_{i \to \infty} deg(\pi_i)$ exists and does not depend on the embedding $G \hookrightarrow GL_n$.

The limit degree

Theorem

Any σ -algebraic group is isomorphic to a σ -algebraic subgroup of some GL_n .

Fix an embedding $G \hookrightarrow GL_n$.

$$\mathbb{I}(G) \subset k\{\mathsf{GL}_n\} = k\{X, \frac{1}{\det(X)}\}$$

For $i \ge 0$ the ideal

 $\mathbb{I}(G) \cap k[X, 1/\det(X), \dots, \sigma^{i}(X), 1/\det(\sigma^{i}(X))]$

defines an algebraic subgroup G[i] of GL_n^{i+1} and we have morphisms

$$\pi_i \colon G[i] \to G[i-1], \ (g_0,\ldots,g_i) \mapsto (g_0,\ldots,g_{i-1}).$$

Theorem (Existence of the limit degree)

 $Id(G) = \lim_{i \to \infty} deg(\pi_i)$ exists and does not depend on the embedding $G \hookrightarrow GL_n$.

The limit degree

Theorem

Any σ -algebraic group is isomorphic to a σ -algebraic subgroup of some GL_n .

Fix an embedding $G \hookrightarrow GL_n$.

$$\mathbb{I}(G) \subset k\{\mathrm{GL}_n\} = k\{X, \frac{1}{\det(X)}\}$$

For $i \ge 0$ the ideal

$$\mathbb{I}(G) \cap k[X, 1/\det(X), \dots, \sigma^i(X), 1/\det(\sigma^i(X))]$$

defines an algebraic subgroup G[i] of GL_n^{i+1} and we have morphisms

$$\pi_i\colon G[i]\to G[i-1], \ (g_0,\ldots,g_i)\mapsto (g_0,\ldots,g_{i-1}).$$

Theorem (Existence of the limit degree)

 $Id(G) = \lim_{i \to \infty} deg(\pi_i)$ exists and does not depend on the embedding $G \hookrightarrow GL_n$.

Example

$$G(R) = \{g \in R^{\times} | \sigma^{\alpha_1}(g)^{\beta_1} \cdots \sigma^{\alpha_n}(g)^{\beta_n} = 1\} \le \mathbb{G}_m(R)$$

$$0 \le \alpha_1 < \ldots < \alpha_n, \ 1 \le \beta_1, \ldots, \beta_n$$

 $\mathsf{Id}(G) = \beta_n$

Example

$$G(R) = \{g \in R | \sigma^{n}(g) + \lambda_{n-1}\sigma^{n-1}(g) + \ldots + \lambda_{0}y = 0\} \le \mathbb{G}_{a}(R)$$
$$\mathsf{Id}(G) = 1$$

Example

$$G(R) = \{g \in R^{\times} | \sigma^{\alpha_1}(g)^{\beta_1} \cdots \sigma^{\alpha_n}(g)^{\beta_n} = 1\} \le \mathbb{G}_m(R)$$

$$0 \le \alpha_1 < \ldots < \alpha_n, \ 1 \le \beta_1, \ldots, \beta_n$$

 $\mathsf{Id}(G) = \beta_n$

Example

$$G(R) = \{g \in R | \sigma^n(g) + \lambda_{n-1}\sigma^{n-1}(g) + \ldots + \lambda_0 y = 0\} \le \mathbb{G}_a(R)$$
$$\mathsf{Id}(G) = 1$$

◆□ → < 個 → < 目 → < 目 → ○ < ○ </p>

Definition (Kowalski, Pillay)

An algebraic σ -group is an algebraic group G together with a morphism of algebraic groups $\sigma \colon G \to {}^{\sigma}G$.

Theorem

The category of affine algebraic σ -groups is equivalent to the category of σ -algebraic groups of limit degree one (and σ -dimension zero).

Idea of proof: $Id(G) = 1 \Leftrightarrow k\{G\}$ is finitely generated as a k-algebra.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Sac

Definition (Kowalski, Pillay)

An algebraic σ -group is an algebraic group G together with a morphism of algebraic groups $\sigma \colon G \to {}^{\sigma}G$.

Theorem

The category of affine algebraic σ -groups is equivalent to the category of σ -algebraic groups of limit degree one (and σ -dimension zero).

Idea of proof: $Id(G) = 1 \Leftrightarrow k\{G\}$ is finitely generated as a k-algebra.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Definition (Kowalski, Pillay)

An algebraic σ -group is an algebraic group G together with a morphism of algebraic groups $\sigma: G \to {}^{\sigma}G$.

Theorem

The category of affine algebraic σ -groups is equivalent to the category of σ -algebraic groups of limit degree one (and σ -dimension zero).

Idea of proof: $Id(G) = 1 \Leftrightarrow k\{G\}$ is finitely generated as a *k*-algebra.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Motivation: σ -Galois theory of linear differential equations Joint work with Lucia Di Vizio and Charlotte Hardouin

Difference algebraic geometry

The limit degree and algebraic σ -groups

A decomposition theorem for σ -étale σ -algebraic groups

σ -étale σ -algebraic groups

Definition

A σ -algebraic group G is σ -étale if $k\{G\}$ is a union of étale k-algebras \Leftrightarrow every element of $k\{G\}$ satisfies a separable polynomial over k.

Examples

G étale algebraic group $\Rightarrow G \sigma$ -étale σ -algebraic group $G(R) = \{g \in R^{\times} | g^n = 1, \sigma(g) = 1\} \leq \mathbb{G}_m(R) \text{ iff char}(k) \nmid n$ \mathcal{G} finite group, $\sigma \colon \mathcal{G} \to \mathcal{G}$ endomorphism, $k\{G\} = k^{\mathcal{G}}$, $\sigma(e_g) = \sum_{h,\sigma(h)=g} e_h$

$1 \rightarrow G^{o} \rightarrow G \rightarrow G/G^{o} \rightarrow 1$

A σ -algebraic group G is σ -étale if $k\{G\}$ is a union of étale k-algebras \Leftrightarrow every element of $k\{G\}$ satisfies a separable polynomial over k.

Examples

 $G(R) = \{g \in R^{\times} | g^{n} = 1\} \leq \mathbb{G}_{m}(R) \text{ iff char}(k) \nmid n$ $G \text{ étale algebraic group } \Rightarrow G \sigma \text{-étale } \sigma \text{-algebraic group}$ $G(R) = \{g \in R^{\times} | g^{n} = 1, \sigma(g) = 1\} \leq \mathbb{G}_{m}(R) \text{ iff char}(k) \nmid n$ $\mathcal{G} \text{ finite group, } \sigma \colon \mathcal{G} \to \mathcal{G} \text{ endomorphism, } k\{G\} = k^{\mathcal{G}},$ $\sigma(e_{g}) = \sum_{h,\sigma(h)=g} e_{h}$

$1 \rightarrow G^{o} \rightarrow G \rightarrow G/G^{o} \rightarrow 1$

A σ -algebraic group G is σ -étale if $k\{G\}$ is a union of étale k-algebras \Leftrightarrow every element of $k\{G\}$ satisfies a separable polynomial over k.

Examples

 $G(R) = \{g \in R^{\times} | g^{n} = 1\} \leq \mathbb{G}_{m}(R) \text{ iff char}(k) \nmid n$ $G \text{ étale algebraic group} \Rightarrow G \sigma \text{-étale } \sigma \text{-algebraic group}$ $G(R) = \{g \in R^{\times} | g^{n} = 1, \sigma(g) = 1\} \leq \mathbb{G}_{m}(R) \text{ iff char}(k) \nmid n$ $G \text{ finite group, } \sigma: G \rightarrow G \text{ endomorphism, } k\{G\} = k^{G},$ $\sigma(e_{g}) = \sum_{h,\sigma(h)=g} e_{h}$

$1 \rightarrow G^{o} \rightarrow G \rightarrow G/G^{o} \rightarrow 1$

A σ -algebraic group G is σ -étale if $k\{G\}$ is a union of étale k-algebras \Leftrightarrow every element of $k\{G\}$ satisfies a separable polynomial over k.

Examples

 $G(R) = \{g \in R^{\times} | g^{n} = 1\} \leq \mathbb{G}_{m}(R) \text{ iff char}(k) \nmid n$ $G \text{ étale algebraic group } \Rightarrow G \sigma \text{-étale } \sigma \text{-algebraic group}$ $G(R) = \{g \in R^{\times} | g^{n} = 1, \sigma(g) = 1\} \leq \mathbb{G}_{m}(R) \text{ iff char}(k) \nmid n$ $G \text{ finite group, } \sigma: G \Rightarrow G \text{ endomorphism, } k\{G\} = k^{G},$ $\sigma(e_{g}) = \sum_{h,\sigma(h)=g} e_{h}$

$1 \rightarrow G^{o} \rightarrow G \rightarrow G/G^{o} \rightarrow 1$

A σ -algebraic group G is σ -étale if $k\{G\}$ is a union of étale k-algebras \Leftrightarrow every element of $k\{G\}$ satisfies a separable polynomial over k.

Examples

$$G(R) = \{g \in R^{\times} | g^n = 1\} \leq \mathbb{G}_m(R) \text{ iff char}(k) \nmid n$$

G étale algebraic group \Rightarrow *G* σ -étale σ -algebraic group

$$G(R) = \{g \in R^{\times} | g^n = 1, \sigma(g) = 1\} \leq \mathbb{G}_m(R) \text{ iff char}(k) \nmid n$$

G finite group, $\sigma \colon \mathcal{G} \to \mathcal{G}$ endomorphism, $k\{G\} = k^{\mathcal{G}}$,

$$\sigma(e_g) = \sum_{h,\sigma(h)=g} e_h$$

$1 \rightarrow G^{o} \rightarrow G \rightarrow G/G^{o} \rightarrow 1$

A σ -algebraic group G is σ -étale if $k\{G\}$ is a union of étale k-algebras \Leftrightarrow every element of $k\{G\}$ satisfies a separable polynomial over k.

Examples

$$G(R) = \{g \in R^{\times} | g^n = 1\} \leq \mathbb{G}_m(R) \text{ iff char}(k) \nmid n$$

 $G \text{ étale algebraic group } \Rightarrow G \sigma \text{-étale } \sigma \text{-algebraic group}$

$$G(R) = \{g \in R^{\times} | g^n = 1, \sigma(g) = 1\} \leq \mathbb{G}_m(R) \text{ iff char}(k) \nmid n$$

 $\mathcal{G} \text{ finite group, } \sigma \colon \mathcal{G} \to \mathcal{G} \text{ endomorphism, } k\{G\} = k^{\mathcal{G}},$

$$\sigma(e_g) = \sum_{h,\sigma(h)=g} e_h$$

$$1 \rightarrow G^o \rightarrow G \rightarrow G/G^o \rightarrow 1$$

 G^{o} connected (Spec($k\{G^{o}\}$) connected), G/G^{o} σ -étale

The category of étale algebraic groups is equivalent to the category of finite groups equipped with a continuous action of the absolute Galois group.

In σ -algebraic geometry:

The category of σ -étale σ -algebraic groups is equivalent to the category of pro-finite σ -groups of finite σ -type equipped with a σ -continuous action of the absolute Galois group.

A pro-finite group group \mathcal{G} with a continuous endomorphism $\sigma \colon \mathcal{G} \to \mathcal{G}$ is of finite σ -type if there exists an open normal subgroup \mathcal{N} of \mathcal{G} such that $\cap_{i\geq 0} \sigma^{-i}(\mathcal{N}) = 1$.

nan

The category of étale algebraic groups is equivalent to the category of finite groups equipped with a continuous action of the absolute Galois group.

In σ -algebraic geometry:

The category of σ -étale σ -algebraic groups is equivalent to the category of pro-finite σ -groups of finite σ -type equipped with a σ -continuous action of the absolute Galois group.

A pro-finite group group \mathcal{G} with a continuous endomorphism $\sigma: \mathcal{G} \to \mathcal{G}$ is of finite σ -type if there exists an open normal subgroup \mathcal{N} of \mathcal{G} such that $\bigcap_{i\geq 0} \sigma^{-i}(\mathcal{N}) = 1$.

Theorem

Let G be a σ -étale σ -algebraic group. Then there exists a subnormal series

$$G \supset G_1 \supset G_2 \supset \cdots \supset G_n \supset 1$$

such that $G_1 = G^{\sigma o}$, G_i/G_{i+1} is benign for i = 1, ..., n-1 and G_n is σ -infinitesimal.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

For a σ -ring R we have an induced map σ : $\operatorname{Spec}(R) \to \operatorname{Spec}(R)$

Definition

A subset of Spec(R) is σ -closed if it is closed and stable under σ .

$$\mathfrak{a}\mapsto\mathcal{V}(\mathfrak{a})=\{\mathfrak{p}\in\operatorname{Spec}(R)|\ \mathfrak{a}\subset\mathfrak{p}\}$$

is a bijection between the radical σ -ideals of R and the σ -closed subsets of Spec(R).

Definition

Spec(*R*) is σ -connected if it is connected with respect to the σ -topology.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

For a σ -ring R we have an induced map σ : $\text{Spec}(R) \rightarrow \text{Spec}(R)$

Definition

A subset of Spec(R) is σ -closed if it is closed and stable under σ .

$$\mathfrak{a} \mapsto \mathcal{V}(\mathfrak{a}) = \{\mathfrak{p} \in \operatorname{Spec}(R) | \ \mathfrak{a} \subset \mathfrak{p}\}$$

is a bijection between the radical σ -ideals of R and the σ -closed subsets of Spec(R).

Definition

Spec(*R*) is σ -connected if it is connected with respect to the σ -topology.

For a σ -ring R we have an induced map σ : $\text{Spec}(R) \rightarrow \text{Spec}(R)$

Definition

A subset of Spec(R) is σ -closed if it is closed and stable under σ .

$$\mathfrak{a}\mapsto\mathcal{V}(\mathfrak{a})=\{\mathfrak{p}\in\mathsf{Spec}(R)|\ \mathfrak{a}\subset\mathfrak{p}\}$$

is a bijection between the radical σ -ideals of R and the σ -closed subsets of Spec(R).

Definition

Spec(*R*) is σ -connected if it is connected with respect to the σ -topology.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Spec(R) is connected if and only if R has no non-trivial idempotent elements.

In σ -algebraic geometry:

Spec(R) is σ -connected if and only if R has no non-trivial periodic $(\sigma^n(e) = e)$ idempotent elements.

・ロト ・ 語 ・ ・ 語 ・ ・ 語 ・ ・ の へ ()・

Spec(R) is connected if and only if R has no non-trivial idempotent elements.

In σ -algebraic geometry:

Spec(R) is σ -connected if and only if R has no non-trivial periodic $(\sigma^n(e) = e)$ idempotent elements.

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ● 回 ● ● ● ●

The σ -identity component

Definition

A σ -algebraic group G is σ -connected if Spec($k\{G\}$) is σ -connected.

Examples

connected $\sigma\textsc{-algebraic}$ groups, algebraic groups

The σ -connected σ -algebraic subgroup

$G^{\sigma o}$

of G corresponding to the σ -connected component of Spec($k\{G\}$) that contains the identity, is called the σ -identity component of G.

I heorem

Spec($k\{G\}$) has only finitely many σ -connected components.

 $\Rightarrow \dim_k(k\{G/G^{\sigma o}\}) < \infty$

The σ -identity component

Definition

A σ -algebraic group G is σ -connected if Spec($k\{G\}$) is σ -connected.

Examples

connected $\sigma\textsc{-algebraic}$ groups, algebraic groups

The σ -connected σ -algebraic subgroup

$G^{\sigma o}$

of G corresponding to the σ -connected component of Spec($k\{G\}$) that contains the identity, is called the σ -identity component of G.

Theorem

Spec($k\{G\}$) has only finitely many σ -connected components.

$$\Rightarrow \dim_k(k\{G/G^{\sigma o}\}) < \infty$$

An algebraic group G is *infinitesimal* if G(R) = 1 for every reduced k-algebra R.

In σ -algebraic geometry:

A σ -algebraic group G is σ -infinitesimal if G(R) = 1 for every k- σ -algebra R with $\sigma \colon R \to R$ injective.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

San

Examples

$G(R) = \{g \in R^{\times} | g^n = 1, \sigma(g) = 1\} \le \mathbb{G}_m(R)$ $H \le \operatorname{GL}_n, \ G(R) = \{g \in H(R) | \sigma^m(g) = I\} \le H(R)$

An algebraic group G is *infinitesimal* if G(R) = 1 for every reduced k-algebra R.

In σ -algebraic geometry:

A σ -algebraic group G is σ -infinitesimal if G(R) = 1 for every k- σ -algebra R with $\sigma \colon R \to R$ injective.

Examples

$$G(R) = \{g \in R^{\times} | g^n = 1, \sigma(g) = 1\} \le \mathbb{G}_m(R)$$

$$H \le \operatorname{GL}_n, \ G(R) = \{g \in H(R) | \sigma^m(g) = I\} \le H(R)$$

An algebraic group G is *infinitesimal* if G(R) = 1 for every reduced k-algebra R.

In σ -algebraic geometry:

A σ -algebraic group G is σ -infinitesimal if G(R) = 1 for every k- σ -algebra R with $\sigma \colon R \to R$ injective.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Examples

 $\begin{aligned} G(R) &= \{ g \in R \mid \sigma^m(g) = 0 \} \leq \mathbb{G}_a(R) \\ G(R) &= \{ g \in R^{\times} \mid g^n = 1, \ \sigma(g) = 1 \} \leq \mathbb{G}_m(R) \\ H &\leq \operatorname{GL}_n, \ G(R) = \{ g \in H(R) \mid \sigma^m(g) = I \} \leq H(R) \end{aligned}$

An algebraic group G is *infinitesimal* if G(R) = 1 for every reduced k-algebra R.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

In σ -algebraic geometry:

A σ -algebraic group G is σ -infinitesimal if G(R) = 1 for every k- σ -algebra R with $\sigma \colon R \to R$ injective.

Examples

$$G(R) = \{g \in R \mid \sigma^m(g) = 0\} \le \mathbb{G}_a(R)$$

$$G(R) = \{g \in R^{\times} \mid g^n = 1, \ \sigma(g) = 1\} \le \mathbb{G}_m(R)$$

$$H \le \operatorname{GL}_n, \ G(R) = \{g \in H(R) \mid \sigma^m(g) = I\} \le H(R)$$

An algebraic group G is *infinitesimal* if G(R) = 1 for every reduced k-algebra R.

In σ -algebraic geometry:

A σ -algebraic group G is σ -infinitesimal if G(R) = 1 for every k- σ -algebra R with $\sigma \colon R \to R$ injective.

Examples

$$\begin{aligned} & G(R) = \{g \in R \mid \sigma^m(g) = 0\} \leq \mathbb{G}_a(R) \\ & G(R) = \{g \in R^{\times} \mid g^n = 1, \ \sigma(g) = 1\} \leq \mathbb{G}_m(R) \\ & H \leq \mathsf{GL}_n, \ G(R) = \{g \in H(R) \mid \sigma^m(g) = I\} \leq H(R) \end{aligned}$$

$G \ \sigma$ -infinitesimal \Leftrightarrow the reflexive closure of the zero ideal of $k\{G\}$ defines the trivial group.

Theorem

A σ -infinitesimal σ -algebraic group has σ -dimension zero, limit degree one and is σ -connected.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

 $G \ \sigma$ -infinitesimal \Leftrightarrow the reflexive closure of the zero ideal of $k\{G\}$ defines the trivial group.

Theorem

A σ -infinitesimal σ -algebraic group has σ -dimension zero, limit degree one and is σ -connected.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

A σ -algebraic group is *benign* if it is isomorphic to an étale algebraic group (interpreted as a σ -algebraic group).

Theorem

Let G be a σ -étale σ -algebraic group. Then there exists a subnormal series

$$G \supset G_1 \supset G_2 \supset \cdots \supset G_n \supset 1$$

such that $G_1 = G^{\sigma o}$, G_i/G_{i+1} is benign for i = 1, ..., n-1 and G_n is σ -infinitesimal.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Sac

Idea of proof: Induction on Id(G)Main step: $G \ \sigma$ -connected, $\nexists N \trianglelefteq G$ with 1 < Id(N) < Id(G) $\Rightarrow \exists H \le G \ \sigma$ -infinitesimal : G/H is benign.

A σ -algebraic group is *benign* if it is isomorphic to an étale algebraic group (interpreted as a σ -algebraic group).

Theorem

Let G be a σ -étale σ -algebraic group. Then there exists a subnormal series

$$G \supset G_1 \supset G_2 \supset \cdots \supset G_n \supset 1$$

such that $G_1 = G^{\sigma o}$, G_i/G_{i+1} is benign for i = 1, ..., n-1 and G_n is σ -infinitesimal.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Idea of proof: Induction on Id(G)Main step: $G \sigma$ -connected, $\nexists N \trianglelefteq G$ with 1 < Id(N) < Id(G) $\Rightarrow \exists H \le G \sigma$ -infinitesimal : G/H is benign.

A σ -algebraic group is *benign* if it is isomorphic to an étale algebraic group (interpreted as a σ -algebraic group).

Theorem

Let G be a σ -étale σ -algebraic group. Then there exists a subnormal series

$$G \supset G_1 \supset G_2 \supset \cdots \supset G_n \supset 1$$

such that $G_1 = G^{\sigma o}$, G_i/G_{i+1} is benign for i = 1, ..., n-1 and G_n is σ -infinitesimal.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Idea of proof: Induction on Id(G)Main step: $G \ \sigma$ -connected, $\nexists N \trianglelefteq G$ with 1 < Id(N) < Id(G) $\Rightarrow \exists H \leq G \ \sigma$ -infinitesimal : G/H is benign.

Example

$$G(R) = \{g \in R^{\times} | g^4 = 1, \sigma(g)^2 = 1\} \le \mathbb{G}_m(R)$$

 $2 \nmid \operatorname{char}(k) \Rightarrow G \sigma$ -étale $G = G^{\sigma o}$ $N(R) = \{g \in R^{\times} | g^4 = 1, \sigma(g) = 1\} \Rightarrow N \trianglelefteq G \sigma$ -infinitesimal $G = G^{\sigma o} \supset N \supset 1$ $H(R) = \{g \in R^{\times} | g^2 = 1\} \leq \mathbb{G}_m(R)$ $G \to H, g \mapsto \sigma(g)$ is surjective with kernel $N \Rightarrow G/N \simeq H$ is benign.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Thank you!

- M. Wibmer, Affine difference algebraic groups, arXiv:1405.6603
- L. Di Vizio, Ch. Hardouin, M. Wibmer, Difference Galois theory of linear differential equations, Advances in Mathematics 260, 1-58, 2014
- L. Di Vizio, Ch. Hardouin, M. Wibmer, Difference algebraic relations among solutions of linear differential equations, arXiv:1310.1289, to appear in Journal of the Institute of Mathematics of Jussieu