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Example

The Bessel function Jα(x) solves

x2y ′′ + xy ′ + (x2 − α2)y = 0

and satisfies

xJα+2(x)− 2(α + 1)Jα+1(x) + xJα(x) = 0.

The σ-Galois group of Bessel’s equation is

G = {g ∈ SL2 | σ(g) = g} ≤ SL2 .
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An application of the σ-Galois theory of linear differential
equations: σ-independence of special functions

Theorem

Let Ai(x) and Bi(x) be two C-linearly independent solutions of
y ′′ = xy . Then

Ai(x),Bi(x),Ai′(x),Ai(x + 1),Bi(x + 1),Ai′(x + 1),Ai(x + 2), . . .

are algebraically independent over C(x).
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Difference algebra

Definition

A difference ring (σ-ring) is a ring R together with a ring
endomorphism σ : R → R.

Example

R = CN, σ((an)n∈N = (an+1)n∈N

k a σ-field, e.g., k = C(α) with σ(f (α)) = f (α + 1). The
σ-polynomial ring over k is

k{y} = k{y1, . . . , yn} = k[y1, . . . , yn, σ(y1), . . . , σ(yn), σ2(y1), . . .].

F ⊂ k{y}, R a k-σ-algebra

VR(F ) = {a ∈ Rn| f (a) = 0 ∀ f ∈ F}
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Difference varieties

Example

an+2 = an+1 + an  σ2(y1)− σ(y1)− y1
k = C, R = CN  Fibonacci-sequence∈ VR(σ2(y1)− σ(y1)− y1)

Definition

A functor X of the form R  X (R) = VR(F ) is called a σ-variety.

I(X ) := {f ∈ k{y}| f (a) = 0 ∀ a ∈ X (R), ∀ R} ⊂ k{y}

k{X} := k{y}/I(X ) coordinate ring of X
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Difference algebraic groups

Definition

A σ-algebraic group G is a group object in the category of
σ-varieties.

Examples

(Affine) algebraic groups

G (R) = {g ∈ SL2(R)| σ(g) = g} ≤ SL2(R)

G (R) = {g ∈ R×| gσ2(g)3 = 1} ≤ Gm(R)

G (R) = {g ∈ R| σn(g) + λn−1σ
n−1(g) + . . .+ λ0y = 0} ≤ Ga(R)

G (R) = {g ∈ GLn(R)| gσ(g)T = σ(g)Tg = In} ≤ GLn(R)
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Difference algebraic groups

Facts:

I The category of σ-varieties is anti–equivalent to the category
of finitely σ-generated k-σ-algebras.

I The category of σ-algebraic groups is anti–equivalent to the
category of finitely σ-generated k-σ-Hopf algebras.

G ↔ k{G}
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The limit degree

Theorem

Any σ-algebraic group is isomorphic to a σ-algebraic subgroup of
some GLn.

Fix an embedding G ↪→ GLn.

I(G ) ⊂ k{GLn} = k{X , 1
det(X )}

For i ≥ 0 the ideal

I(G ) ∩ k[X , 1/ det(X ), . . . , σi (X ), 1/ det(σi (X ))]

defines an algebraic subgroup G [i ] of GLi+1
n and we have

morphisms

πi : G [i ]→ G [i − 1], (g0, . . . , gi ) 7→ (g0, . . . , gi−1).

Theorem (Existence of the limit degree)

ld(G ) = limi→∞ deg(πi ) exists and does not depend on the
embedding G ↪→ GLn.



The limit degree

Theorem

Any σ-algebraic group is isomorphic to a σ-algebraic subgroup of
some GLn.

Fix an embedding G ↪→ GLn.

I(G ) ⊂ k{GLn} = k{X , 1
det(X )}

For i ≥ 0 the ideal

I(G ) ∩ k[X , 1/ det(X ), . . . , σi (X ), 1/ det(σi (X ))]

defines an algebraic subgroup G [i ] of GLi+1
n and we have

morphisms

πi : G [i ]→ G [i − 1], (g0, . . . , gi ) 7→ (g0, . . . , gi−1).

Theorem (Existence of the limit degree)

ld(G ) = limi→∞ deg(πi ) exists and does not depend on the
embedding G ↪→ GLn.



The limit degree

Theorem

Any σ-algebraic group is isomorphic to a σ-algebraic subgroup of
some GLn.

Fix an embedding G ↪→ GLn.

I(G ) ⊂ k{GLn} = k{X , 1
det(X )}

For i ≥ 0 the ideal

I(G ) ∩ k[X , 1/ det(X ), . . . , σi (X ), 1/ det(σi (X ))]

defines an algebraic subgroup G [i ] of GLi+1
n and we have

morphisms

πi : G [i ]→ G [i − 1], (g0, . . . , gi ) 7→ (g0, . . . , gi−1).

Theorem (Existence of the limit degree)

ld(G ) = limi→∞ deg(πi ) exists and does not depend on the
embedding G ↪→ GLn.



The limit degree

Example

G (R) = {g ∈ R×| σα1(g)β1 · · ·σαn(g)βn = 1} ≤ Gm(R)
0 ≤ α1 < . . . < αn, 1 ≤ β1, . . . , βn

ld(G ) = βn

Example

G (R) = {g ∈ R| σn(g) + λn−1σ
n−1(g) + . . .+ λ0y = 0} ≤ Ga(R)

ld(G ) = 1
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Algebraic σ-groups in the sense of Kowalski and Pillay

Definition (Kowalski, Pillay)

An algebraic σ-group is an algebraic group G together with a
morphism of algebraic groups σ : G → σG .

Theorem

The category of affine algebraic σ-groups is equivalent to the
category of σ-algebraic groups of limit degree one (and
σ-dimension zero).

Idea of proof: ld(G ) = 1⇔ k{G} is finitely generated as a
k-algebra.
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σ-étale σ-algebraic groups

Definition

A σ-algebraic group G is σ-étale if k{G} is a union of étale
k-algebras ⇔ every element of k{G} satisfies a separable
polynomial over k .

Examples

G (R) = {g ∈ R×| gn = 1} ≤ Gm(R) iff char(k) - n
G étale algebraic group ⇒ G σ-étale σ-algebraic group
G (R) = {g ∈ R×| gn = 1, σ(g) = 1} ≤ Gm(R) iff char(k) - n
G finite group, σ : G → G endomorphism, k{G} = kG ,
σ(eg ) =

∑
h,σ(h)=g eh

1→ G o → G → G/G o → 1

G o connected (Spec(k{G o}) connected), G/G o σ-étale
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The category of σ-étale σ-algebraic groups

In algebraic geometry:

The category of étale algebraic groups is equivalent to the category
of finite groups equipped with a continuous action of the absolute
Galois group.

In σ-algebraic geometry:

The category of σ-étale σ-algebraic groups is equivalent to the
category of pro-finite σ-groups of finite σ-type equipped with a
σ-continuous action of the absolute Galois group.

A pro-finite group group G with a continuous endomorphism
σ : G → G is of finite σ-type if there exists an open normal
subgroup N of G such that ∩i≥0σ−i (N ) = 1.
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A decomposition theorem for σ-étale σ-algebraic groups

Theorem

Let G be a σ-étale σ-algebraic group. Then there exists a
subnormal series

G ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gn ⊃ 1

such that G1 = Gσo , Gi/Gi+1 is benign for i = 1, . . . , n− 1 and Gn

is σ-infinitesimal.



The σ-topology

For a σ-ring R we have an induced map σ : Spec(R)→ Spec(R)

Definition

A subset of Spec(R) is σ-closed if it is closed and stable under σ.

a 7→ V(a) = {p ∈ Spec(R)| a ⊂ p}

is a bijection between the radical σ-ideals of R and the σ-closed
subsets of Spec(R).

Definition

Spec(R) is σ-connected if it is connected with respect to the
σ-topology.
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σ-connectedness

In algebraic geometry:

Spec(R) is connected if and only if R has no non-trivial
idempotent elements.

In σ-algebraic geometry:

Spec(R) is σ-connected if and only if R has no non-trivial periodic
(σn(e) = e) idempotent elements.
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The σ-identity component

Definition

A σ-algebraic group G is σ-connected if Spec(k{G}) is
σ-connected.

Examples

connected σ-algebraic groups, algebraic groups

The σ-connected σ-algebraic subgroup

Gσo

of G corresponding to the σ-connected component of Spec(k{G})
that contains the identity, is called the σ-identity component of G .

Theorem

Spec(k{G}) has only finitely many σ-connected components.

⇒ dimk(k{G/Gσo}) <∞
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σ-infinitesimal σ-algebraic groups

In algebraic geometry:

An algebraic group G is infinitesimal if G (R) = 1 for every reduced
k-algebra R.

In σ-algebraic geometry:

A σ-algebraic group G is σ-infinitesimal if G (R) = 1 for every
k-σ-algebra R with σ : R → R injective.

Examples

G (R) = {g ∈ R| σm(g) = 0} ≤ Ga(R)
G (R) = {g ∈ R×| gn = 1, σ(g) = 1} ≤ Gm(R)
H ≤ GLn, G (R) = {g ∈ H(R)| σm(g) = I} ≤ H(R)
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σ-infinitesimal σ-algebraic groups

G σ-infinitesimal ⇔ the reflexive closure of the zero ideal of k{G}
defines the trivial group.

Theorem

A σ-infinitesimal σ-algebraic group has σ-dimension zero, limit
degree one and is σ-connected.
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A decomposition theorem for σ-étale σ-algebraic groups

Definition

A σ-algebraic group is benign if it is isomorphic to an étale
algebraic group (interpreted as a σ-algebraic group).

Theorem

Let G be a σ-étale σ-algebraic group. Then there exists a
subnormal series

G ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gn ⊃ 1

such that G1 = Gσo , Gi/Gi+1 is benign for i = 1, . . . , n− 1 and Gn

is σ-infinitesimal.

Idea of proof: Induction on ld(G )
Main step: G σ-connected, @ N E G with 1 < ld(N) < ld(G )
⇒ ∃ H ≤ G σ-infinitesimal : G/H is benign.
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A decomposition theorem for σ-étale σ-algebraic groups

Example

G (R) = {g ∈ R×| g4 = 1, σ(g)2 = 1} ≤ Gm(R)

2 - char(k)⇒ G σ-étale
G = Gσo

N(R) = {g ∈ R×| g4 = 1, σ(g) = 1} ⇒ N E G σ-infinitesimal

G = Gσo ⊃ N ⊃ 1

H(R) = {g ∈ R×| g2 = 1} ≤ Gm(R)

G → H, g 7→ σ(g)

is surjective with kernel N ⇒ G/N ' H is benign.
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