Transfer results in topological differential fields.

Françoise Point

FNRS-FRS, UMons

Luminy, april 9th 2015.

Let *K* be a topological field of characteristic 0, namely a field with a topology compatible with the field operations, given for instance by an order <, (or several orders: $<_1, \dots, <_e$) or by a valuation *v*, (or several valuations v_1, \dots, v_e) or both...

We will consider the following cases:

- (K, <) an ordered field
- (K, v) a non-trivially valued field
- (K, v) a valued *p*-adic field
- (K, <, v) an ordered valued field
- $(K, <_1, \cdots, <_e)$ a field endowed with distinct *e* orderings.
- (K, v_1, \cdots, v_e) a field endowed with distinct *e* valuations.

Now endow these fields with a derivation D, as freely as possible (i.e. no required interaction between D and the topology).

 \rightsquigarrow a notion of differential topological fields.

Under the assumption that the class of e.c. models (in the language without the derivation) is axiomatizable,

• How can we axiomatize the class of existentially closed (e.c.) expansions with a derivation?

• In these e.c. classes which properties transfer from their reducts?

Notation:

Let K be a differential field of characteristic 0 and let $K\{X\}$ be the ring of differential polynomials over K in one differential indeterminate X over K.

Let $f(X) \in K\{X\} \setminus K$, then we can write $f(X) = f^*(X, ..., X^{(n)})$ for some ordinary polynomial $f^*(X_0, ..., X_n) \in K[X_0, ..., X_n]$ and some natural number *n* that we choose minimal such; *n* is the order of *f*, denoted by ord(f) = n. Write *f* as: $f = f_d \cdot X^{(n)^d} + \dots + f_1 \cdot X^{(n)} + f_0$ where $f_0, \dots, f_d \in K[X, X^{(1)}, \dots X^{(n-1)}]$, $f_d \neq 0$ and $deg_{X^{(n)}}f$ is the degree of *f* in $X^{(n)}$.

The separant s_f of f is defined as $s_f = \frac{\partial f}{\partial X^{(n)}}$.

[Kolchin] The field K has a differential closure $\tilde{K} \models DCF_0$, namely a prime model extension (unique up to K-isomorphism) where one can solve any system of the form $f(X) = 0 \& g(X) \neq 0$, with ord(g) < ord(f) for $f, g \in \tilde{K}\{X\}$. In the ordered case, M. Singer axiomatised the corresponding theory *CODF* of ordered differential existentially closed fields. The axiomatisation consists in asking to be able to solve any differential system of the form:

 $f(x) = 0 \& \bigwedge_i g_i(x) > 0$, with $ord(g_i) \le ord(f)$, whenever one can the solve the analogous algebraic system: $f^*(\bar{x}) = 0 \& s^*_{\epsilon}(\bar{x}) \ne 0 \& \bigwedge_i g_i(\bar{x}) > 0.$

Later, Guzy and Rivière gave a geometric axiomatisation, modelled on the one for DCF_0 (Pierce-Pillay).

Observation (Singer): the isolated types in $S_1^{CODF}(\mathbb{Q})$ are not dense. Consider the clopen subset $[x^{(1)} = 1]$. Observation: let $K \models CODF$, then in any cartesian product K^n , differential tuples $a^{\nabla} := (a, a^{(1)}, \cdots, a^{(n-1)})$ are dense. [Singer] Given a model \mathcal{U} of *CODF*, its differential closure is: $\mathcal{U}(i)$, $i^2 = -1$.

This relies on the following embedding theorem: if K is an ordered finitely generated differential field over \mathbb{Q} , then K is isomorphic to a field of real meromorphic functions in some neighbourhood of the origin.

Let \mathcal{U} be an ordered field, model of *CODF* containing $\mathbb{R}(t)$, where t is a transcendental element and put on $\mathcal{U}(i)$ the product topology induced by the topology on \mathcal{U} .

• Consider the first Painlevé equation: $y^{(2)} = 6y^2 + t$ in U(i). Then the set of solutions of that equation is dense in U(i). Let $A \subset K^n$, $I \subset K\{X_1, \dots, X_n\}$. Then $\mathcal{I}(A) := \{f \in K\{X_1, \dots, X_n\} : \forall a \in A \ f(a) = 0\}$ and $V(I) := \{\bar{a} \in K^n : \forall f \in I \ f(\bar{a}) = 0\}.$

An ideal $I \subset K\{X_1, \dots, X_n\}$ is real if for any $u_1, \dots, u_n \in K\{X_1, \dots, X_n\}$ such that $\sum_i u_i^2 \in I$, then $u_i \in I$, for all *i*. Note that if *I* is real, *I* is radical.

An ideal *I* is differential if $a \in I$ implies that $D(a) \in I$. Let $\mathcal{R}(I)$ be the smallest real ideal containing *I*.

[Brouette] (Nullstellensatz) Let I be a differential ideal of $K\{X_1, \dots, X_n\}$, then $\mathcal{I}V(I) = \mathcal{R}(I)$.

Note that there exists archimedean models of CODF (Michaux) and even the field of reals can be taken as the domain of a model of *CODF* (Brouette).

Let $K \models CODF$.

• Denote by $f_{n(k+1),d}(C,X) \in \mathbb{Z}\{C;X\}$ the general form of a polynomial of total degree $\leq d$ and order $\leq k$ belonging to $K\{X_1, \dots, X_n\}$ with coefficients $C := (c_1, \dots, c_m) \in K^m$, where $m = \binom{n(k+1)+d}{n(k+1)}$.

Let $S \subset K\{X_1, \dots, X_n\}$ a finite set of differential polynomials s_i , $1 \leq i \leq e$, of order $\leq k$. Let $W_K(S) := \{\bar{x} \in K^n : \bigwedge_{i=1}^e s_i(\bar{x}) \geq 0\}$ and $W_K(S^*) := \{\bar{x} \in K^{n(k+1)} : \bigwedge_i s_i^*(\bar{x}) \geq 0\}.$

Positivstellensatz

[Brouette] Assume that there exists an open set O such that $O \subseteq W_{\mathcal{K}}(S^*) \subseteq \overline{O}$. • Let $f \in \mathcal{K}\{X_1, \dots, X_n\}$, then $f \upharpoonright W \ge 0$ iff there exists $m \in \mathbb{N}$ such that $f.g =_W f^{2m} + h$, where $g, h \in P, P$ the cone generated by s_1, \dots, s_e .

• Effective version- (Prestel-Delzell) Assume that $\mathbb{R} \subset K$ and that $S \subset \mathbb{R}\{X_1, \dots, X_n\}$. Assume further that $W_{\mathbb{R}}(S^*) \neq \emptyset$ and that for some $N \in \mathbb{N}$, we have $\forall \bar{x} \in W_{\mathbb{R}}(S^*) ||\bar{x}|| < N$. Then there exists a bound b(n(k+1), e, d, N, S) such that $\forall \bar{x}$ [

$$\begin{aligned} (\forall \bar{z} \in W_{\mathcal{K}}(S) \ \forall \bar{c} \ \|c\| < N \ f_{n(k+1),d}(\bar{c},\bar{z}) > 2/N) \ \to \\ \exists \bar{y} \ (\|\bar{y}\| \le b \ \& \ f_{n(k+1),d}(\bar{c},\bar{x}) = \\ & \sum_{\nu \in \{0,1\}^e} s_1^{\nu_1} \cdots s_e^{\nu_e} \sum_{i=1}^{\ell} f_{n(k+1),b}^{\nu_i}(\bar{y},\bar{x})^2)], \end{aligned}$$
where $\ell = \binom{b+n(k+1)}{n(k+1)}.$

Let \mathcal{V} be a basis of neighbourhoods of 0.

We will express the fact that if a differential polynomial while considered as an ordinary algebraic polynomial has a zero then it has a differential zero *close* (relative to \mathcal{V}) to this algebraic zero.

Let $\langle L, V \rangle$ be a differential topological \mathcal{L} -field. For each $n \in \omega^*$, let \mathcal{V}_n be a basis of neighborhoods of $\overline{0} \in L^n$ in the product topology.

 $\langle L, \mathcal{V} \rangle$ satisfies $(DL)_{\mathcal{V}}$ if for every $n \geq 1$, for every differential polynomial $f(X) = f^*(X, X^{(1)}, \ldots, X^{(n)})$ belonging to $L\{X\}$ and for every $W \in \mathcal{V}_n$, the following implication holds: $(\exists \alpha_0, \ldots, \alpha_n \in L)(f^*(\alpha_0, \ldots, \alpha_n) = 0 \land s^*_f(\alpha_0, \ldots, \alpha_n) \neq 0) \Rightarrow$ $((\exists z)(f(z) = 0 \land s_f(z) \neq 0 \land (z^{(0)} - \alpha_0, \ldots, z^{(n)} - \alpha_n) \in W)).$ Building on previous work of M. Tressl:

[Guzy, P.] Any element of an inductive class C of differential topological \mathcal{L} -fields satisfying a property (*) analogous to *largeness* can be embedded in another element of C satisfying a scheme (*DL*).

(*) We assume that any element K of C has an extension in C which contains K((t)).

This allows us to axiomatize the class of e.c. elements of C, in case the topology is first-order uniformly definable, given for instance by an order or a valuation.

Typically, we start with a universal theory T which has a model-completion T_c .

- $T = OF \rightsquigarrow (Tarski) T_c = RCF$ o-minimal theory,
- ② $T = VF_{0,0} \rightsquigarrow$ (A. Robinson) $T_c = ACVF_{0,0}$ C-minimal minimal,
- $T = OVF \sim (G. Cherlin-M. Dickmann) T_c = RCVF$ weakly o-minimal theory,
- T = p-valued fields of *p*-rank *d* (Ax-Kochen-Ersov; Macintyre; Prestel-Roquette) $\rightarrow T_c =_p CF_d$ *p*-minimal theory. For instance, $pCF_1 := Th(\mathbb{Q}_p)$.

We will denote the expansion with a derivation by T_D and let C be the class of models of T_D .

• Then the class of existentially closed models in C is axiomatized by $T_{c,D}^* := T_{c,D} \cup (DL)$, provided C has property (*).

We obtain for the theory $T_{c,D}^*$: if

- $T_c = RCF, CODF,$
- 2 $T_c = ACVF_{0,0}$, an expansion of DCF_0 ,
- **③** $T_c = RCVF$, an expansion of CODF,

Transfer of properties from T_c to $T_{c,D}^*$

• [Guzy, P.] Under the above assumptions on T_c , the theory $T_{c,D}^* := T_{c,D} \cup (DL)$ is the model-completion of T_D and admits quantifier elimination.

• [N. Guzy, P.] The definable sets in models of $T^*_{c,D}$ can be endowed with a fibered dimension function.

Analogous result for CODF:

[Brihaye, Michaux, Rivière] Cell decomposition in models of *CODF* leading to a description of definable sets and the existence of such dimension function.

Instead of using a cell decomposition theorem, we used instead former results of van den Dries on Dimension of definable sets, algebraic boundedness and henselian fields.

[Michaux-Rivière] CODF is NIP.

We will prove an analogous result in our larger framework.

Let $\phi(\bar{x}; \bar{y})$ be a formula and $S_{\phi} := \{\phi(M^m; \bar{b}) : \bar{b} \in M^n\}$. A finite set A is shattered by ϕ if $|\{A \cap S : S \in S_{\phi}\}| = 2^{|A|}$. The VC-dimension of S_{ϕ} is equal to the maximal cardinality of a finite set shattered by S_{ϕ} , if finite and $+\infty$, otherwise. The VC-dimension of ϕ is the VC-dimension of the class S_{ϕ} .

Define $\pi_{\phi(\bar{x};\bar{y})}(t) := \max_{A \subset M} |\{A \cap S : S \in S_{\phi}, |A| = t\}|.$ [Sauer, Shelah] If the VC-dimension of a set is finite, then the function sending t to $\pi_{\phi(\bar{x};\bar{y})}(t)$ is bounded by a polynomial of t.

The VC-density of ϕ is equal to the infimum of all real numbers r such that $\frac{\pi_{\phi(\bar{x};\bar{y})}(t)}{t^r}$ is bounded (as a function of t).

Given a formula $\phi(\bar{x}; \bar{y})$, let $\phi^d(\bar{x}; \bar{y})$ be the dual formula, namely $\phi(\bar{y}; \bar{x})$.

Let $S_{\phi}(B)$ be maximal consistent sets of formulas of the form $\{\phi(\bar{x}; \bar{b}) : b \in B'\} \cup \{\neg \phi(\bar{x}; \bar{b}) : \bar{b} \in B - B'\}.$

If $B' \subseteq B$ of B is cut out by $\phi^d(\bar{x}; \bar{y})$, then we send it to the maximal consistent sets of formulas of the form $\{\phi(\bar{x}; \bar{b}) : b \in B'\} \cup \{\neg \phi(\bar{x}; \bar{b}) : \bar{b} \in B - B'\}.$

Set
$$\pi_{\phi^d(\bar{x};\bar{y})}(t) := max\{|S_{\phi}(B)| : B \subset M^n, |B| = t\}.$$

The dual VC-density of ϕ is equal to the infimum of all real numbers r such that $\frac{\pi_{\phi d}(t)}{t^r}$ is bounded (as a function of t).

A formula is NIP if its VC-dimension is finite. A theory is NIP if all its formulas are NIP.

• [Guzy, P.] The NIP property transfers from T_c to $T^*_{c,D}$.

So we can apply this to the theories: RCF, $ACVF_{0,0}$, RCVF, $_{p}CF_{d}$.

Together with the fact that $T_{c,D}^*$ admits quantifier elimination (q.e.), it is a corollary of the following observation.

Let T be a model-complete theory and let $\mathcal{M} \models T$. Assume that \mathcal{M} can be embedded into an \mathcal{L}_D -structure \mathcal{M}^* whose \mathcal{L} -reduct is a model of T and which has an open \mathcal{L}_D formula ϕ with the independence property. Then the open \mathcal{L} -formula ϕ^* has the independence property in \mathcal{M} .

• When $T = OF_e$, we get by a result of van den Dries a model-companion $T_c = \overline{OF_e}$ (maximal PRC_e fields).

• In this case the axiomatisation of the e.c. class of the expansion by a derivation can be axiomatized by $\overline{OF_{e,D}}^{\omega}$.

• In this case, the theory $\overline{OF_e}$ is not longer *NIP* (Duret), but one has the other *good* combinatorial property: *NTP*₂, by a result of S. Montenegro (for a larger class: PRC_e).

[Montenegro] PRC_e is NTP_2 .

Claim: This property transfers to $\overline{OF_{e,D}}^{\omega}$.

THEOREM

(Aschenbrenner-Dolich-Haskell-Macpherson-Starchenko)

Let T be a weakly o-minimal theory. Then, the dual VC-density of a formula $\phi(\bar{x}; \bar{y})$ is bounded by $|\bar{x}|$.

For instance, T = RCF or T = RCVF.

Also, one can derive a result on $ACVF_{0,0}$ by interpretation.

THEOREM (Aschenbrenner-Dolich-Haskell-Macpherson-Starchenko) Let $T = Th(\mathbb{Q}_p)$. Then, the dual VC-density of a formula $\phi(\bar{x}; \bar{y})$ is bounded by $2.|\bar{x}| - 1$.

Question: What can we say about the dual VC-density of their differential field expansions?

Cell Decomposition Property

Let $\phi(x_1, \dots, x_n)$ be a quantifier-free \mathcal{L}_D -formula, for each x_i , $1 \le i \le n$, let m_i be the maximal natural number m such that $x_i^{(m)}$ occurs in an atomic subformula.

Then, we denote by $\phi^*((x_{i,j})_{i=1,j=0}^{n,m_i})$ the formula we obtain from ϕ by replacing each $x_i^{(j)}$ by $x_{i,j}$.

Let \mathcal{M} be a topological \mathcal{L} -field and $S = \phi(\mathcal{M})$, then we denote by $S^{alg} := \phi^*(\mathcal{M})$.

[Projection maps]

 $\pi_{(i_1,\cdots,i_k)}: M^n \to M^k: (x_1,\cdots,x_n) \to (x_{i_1},\cdots,x_{i_k}).$ $\pi_k: M^n \to M^k: (x_1,\cdots,x_n) \to (x_1,\cdots,x_k).$

• A cell consists either of a point in M^n and is of dimension 0, or is a definable subset X of M^n such that there exist $1 \le k \le n$ and k positive integers $1 \le i_1 < \cdots < i_k \le n$ such that the projection map $\pi^n_{(i_1,\cdots,i_k)}(X)$ is a definable homeomorphism and the image is open in M^k . Then \mathcal{L} -dim(X)=k. • The \mathcal{L} -structure \mathcal{M} has the cell decomposition property (CDP) if for any A-definable subset $X \subset M^n$, $A \subset M$, can be partitioned into finitely many cells and if given any A-definable function ffrom X to \mathcal{M} there exist a partition of X into finitely many A-definable cells X_i such that $f \mid_{X_i}$ is continuous.

• [Mathews] Further assume that T_c has finite Skolem functions and the local continuity property of zeroes of polynomials, then in any model of T_c , we have the cell decomposition property.

This will apply to $T_c = RCF$, or RCVF or $_pCVF_d$

LEMMA (P.)

Let $\mathcal{M} \models T^*_{c,D}$ and K a differential subfield of M. Given an $\mathcal{L}_{D,K}$ -definable set S in \mathcal{M} , there exists an \mathcal{L}_{K} -definable subset S^* of S^{alg} such that S is included and dense $\pi_1(S^*)$. Moreover, S^* can be partionned into a finite union of \mathcal{L}_{K} -definable cells \tilde{C} such that the \mathcal{L} -generic tuples of the form a^{∇} , $a \in S$, are dense in $\pi_d(\tilde{C})$, for some d, $\tilde{C} \subset dcl_{\mathcal{L}_K}(\pi_d(\tilde{C}))$ and $d = \mathcal{L} - dim(\pi_d(\tilde{C})) = \mathcal{L} - dim(\tilde{C})$.

LEMMA (**P**.)

Moreover, to any $\mathcal{L}_{D,K}$ -definable unary function f with domain $S \subset M$, we can associate a \mathcal{L}_K -definable function f^* defined on $S^* \subset S^{alg}$ such that f and f^* coincide on a dense subset of S. Moreover, for each $\tilde{C} \in \mathcal{P}_S^*$ of \mathcal{L} -dimension d the projection $\pi_d(\tilde{C})$ can be partitioned in a finite union of \mathcal{L}_K -definable cells C such that $f^* \upharpoonright C$ is continuous.

This generalises for \mathcal{L}_D -definable set $S \subset M^k$.

Let $\mathcal{M} \models CODF$, assume that \mathcal{M} sufficiently saturated and let $\phi(x; \bar{y})$ be an \mathcal{L} -formula. Let $K \subset M$ and $S = \phi(M, \bar{k})$. Let $\phi^*_{mod}(x, \cdots, x^{(m)}; \bar{y}, \cdots, \bar{y}^{(n)})$ be the formula constructed above, namely such that $S^* = \phi^*_{mod}(M; \bar{k}, \cdots, \bar{k}^{(n)})$.

PROPOSITION

The dual VC-density of the \mathcal{L}_D -formula $\phi(x; \bar{y})$ is equal to the dual VC-density of $\phi^*_{mod}(x, \cdots, x^{(m)}; \bar{y}, \cdots, \bar{y}^{(n)})$).

Using the above lemmas and the fact that in o-minimal theories, cells are definably connected, we show transfer of elimination of imaginaries from *RCF* to *CODF*.

PROPOSITION (P.)

Let \mathcal{K} be a model of *CODF*. Given an \mathcal{L}_D -definable set $S \subset \mathcal{K}^n$ with $S = \phi(\mathcal{K}, \bar{a})$, there exists an \mathcal{L}_D -formula $\psi(\bar{x}, \bar{y})$ and a unique tuple $\bar{b} \subset \mathcal{K}$ such that $\mathcal{K} \models \forall \bar{x} \ \phi(\bar{x}, \bar{a}) \leftrightarrow \psi(\bar{x}, \bar{b})$. Now we want to see under which circumstances the induced structure on a definable set by the ambient one is already present. Let \mathcal{M} be an \mathcal{L} -structure, C a definable subset of \mathcal{M} with dcl(C) = C, $\bar{a} \in M^n$ and $\phi(x, \bar{a})$ an \mathcal{L} -formula.

The type of \bar{a} in \mathcal{M} over C is C-definable if for any \mathcal{L} -formula $\psi(\bar{x}, \bar{y})$ there exists an C-formula $d\psi(\bar{y})$, such that for any $\bar{c} \in C$, $\mathcal{M} \models \psi(\bar{a}, \bar{c})$ iff $\mathcal{M} \models d\psi(\bar{c})$.

So if the type of \bar{a} in \mathcal{M} over C is C-definable, then the definable subset of C: $\phi(C, \bar{a})$ is definable by a C-formula $d\psi(C)$.

Since we are working in a non-stable context, we know that not all types are definable. But one has a description of the definable ones over models in the following cases (for instance):

- **1** RCF van den Dries/o-minimal case: Marker-Steinhorn; Pillay,
- *pCF_d* Delon, Bélair,
- 8 RCVF Mellor,
- ACVF/Cubides-Delon.

Let $K_0 \subset K_1$ be two ordered fields. A cut of K_0 is a partial type of the form $C_1 < v < C_2$ with $C_1 \cup C_2 = K_0$, C_1 , $C_2 \neq \emptyset$ and $max(C_1) \notin K_0$, $min(C_2) \notin K_0$. Recall that K_0 is Dedekind complete in K_1 if no cut in K_0 is realised in K_1 .

• (Marker-Steinhorn) Let T be an o-minimal theory and let $p(\bar{x}) \in S_n^T(M)$, where $\mathcal{M} \models T$. Then $p(\bar{x})$ is definable over M iff \mathcal{M} is Dedekind complete in any $\mathcal{M}(\bar{a})$, where $\mathcal{M}(\bar{a})$ is the prime model generated by \mathcal{M} and \bar{a} a realisation of $p(\bar{x})$.

• We need that the type of a *small element* is definable (over a model).

Let $\mathcal{K} \models CODF$ and let A be differential subfield of K. • Let $p(x) \in S_1^{CODF}(A)$ and assume that $A \models RCF$. Then p(x) is definable over A if and only if A is Dedekind complete in $A(v, \dots, v^{(n)}, \dots; n \in \omega)$, for any element v realizing p(x).

PROPOSITION (Brouette, P.)

Let $A \models RCF$. Then the definable types are dense in $S_1^{CODF}(A)$.

One uses the axiomatisation of CODF (and its proof) + the fact that the type of 0^+ is definable over a model of *RCF*.

One can extend this result to $ACVF_{0,0}$, $_pCF_d$ and RCVF.

Aschenbrenner, M., Dolich, A., Haskell, D., Macpherson, D.,
Starchenko, S., Vapnik-Chervonenkis Density in Some Theories without the Independence Property, I, to appear. Vapnik-Chervonenkis Density in Some Theories without the Independence Property, II, Notre Dame Journal of Formal Logic Volume 54, Numbers 3-4, 2013.
Brihaye, T., Michaux C., Rivière C., Cell decomposition and dimension function in the theory of closed ordered differential, Ann. Pure Appl. Logic 159 (2009), no. 1-2, 111-128.

Brouette Q. A nullstellensatz and a positivstellensatz for ordered differential fields, Math. Log. Quart. 59, No. 3, 247-254 (2013). **van den Dries L.**, Dimension of definable sets, algebraic boundedness and henselian fields, Annals of Pure and Applied Logic 45 (1989), 189-209.

Guzy N., Point F., Topological differential fields, Ann. Pure Appl. Logic 161 (2010), no. 4, 570-598.

Guzy N., Point F., Topological differential fields and dimension functions, J. Symbolic Logic 77 (2012), no. 4, 1147-1164.

Marker, D., Steinhorn C., Definable Types in O-Minimal

Theories, The Journal of Symbolic Logic, Vol. 59, No. 1 (1994), pp. 185-198.

Mathews L., Cell decomposition and dimension functions in first-order topological structures, Proc. London Math. Soc. (3) 70 (1995), no. 1, 1-32.

Michaux C., Rivière C., Quelques remarques concernant la théorie des corps ordonnés différentiellement clos, Bull. Belg. Math. Soc. Simon Stevin 12 (2005), no. 3, 341-348.

Point F., Ensembles définissables dans les corps ordonnés différentiellement clos, C. R. Acad. Sci. Paris, Ser. I 349 (2011) 929-933.

Prestel A., Delzell C., Positive Polynomials: From Hilbert 17th Problem to Real Algebra, Springer, 2004.

Montenegro S., Pseudo real closed field, pseudo p-adic closed fields and NTP2, arXiv:1411.7654, 2014.