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Preliminaries-topological fields

Let K be a topological field of characteristic 0, namely a field with
a topology compatible with the field operations, given for instance
by an order <, (or several orders: <1, · · · , <e) or by a valuation v ,
(or several valuations v1, · · · , ve) or both...

We will consider the following cases:
• (K , <) an ordered field
• (K , v) a non-trivially valued field
• (K , v) a valued p-adic field
• (K , <, v) an ordered valued field
• (K , <1, · · · , <e) a field endowed with distinct e orderings.
• (K , v1, · · · , ve) a field endowed with distinct e valuations.



Preliminaries–topological differential fields

Now endow these fields with a derivation D, as freely as possible
(i.e. no required interaction between D and the topology).

; a notion of differential topological fields.

Under the assumption that the class of e.c. models (in the
language without the derivation) is axiomatizable,

• How can we axiomatize the class of existentially closed (e.c.)
expansions with a derivation?
• In these e.c. classes which properties transfer from their reducts?



Notation:

Let K be a differential field of characteristic 0 and let K{X} be
the ring of differential polynomials over K in one differential
indeterminate X over K .
Let f (X ) ∈ K{X} \ K , then we can write f (X ) = f ∗(X , . . . ,X (n))
for some ordinary polynomial f ∗(X0, · · · ,Xn) ∈ K [X0, · · · ,Xn] and
some natural number n that we choose minimal such; n is the
order of f , denoted by ord(f ) = n.

Write f as: f = fd · X (n)d + · · ·+ f1 · X (n) + f0 where
f0, · · · , fd ∈ K [X ,X (1), · · ·X (n−1)], fd 6= 0 and degX (n)f is the
degree of f in X (n).
The separant sf of f is defined as sf = ∂f

∂X (n) .

[Kolchin] The field K has a differential closure K̃ |= DCF0, namely
a prime model extension (unique up to K -isomorphism) where one
can solve any system of the form f (X ) = 0 & g(X ) 6= 0, with
ord(g) < ord(f ) for f , g ∈ K̃{X}.



Preliminaries–CODF

In the ordered case, M. Singer axiomatised the corresponding
theory CODF of ordered differential existentially closed fields.
The axiomatisation consists in asking to be able to solve any
differential system of the form:
f (x) = 0 &

∧
i gi (x) > 0, with ord(gi ) ≤ ord(f ), whenever one

can the solve the analogous algebraic system:
f ∗(x̄) = 0 & s∗f (x̄) 6= 0 &

∧
i gi (x̄) > 0.

Later, Guzy and Rivière gave a geometric axiomatisation, modelled
on the one for DCF0 (Pierce-Pillay).

Observation (Singer): the isolated types in SCODF
1 (Q) are not

dense. Consider the clopen subset [x (1) = 1].
Observation: let K |= CODF , then in any cartesian product Kn,
differential tuples a∇ := (a, a(1), · · · , a(n−1)) are dense.



[Singer] Given a model U of CODF , its differential closure is: U(i),
i2 = −1.
This relies on the following embedding theorem: if K is an ordered
finitely generated differential field over Q, then K is isomorphic to
a field of real meromorphic functions in some neighbourhood of
the origin.

Let U be an ordered field, model of CODF containing R(t), where
t is a transcendental element and put on U(i) the product
topology induced by the topology on U .

• Consider the first Painlevé equation: y (2) = 6.y2 + t in U(i).
Then the set of solutions of that equation is dense in U(i).



Nullstellensatz

Let A ⊂ Kn, I ⊂ K{X1, · · · ,Xn}. Then
I(A):={f ∈ K{X1, · · · ,Xn} : ∀a ∈ A f (a) = 0} and
V (I ):={ā ∈ Kn : ∀f ∈ I f (ā) = 0}.

An ideal I ⊂ K{X1, · · · ,Xn} is real if for any u1, · · · , un ∈
K{X1, · · · ,Xn} such that

∑
i u

2
i ∈ I , then ui ∈ I , for all i . Note

that if I is real, I is radical.
An ideal I is differential if a ∈ I implies that D(a) ∈ I .
Let R(I ) be the smallest real ideal containing I .

[Brouette] (Nullstellensatz) Let I be a differential ideal of
K{X1, · · · ,Xn}, then IV (I ) = R(I ).



Positivstellensatz

Note that there exists archimedean models of CODF (Michaux)
and even the field of reals can be taken as the domain of a model
of CODF (Brouette).

Let K |= CODF .
• Denote by fn(k+1),d(C ,X ) ∈ Z{C ;X} the general form of a
polynomial of total degree ≤ d and order ≤ k belonging to
K{X1, · · · ,Xn} with coefficients C := (c1, · · · , cm) ∈ Km, where

m =
(n(k+1)+d

n(k+1)

)
.

Let S ⊂ K{X1, · · · ,Xn} a finite set of differential polynomials si ,
1 ≤ i ≤ e, of order ≤ k . Let WK (S) := {x̄ ∈ Kn :

∧e
i=1 si (x̄) ≥ 0}

and WK (S∗) := {x̄ ∈ Kn(k+1) :
∧

i s
∗
i (x̄) ≥ 0}.



Positivstellensatz

[Brouette] Assume that there exists an open set O such that
O ⊆WK (S∗) ⊆ Ō.
• Let f ∈ K{X1, · · · ,Xn}, then f � W ≥ 0 iff there exists m ∈ N
such that f .g =W f 2m + h, where g , h ∈ P, P the cone generated
by s1, · · · , se .

• Effective version– (Prestel-Delzell) Assume that R ⊂ K and that
S ⊂ R{X1, · · · ,Xn}. Assume further that WR(S∗) 6= ∅ and that
for some N ∈ N, we have ∀x̄ ∈WR(S∗) ‖x̄‖ < N. Then there
exists a bound b(n(k + 1), e, d ,N, S) such that ∀x̄ [

(∀z̄ ∈WK (S) ∀c̄ ‖c‖ < N fn(k+1),d(c̄ , z̄) > 2/N) →
∃ȳ (‖ȳ‖ ≤ b & fn(k+1),d(c̄, x̄) =∑

ν∈{0,1}e
sν1

1 · · · s
νe
e

∑̀
i=1

f νin(k+1),b(ȳ , x̄)2)],

where ` =
(b+n(k+1)

n(k+1)

)
.



Scheme (DL)

Let V be a basis of neighbourhoods of 0.
We will express the fact that if a differential polynomial while
considered as an ordinary algebraic polynomial has a zero then it
has a differential zero close (relative to V) to this algebraic zero.

Let 〈L,V〉 be a differential topological L-field. For each n ∈ ω∗, let
Vn be a basis of neighborhoods of 0̄ ∈ Ln in the product topology.

〈L,V〉 satisfies (DL)V if for every n ≥ 1, for every differential
polynomial f (X ) = f ∗(X ,X (1), . . . ,X (n)) belonging to L{X} and
for every W ∈ Vn, the following implication holds:
(∃α0, . . . , αn ∈ L)(f ∗(α0, . . . , αn) = 0 ∧ s∗f (α0, . . . , αn) 6= 0)⇒(

(∃z)
(
f (z) = 0 ∧ sf (z) 6= 0 ∧ (z(0) − α0, . . . , z

(n) − αn) ∈W
))

.



Building on previous work of M. Tressl:

[Guzy, P.] Any element of an inductive class C of differential
topological L-fields satisfying a property (∗) analogous to largeness
can be embedded in another element of C satisfying a scheme
(DL).

(∗) We assume that any element K of C has an extension in C
which contains K ((t)).

This allows us to axiomatize the class of e.c. elements of C, in case
the topology is first-order uniformly definable, given for instance by
an order or a valuation.



Typically, we start with a universal theory T which has a
model-completion Tc .

1 T = OF ;(Tarski) Tc = RCF o-minimal theory,

2 T = VF0,0 ;(A. Robinson) Tc = ACVF0,0 C -minimal
minimal,

3 T = OVF ;(G. Cherlin-M. Dickmann) Tc = RCVF weakly
o-minimal theory,

4 T = p−valued fields of p-rank d (Ax-Kochen-Ersov;
Macintyre; Prestel-Roquette) ; Tc =p CFd p-minimal
theory. For instance, pCF1 := Th(Qp).

We will denote the expansion with a derivation by TD and let C be
the class of models of TD .
• Then the class of existentially closed models in C is axiomatized
by T ∗c,D := Tc,D ∪ (DL), provided C has property (∗).



We obtain for the theory T ∗c,D : if

1 Tc = RCF , CODF,

2 Tc = ACVF0,0, an expansion of DCF0,

3 Tc = RCVF , an expansion of CODF,



Transfer of properties from Tc to T ∗c ,D

• [Guzy, P.] Under the above assumptions on Tc , the theory
T ∗c,D := Tc,D ∪ (DL) is the model-completion of TD and admits
quantifier elimination.
• [N. Guzy, P.] The definable sets in models of T ∗c,D can be
endowed with a fibered dimension function.

Analogous result for CODF :
[Brihaye, Michaux, Rivière] Cell decomposition in models of CODF
leading to a description of definable sets and the existence of such
dimension function.

Instead of using a cell decomposition theorem, we used instead
former results of van den Dries on Dimension of definable sets,
algebraic boundedness and henselian fields.

[Michaux-Rivière] CODF is NIP.

We will prove an analogous result in our larger framework.



VC-dimension

Let φ(x̄ ; ȳ) be a formula and Sφ := {φ(Mm; b̄) : b̄ ∈ Mn}.
A finite set A is shattered by φ if |{A ∩ S : S ∈ Sφ}| = 2|A|.
The VC-dimension of Sφ is equal to the maximal cardinality of a
finite set shattered by Sφ, if finite and +∞, otherwise.
The VC-dimension of φ is the VC-dimension of the class Sφ.

Define πφ(x̄ ;ȳ)(t) := maxA⊂M |{A ∩ S : S ∈ Sφ, |A| = t}|.
[Sauer, Shelah] If the VC-dimension of a set is finite, then the
function sending t to πφ(x̄ ;ȳ)(t) is bounded by a polynomial of t.

The VC-density of φ is equal to the infimum of all real numbers r

such that
πφ(x̄ ;ȳ)(t)

tr is bounded (as a function of t).



Given a formula φ(x̄ ; ȳ), let φd(x̄ ; ȳ) be the dual formula, namely
φ(ȳ ; x̄).

Let Sφ(B) be maximal consistent sets of formulas of the form
{φ(x̄ ; b̄) : b ∈ B ′} ∪ {¬φ(x̄ ; b̄) : b̄ ∈ B − B ′}.

If B ′ ⊆ B of B is cut out by φd(x̄ ; ȳ), then we send it to the
maximal consistent sets of formulas of the form
{φ(x̄ ; b̄) : b ∈ B ′} ∪ {¬φ(x̄ ; b̄) : b̄ ∈ B − B ′}.

Set πφd (x̄ ;ȳ)(t) := max{|Sφ(B)| : B ⊂ Mn, |B| = t}.

The dual VC-density of φ is equal to the infimum of all real

numbers r such that
π
φd

(t)

tr is bounded (as a function of t).



Non independance property

A formula is NIP if its VC-dimension is finite. A theory is NIP if all
its formulas are NIP.

• [Guzy, P.] The NIP property transfers from Tc to T ∗c,D .

So we can apply this to the theories: RCF , ACVF0,0, RCVF , pCFd .

Together with the fact that T ∗c,D admits quantifier elimination
(q.e.), it is a corollary of the following observation.

Let T be a model-complete theory and let M |= T . Assume that
M can be embedded into an LD-structure M∗ whose L-reduct is
a model of T and which has an open LD formula φ with the
independence property. Then the open L-formula φ∗ has the
independence property in M.



NTP2-case

• When T = OFe , we get by a result of van den Dries a
model-companion Tc = OFe (maximal PRCe fields).

• In this case the axiomatisation of the e.c. class of the expansion
by a derivation can be axiomatized by OFe,D

ω
.

• In this case, the theory OFe is not longer NIP (Duret), but one
has the other good combinatorial property: NTP2, by a result of S.
Montenegro (for a larger class: PRCe).

[Montenegro] PRCe is NTP2.

Claim: This property transfers to OFe,D
ω

.



VC-density

THEOREM

(Aschenbrenner-Dolich-Haskell-Macpherson-Starchenko)

Let T be a weakly o-minimal theory. Then, the dual VC-density of
a formula φ(x̄ ; ȳ) is bounded by |x̄ |.

For instance, T = RCF or T = RCVF .
Also, one can derive a result on ACVF0,0 by interpretation.

THEOREM

(Aschenbrenner-Dolich-Haskell-Macpherson-Starchenko)

Let T = Th(Qp). Then, the dual VC-density of a formula φ(x̄ ; ȳ)
is bounded by 2.|x̄ | − 1.

Question: What can we say about the dual VC-density of their
differential field expansions?



Cell Decomposition Property

Let φ(x1, · · · , xn) be a quantifier-free LD-formula, for each xi ,

1 ≤ i ≤ n, let mi be the maximal natural number m such that x
(m)
i

occurs in an atomic subformula.
Then, we denote by φ∗((xi ,j)

n,mi
i=1,j=0) the formula we obtain from φ

by replacing each x
(j)
i by xi ,j .

Let M be a topological L-field and S = φ(M), then we denote by
Salg := φ∗(M).
• [Projection maps]
π(i1,··· ,ik ) : Mn → Mk : (x1, · · · , xn)→ (xi1 , · · · , xik ).

πk : Mn → Mk : (x1, · · · , xn)→ (x1, · · · , xk).

• A cell consists either of a point in Mn and is of dimension 0, or is
a definable subset X of Mn such that there exist 1 ≤ k ≤ n and k
positive integers 1 ≤ i1 < · · · < ik ≤ n such that the projection
map πn(i1,··· ,ik )(X ) is a definable homeomorphism and the image is

open in Mk . Then L-dim(X)=k.



Cell Decomposition Property

• The L-structure M has the cell decomposition property (CDP) if
for any A-definable subset X ⊂ Mn, A ⊂ M, can be partitioned
into finitely many cells and if given any A-definable function f
from X to M there exist a partition of X into finitely many
A-definable cells Xi such that f |Xi

is continuous.

• [Mathews] Further assume that Tc has finite Skolem functions
and the local continuity property of zeroes of polynomials, then in
any model of Tc , we have the cell decomposition property.

This will apply to Tc = RCF , or RCVF or pCVFd



Definable sets in models of T ∗c ,D

LEMMA (P.)

Let M |= T ∗c,D and K a differential subfield of M. Given an
LD,K -definable set S in M, there exists an LK -definable subset S∗

of Salg such that S is included and dense π1(S∗). Moreover, S∗

can be partionned into a finite union of LK -definable cells C̃ such
that the L-generic tuples of the form a∇, a ∈ S , are dense in
πd(C̃ ), for some d , C̃ ⊂ dclLK (πd(C̃ )) and
d = L − dim(πd(C̃ )) = L − dim(C̃ ).



LEMMA (P.)

Moreover, to any LD,K -definable unary function f with domain
S ⊂ M, we can associate a LK -definable function f ∗ defined on
S∗ ⊂ Salg such that f and f ∗ coincide on a dense subset of S .
Moreover, for each C̃ ∈ P∗S of L-dimension d the projection πd(C̃ )
can be partitioned in a finite union of LK -definable cells C such
that f ∗ � C is continuous.

This generalises for LD-definable set S ⊂ Mk .



VC-density back in CODF

Let M |= CODF , assume that M sufficiently saturated and let
φ(x ; ȳ) be an L-formula. Let K ⊂ M and S = φ(M, k̄). Let
φ∗mod(x , · · · , x (m); ȳ , · · · , ȳ (n)) be the formula constructed above,
namely such that S∗ = φ∗mod(M; k̄ , · · · , k̄(n)).

PROPOSITION

The dual VC-density of the LD-formula φ(x ; ȳ) is equal to the dual
VC-density of φ∗mod(x , · · · , x (m); ȳ , · · · , ȳ (n))).



Elimination of Imaginaries

Using the above lemmas and the fact that in o-minimal theories,
cells are definably connected, we show transfer of elimination of
imaginaries from RCF to CODF .

PROPOSITION (P.)

Let K be a model of CODF . Given an LD-definable set S ⊂ Kn

with S = φ(K , ā), there exists an LD-formula ψ(x̄ , ȳ) and a unique
tuple b̄ ⊂ K such that K |= ∀x̄ φ(x̄ , ā)↔ ψ(x̄ , b̄).



Definable types

Now we want to see under which circumstances the induced
structure on a definable set by the ambient one is already present.
Let M be an L-structure, C a definable subset of M with
dcl(C ) = C , ā ∈ Mn and φ(x , ā) an L-formula.

The type of ā in M over C is C -definable if for any L-formula
ψ(x̄ , ȳ) there exists an C -formula dψ(ȳ), such that for any c̄ ∈ C ,
M |= ψ(ā, c̄) iff M |= dψ(c̄).

So if the type of ā in M over C is C -definable, then the definable
subset of C : φ(C , ā) is definable by a C -formula dψ(C ).



Since we are working in a non-stable context, we know that not all
types are definable. But one has a description of the definable ones
over models in the following cases (for instance):

1 RCF van den Dries/o-minimal case: Marker-Steinhorn; Pillay,

2 pCFd Delon, Bélair,

3 RCVF Mellor,

4 ACVF ...../Cubides-Delon.



In CODF

Let K0 ⊂ K1 be two ordered fields. A cut of K0 is a partial type of
the form C1 < v < C2 with C1 ∪ C2 = K0, C1, C2 6= ∅ and
max(C1) /∈ K0, min(C2) /∈ K0.
Recall that K0 is Dedekind complete in K1 if no cut in K0 is
realised in K1.

• (Marker-Steinhorn) Let T be an o-minimal theory and let
p(x̄) ∈ ST

n (M), where M |= T . Then p(x̄) is definable over M iff
M is Dedekind complete in any M(ā), where M(ā) is the prime
model generated by M and ā a realisation of p(x̄).



• We need that the type of a small element is definable (over a
model).

Let K |= CODF and let A be differential subfield of K .
• Let p(x) ∈ SCODF

1 (A) and assume that A |= RCF . Then p(x) is
definable over A if and only if A is Dedekind complete in
A(v , · · · , v (n), · · · ; n ∈ ω), for any element v realizing p(x).

PROPOSITION (Brouette, P.)

Let A |= RCF . Then the definable types are dense in SCODF
1 (A).

One uses the axiomatisation of CODF (and its proof) + the fact
that the type of 0+ is definable over a model of RCF .

One can extend this result to ACVF0,0, pCFd and RCVF .
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