Graph regularity and incidence phenomena in distal structures

Artem Chernikov
(IIMJ-PRG)

Luminy, April 7, 2015 ▶ Joint with Sergei Starchenko, University of Notre Dame.

Homogeneous subsets

- Let (R, A, B) be a bipartite graph, i.e. A and B are two disjoint sets of vertices and $R \subseteq A \times B$.
- ▶ We say that a pair of sets $A' \subseteq A$, $B' \subseteq B$ is R-homogeneous if either $A' \times B' \subseteq R$ or $(A' \times B') \cap R = \emptyset$.

▶ [Kövári, Sós, Turán, Erdős] If $|A|, |B| \ge n$, then there is a homogeneous pair (A', B') with $|A'|, |B'| \ge c \log n$.

Semialgebraic graphs

- Optimal in general. But what if we restrict to some geometrically motivated graphs?
- ▶ A set $A \subseteq \mathbb{R}^d$ is *semialgebraic* if it can be defined by a finite boolean combination of polynomial equalities and inequalities.
- **Examples:** hyperplanes, balls, boxes, tubes, etc. in \mathbb{R}^d .
- ▶ We say that the *description complexity* of a semialgebraic set $A \subseteq \mathbb{R}^d$ is $\leq t$ if $d \leq t$ and A can be defined by a boolean combination involving at most t polynomial inequalities, each of degree at most t.
- Examples of semialgebraic graphs and hypergraphs:
 - the incidence relation between points and lines on the plane,
 - pairs of circles in \mathbb{R}^3 that are linked,
 - two parametrized families of semialgebraic varieties having a non-empty intersection,
 - multi-dimensional analogues, etc.

Semialgebraic Ramsey

► [N. Alon, J. Pach, R. Pinchasi, R. Radoičić, M. Sharir, "Crossing patterns of semi-algebraic sets", 1995]:

Theorem

For every $t \in \mathbb{N}$ there is some $\varepsilon > 0$ such that: if $R \subseteq \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$ is semialgebraic of complexity bounded by t, then for any finite sets $A \subseteq \mathbb{R}^{d_1}$, $B \subseteq \mathbb{R}^{d_2}$ there are some $A' \subseteq A$, $B' \subseteq B$ such that $|A'| \ge \varepsilon |A|$, $|B'| \ge \varepsilon |B|$ and (A', B') is R-homogeneous. Moreover, $A' = A \cap S_1$ and $B' = B \cap S_2$, where S_1 , S_2 are certain semialgebraic sets of complexity bounded in terms of t.

► This result has many applications: semialgebraic regularity lemma, incidence questions, unit distance problem, higher dimensional Ramsey, etc.

Motivation for our work

- Some natural questions:
 - Can we allow more complicated graphs, e.g. if we want to define the edge relation via some conditions expressed in terms of e^x or some analytic functions? What about graphs coming from p-adic geometry?
 - ► Can we prove similar results for more general measures (other than just counting points, e.g. Lebesgue, Haar)?
- Model theory provides both context and methods for such generalizations.

Back to the Ramsey statement

- ▶ The previous result can be reformulated by saying that $M = (\mathbb{R}, +, \times, 0, 1)$ satisfies the following property.
- (*) For every definable relation $R \subseteq M^{d_1} \times M^{d_2}$ there is some $\varepsilon > 0$ such that: for every finite $A \subseteq M^{d_1}, B \subseteq M^{d_2}$ there are some $A' \subseteq A, B' \subseteq B$ such that $|A'| \ge \varepsilon |A|, |B'| \ge \varepsilon |B|$ and (A', B') is R-homogeneous.
 - Moreover, $A' = A \cap S_1$ and $B' = B \cap S_2$, where S_1, S_2 are definable by a certain formula depending just on the formula defining R (and not on its parameters).
- ▶ Which other structures satisfy (*)?

o-minimal structures satisfy (*)

- ▶ [Basu, 2007] Topologically closed graphs in *o*-minimal expansions of real closed fields satisfy (*).
- ▶ E.g., $M = (\mathbb{R}, +, \times, e^{x}, f \upharpoonright_{[0,1]})$ for f restricted analytic).
- As the logarithmic bound on the size of homogeneous subsets is optimal for general graphs, it follows that (*) implies NIP (i.e. all uniformly definable families of sets have finite VC-dimension).

(*) fails in algebraically closed fields of positive characteristic

- ▶ Without requiring definability of the homogeneous sets (*) holds in algebraically closed fields of char 0 as $(\mathbb{C}, \times, +)$ is interpreted in $(\mathbb{R}^2, \times, +)$.
- ▶ For a finite field \mathbb{F}_q , let P_q be the set of all points in \mathbb{F}_q^2 and let L_q be the set of all lines in \mathbb{F}_q^2 .
- Let $I \subseteq P_q \times L_q$ be the incidence relation. Using the fact that the lazy Szemerédi-Trotter bound $|I(P_q, L_q)| \le |L_q| |P_q|^{\frac{1}{2}} + |P_q|$ is optimal in finite fields one can check:
- ▶ Claim. For any fixed $\delta > 0$, for all large enough q if $L_0 \subseteq L_q$ and $P_0 \subseteq P_q$ with $|P_0| \ge \delta q^2$ and $|L_0| \ge \delta q^2$ then $I(P_0, L_0) \ne \emptyset$.
- As every finite field of char p can be embedded into $\overline{\mathbb{F}}_p$, it follows that (*) fails in $\overline{\mathbb{F}}_p$ (even without requiring definability of the homogeneous pieces) for I the incidence relation.

Towards the right setting

- ► The class of distal structures was introduced and studied by [P. Simon, 2011] in order to capture the class of "purely unstable" NIP theories.
- The original definition is in terms of certain properties of indiscernible sequences.
- ► [C., Simon, 2012] gives a combinatorial characterization of distality:

Distal structures

▶ **Theorem/Definition** An NIP structure M is distal if and only if for every definable family $\{\phi(x,b):b\in M^d\}$ of subsets of M there is a definable family $\{\psi(x,c):c\in M^{kd}\}$ such that for every $a\in M$ and every finite set $B\subset M^d$ there is some $c\in B^k$ such that $a\in \psi(x,c)$ and for every $a'\in \psi(x,c)$ we have $a'\in \phi(x,b)$ $\Leftrightarrow a\in \phi(x,b)$, for all $b\in B$.

Examples of distal structures

- All (weakly) o-minimal structures are distal, e.g. RCVF.
- Any p-minimal theory with Skolem functions is distal. E.g.($\mathbb{Q}_p, +, \times$) for each prime p, with analytic exapnsion, is distal (due to the p-adic cell decomposition of Denef).
- Certain topological differential (valued) fields (see Point's talk) and the ordered differential field of transseries (via recent work of Aschenbrenner, van den Dries, van der Hoeven) are distal.
- Nice pairs of distal structures are distal.

Keisler measures

- ▶ A (Keisler) measure μ over a structure M is a finitely additive probability measure on the boolean algebra $Def_{\times}(M)$ of definable subsets of M.
- Let $S_x(M)$ be the compact space of types over M, i.e. the Stone dual of $\operatorname{Def}_x(M)$. Every Keisler measure over M can be viewed as a measure defined on all clopen subsets $S_x(M)$, and then it admits a unique extension to a regular Borel probability measure on $S_x(M)$.
- Let $\mathbb{M} \succ M$ be a saturated elementary extension of M (a "universal domain", in the case of real closed fields we in particular throw in some infinitesimals, infinitesimals with respect to those infinitesimals, etc.)

Generically stable measures, 1

- \triangleright A measure μ over an NIP struture M is generically stable if there is a unique Aut (M/M)-invariant Keisler measure over \mathbb{M} extending μ .
- ► [Vapnik–Chervonenkis, 1971] + [Hrushovski, Pillay, Simon, 2010]: Generically stable measures are uniformly approximable by frequency measures: for every $\phi(x,y) \in L$ and $\varepsilon > 0$ there is some $n \in \mathbb{N}$ such that for every generically stable measure μ over M there are some $a_0, \ldots, a_{n-1} \in M^{|x|}$ such that for any $b \in M^{|y|}$ we have $\left| \mu \left(\phi \left(x,b \right) \right) - \frac{\left| \left\{ i < n : \left| = \phi \left(a_i,b \right) \right\} \right|}{n} \right| \le \varepsilon$.

$$b \in M^{|y|}$$
 we have $\left| \mu \left(\phi \left(x,b \right) \right) - rac{\left| \left\{ i < n : \models \phi \left(a_i,b \right) \right\} \right|}{n}
ight| \leq \varepsilon.$

Generically stable measures, 2

- Examples of generically stable measures:
 - A counting measure concentrated on a finite set (in any structure).
 - ▶ Lebesgue measure on [0,1] (over reals, restricted to definable sets).
 - ▶ Haar measure on a compact ball over *p*-adics.
 - ▶ Let *G* be a (definably) compact group in an *o*-minimal theory or over *p*-adics. Then it admits a unique *G*-invariant measure, which is generically stable.

Main results: Distal Ramsey

Theorem

[C., Starchenko] Let M be a distal structure. Then it satisfies:

- 1. Strong (*): For every definable relation R(x,y) there is some $\varepsilon > 0$ such that: for all generically stable measures μ on $M^{|x|}$ and ν on $M^{|y|}$ there are some sets $S_1 \subseteq M^{|x|}, S_2 \subseteq M^{|y|}$ uniformly definable depending just on R, such that $\mu(S_1) \geq \varepsilon$, $\nu(S_2) \geq \varepsilon$ and (S_1, S_2) is R-homogeneous.
- 2. Moreover, if M satisfies (*) then M is distal.
- ▶ Of course, strong (*) implies (*) by taking μ, ν to be counting measures concentrated on finite sets.
- ▶ In the case of p-adics, not uniform in p: the problem with \mathbb{F}_p is treated by increasing the constant.
- ▶ Density version, version for hypergraphs, etc.

Theorem

[E. Szemerédi, 1975] If $\varepsilon > 0$, then there exists $K = K(\varepsilon)$ such that:

for any finite bipartite graph $R \subseteq A \times B$, there exist partitions $A = A_0 \cup \ldots \cup A_k$ and $B = B_0 \cup \ldots \cup B_k$ into non-empty sets, and a set $\Sigma \subseteq \{1, \ldots, k\} \times \{1, \ldots, k\}$ with the following properties.

- 1. Bounded size of the partition: $k \leq K$.
- 2. Few exceptions: $\left|\bigcup_{(i,j)\in\Sigma}A_i\times B_j\right|\geq (1-\varepsilon)\left|A\times B\right|$.
- 3. ε -regularity: for all $(i,j) \in \Sigma$, and all $A' \subseteq A_i, B' \subseteq B_j$, one has

$$\left|\frac{|R\cap (A'\times B')|}{|A'\times B'|}-\frac{|R\cap (A_i\times B_j)|}{|A_i\times B_j|}\right|\leq \varepsilon.$$

Szemerédi regularity lemma: bounds and applications

- Exist various versions for weaker and stronger partitions, for hypergraphs, etc. Increasing the error a little one may assume that sets in the partition are of (approximately) equal size.
- ► Has many applications in extreme graph combinatorics, additive number theory, computer science, etc.
- ▶ [T. Gowers, 1997] The size of the partition $K(\varepsilon)$ grows as a tower of twos $2^{2^{\cdots}}$ of height $(1/\varepsilon^{16})$.
- What about restricted families of graphs?

Classification of regularity lemmas

- 1. [T. Tao, 2012] Algebraic graphs of bounded complexity in large finite fields (pieces of the partition are algebraic, no exceptional pairs, stronger regularity), based on the work of [Chatzidakis, van den Dries, Macintyre].
 - 1.1 + some generalizations by Hrushovski; Pillay, Starchenko; Macpherson, Steinhorn.
- 2. [L. Lovász, B. Szegedi, 2010] Graphs of bounded VC-dimension, i.e. NIP graphs (density arbitrarily close to 0 or 1, the size of the partition is bounded by a polynomial in $(\frac{1}{\varepsilon})$).
 - 2.1 [M. Malliaris, S. Shelah, 2011]: graphs without arbitrary large half-graphs, i.e. stable graphs (no exceptional pairs).
 - 2.2 [J.Fox, M. Gromov, V. Lafforgue, A. Naor, and J. Pach, "Overlap properties of geometric expanders", 2010], [J. Fox, J. Pach, A. Suk, "A polynomial regularity lemma for semi-algebraic hypergraphs and its applications in geometry and property testing", 2015] Semialgebraic graphs of bounded complexity.

Application: Distal regularity lemma

Theorem

[C., Starchenko] Let M be distal. For every definable R(x,y) and every $\varepsilon>0$ there is some $K=K(\varepsilon,R)$ such that: for any generically stable measures μ on $M^{|x|}$ and ν on $M^{|y|}$, there are $A_0,\ldots,A_k\subseteq M^{|x|}$ and $B_0,\ldots,B_k\subseteq M^{|y|}$ uniformly definable depending just on R and ε , and a set $\Sigma\subseteq\{1,\ldots,k\}^2$ such that:

- 1. $k \leq K$
- 2. $\omega\left(\bigcup_{(i,j)\in\Sigma}A_i\times B_j\right)\geq 1-\varepsilon$, where ω is the (unique, generically stable) product measure of μ and ν ,
- 3. for all $(i,j) \in \Sigma$, the pair (A_i, B_j) is R-homogeneous.

Moreover, K is bounded by a polynomial in $\left(\frac{1}{\varepsilon}\right)$.

Application: Erdős-Hajnal property

- ▶ Let (G, V) be an undirected graph. A subset $V_0 \subseteq V$ is homogeneous if either $(v, v') \in E$ for all $v \neq v' \in V_0$ or $(v, v') \notin E$ for all $v \neq v' \in V_0$.
- ▶ A class of finite graphs \mathcal{G} has the *Erdős-Hajnal property* if there is $\delta > 0$ such that every $G \in \mathcal{G}$ has a homogeneous subset of size $\geq |V(G)|^{\delta}$.
- ► Erdős-Hajnal conjecture. For every finite graph *H*, the class of all *H*-free graphs has the Erdős-Hajnal property.
- ▶ Fact. If \mathcal{G} is a class of finite graphs closed under subgraphs and \mathcal{G} satisfies (*) (without requiring definability of pieces), then \mathcal{G} has the Erdős-Hajnal property.
- ► Thus, we obtain many new families of graphs satisfying the Erdős-Hajnal conjecture (e.g. quantifier-free definable graphs in arbitrary valued fields of characteristic 0).