Uniform Companions for Large Differential Field Expansions of Characteristic 0

N. J. Solanki Email: nikesh.solanki@kcl.ac.uk

Poster Abstract

This poster presents a method of extending a model companion (resp. completion) T_1 of a theory T_0 of fields of char. 0 to a model companion (resp. completion) of $T_0 \cup DF_N$ where DF_N is the theory of differential fields in $N \in \mathbb{N}$ commuting derivations.

Intronduction

Our method shall apply to any theory T_1 of a language \mathcal{L} extending $\mathcal{L}_{Ri} := \{+, -, \cdot, 0, 1\}$ for where one can define the following kind of topology with existential formulae

Definable Large Topology in T_1

In each model $\mathcal{M} \models T_1$, expanding a field K say, there exists an existentially definable basis (possibly with parameters) in \mathcal{L} for a topology τ on K such that

- 1. Every \mathcal{L} -atomic set in a substructure \mathcal{A} of \mathcal{M} is locally (w.r.t to τ) a projection of a constructible set defined over \mathcal{A} .
- 2. If an irreducible K-constructible set V has a regular K-rational point that also lies in some open set $U \in \tau$, then the set of K-rational points in U in \mathcal{M} is Zariski-dense in V.

Axioms of UC_N)

For any model $\mathcal{M} \models UC_N$, \mathcal{M} is a differential field and

For every topological prime system

 $f_1(\bar{x}) = \ldots = f_m(\bar{x}) = 0, H(f_1, \ldots, f_m)(\bar{x}) \neq 0, \bar{x} \in U$

if V_{f_1,\ldots,f_m} has a regular K-rational point \bar{a} such that $(a_1,\ldots,a_n) \in U$ then the system is solvable in \mathcal{M}

Theorem I

If for some $\mathcal{M}, \mathcal{N} \models T_1 \cup UC_N$ such that $\mathcal{M} \equiv_{\mathcal{L},\exists,A} \mathcal{N}$ where A is a common differential subring, then $\mathcal{M} \equiv_{\mathcal{L}(\bar{\partial}),\exists,A} \mathcal{N}$.

Consequence of Condition 2. of Large Topologies

With this we show that (Notation: $\bar{\partial} := (\partial_1, \dots, \partial_N)$ is a tuple of unary function symbols)

Main Theorem

For each set \mathfrak{B} of \exists - \mathcal{L} -formulae there exists a $\mathcal{L}(\bar{\partial})$ -theory UC_N s.t. for all T_0, T_1 as above, if \mathfrak{B} defines a basis for a large topology in T_1 then $T_1 \cup UC_N$ is the model companion (resp. completion) of $T_0 \cup DF_N$. Furthermore, if T_1 has quantifier elimination or NIP then so does $T_1 \cup UC_N$

Since the theory UC_N remains fixed for a fixed definition schema \mathfrak{B} for a basis of a topology we call UC_N the **uniform companion for fields with such a topology**. This result generalises that of M. Tressl (cf. [4]), N. Guzy (cf. [2]) and C. Rivière (cf. [3]).

The Theory UC_N

Intuition Behind Axioms

Reduce the solvability of systems of differential equations in τ -open neighbourhoods TO of systems of algebraic eqns in τ -open neighbourhoods.

The systems of diff. eqns we consider

Let \mathcal{M} be a model of $T_1 \cup DF_N$ and expand a differential field K. Condition .1 of large topologies means we only need to consider the following systems of diff. eqns

 $f_1(\bar{x}) = \ldots = f_m(\bar{x}) = 0 \land H(f_1, \ldots, f_m)(\bar{x}) \neq 0, \bar{x} \in U$

- $f_1, \ldots, f_m \in K\{\bar{x}\}$ form a characteristic set of some differential prime ideal of $K\{\bar{x}\}$ $(\bar{x} := (x_1, \ldots, x_n)).$
- $H(f_1, \ldots, f_m)$ is the multiple of the separants and initials of each f_1, \ldots, f_m .

2. of the definition of large topologies (left) gives the following important consequence-

Proposition 2

Let $\mathcal{M} \models T_1$ expanding some field K. If for each irreducible affine K-variety V (of arbitrary dimension) with a regular K-rational point in some $U \in \tau$, then there exists some elementary \mathcal{L} -extension $\mathcal{N} \succ \mathcal{M}$ containing a generic point $\bar{\alpha}$ of V such that α is in the extension of U in \mathcal{N} .

By applying this to the varieties $V_{f_1,...,f_m}$ in proposition 1, we can obtain the following-

Theorem II

For any $\mathcal{M} \models T_1 \cup DF_N$ then there exists some $\mathcal{L}(\bar{\partial})$ -extension \mathcal{N} that is also a differential field extension such that $\mathcal{M} \prec_{\mathcal{L}} \mathcal{N}$ and $\mathcal{N} \models UC_N$.

In fact, Theorems I and II together actually give the Main Theorem.

Applications: Valued and Ordered Fields

Proposition 3

Theories of the following fields have a large existentially definable topology

- 1. Henselian valued fields (in $\mathcal{L}_{Ri}(|)$ and $\mathcal{L}_{Ri}(|, \{P_n\}_{n \in \mathbb{N}})$).
- 2. PRC_e field (in the langauge $\mathcal{L}_{Ri}(<_1, \ldots, <_e)$)
- 3. Existentially closed fields with several valuations and orderings (in a lang. extending \mathcal{L}_{Ri} by the orders, valuations and, if needs be, predicates $\{P_n\}_{n \in \mathbb{N}}$).

In each of these cases, by picking \mathfrak{B} in Main Theorem to be the definition schema of the basis of the topology we obtain an uniform companion for the given kind of topological fields.

• $U \subseteq K^n$ a basic open set.

Call such a system a **topological prime system**.

A solution of such a system - a tuple is some differential field and \mathcal{L} -structure extension \mathcal{N} of \mathcal{M} that solves the system $f_1(\bar{x}) = \ldots = f_m(\bar{x}) = 0, H(f_1, \ldots, f_m) \neq 0$ and is in the "extension" of U.

For any differential polynomial $f \in K\{\bar{x}\}$ let f^* be the **non-differential** polynomial obtained by replacing the variables $\partial_1^{i_1} \dots \partial_N^{i_N} x_j$ in f with a standard variable.

Proposition 1

If $\{f_1, \ldots, f_m\} \subseteq K\{\bar{x}\}$ is a characteristic set for some differential prime ideal of $K\{\bar{x}\}$, then the system of **standard** polynomial equations

$$f_1^* = 0, \ldots = f_m^* = 0, y \cdot H(f_1, \ldots, f_m)^* - 1 = 0$$
 (1)

defines an irreducible constructible set $V_{f_1,...,f_m}$ in the algebraic closure of K.

UC_N for Differential Field Expansions

Future Work and Questions

1. Preservation of other model theoretic properties UC_N (e.g. stability, rosiness).

- 2. Can the methods be adapted for theories of expansions of fields by functions (e.g. theories of difference fields or exponential fields)?
- 3. How do models of UC_N behave under taking algebraic extensions?
- 4. Darnière showed that there exists model complete theories of fields extended by a subring and a radical relation on the ring (cf. [1]). For models of such a theory, does the radical relation induce a large topology?

References

- [1] L. Darnière, Pseudo algebraically closed rings, manuscripta math., 105, 13-46, Springer-Verlag, (2001)
- [2] N. Guzy, 'Valued fields with K commuting derivations', Comm. in Alg., 34:12, 4269 4289, (2006)

[3] C. Rivière, The model theory of m-ordered differential fields, Math. Logic Quart., 52, 4, WILEY-VCH Verlag, issn = 1521-3870, 331-339, (2006),
[4] M. Tressl, 'The unifrom companion for large differential fields of characteristic 0', Trans of the American Math Soc, 357, 10, 3933-3951, (2005)

N. J. Solanki