

Linear groups definable in p-minimal structures

BENJAMIN DRUART Université Joseph Fourier

THEOREM

Let \mathcal{L} be a language containing the language of fields and the exponential function, such that \mathbb{Q}_p is a p-minimal structure in this language. Let \mathcal{Q}_p be an \mathcal{L} -elementary extension of \mathbb{Q}_p . If G is a commutative linear p-connected group \mathcal{L} -definable in \mathcal{Q}_p then G is \mathcal{L} -definably isomorphic to a semi-algebraic linear group.

p-MINIMALITY AND DIMENSION

The *p*-minimality was introduced in [1], by Haskell and Macpherson in 1997, on the model of *o*-minimality for *p*-adics.

Definition 1. Let \mathcal{L} be a language extending \mathcal{L}_d and let \mathcal{K} be a \mathcal{L} -structure (\mathcal{K} is a p-valued field whose value group is a \mathbb{Z} -group). We say that \mathcal{K} is p-minimal if, for every \mathcal{K}' elementarily equivalent to \mathcal{K} , every definable subset of \mathcal{K}' is quantifier-free definable in \mathcal{L}_d .

Example. Let \mathcal{L}_{an} be the language of fields extended with all analytic restricted functions, \mathbb{Q}_p in \mathcal{L}_{an} is a p-minimal structure.

Definition 2. Let X be a definable subset of K^n , $\dim X$ is the greatest integer r for which there is a projection $\pi: K^n \longrightarrow K^r$ such that $\pi(X)$ has non-empty interior in K^r .

Fact 3. Let X and Y be definable subsets of K^m :

Additivity If f is a definable function from X to Y, whose fibers have constant dimension $m \in \mathbb{N}$, then $\dim X = \dim(Im\ f) + m$;

Finite sets X *is finite iff* dim X = 0 ;

Monotonicity $\dim(X \cup Y) = \max\{\dim X, \dim Y\}.$

p-connexity

Definition 7. *Let G be group.*

- We say that G is p-connected if it does not contain any subgroup of index coprime to p.
- We say that G is p'-divisible if for every n coprime to p and for all $x \in G$ there is $y \in G$ such that $x = y^n$.

Proposition 8. If G is a p'-divisible group then G is p-connected.

Example. \mathbb{Q}_p^+ and \mathbb{Z}_p^+ are *p*-connected.

Proposition/Definition 9. *Let* G *be a group, and* G^{\square} *a subgroups. TFAE:*

- 1. G^{\square} is the biggest p-connected normal subgroup of G;
- 2. G^{\square} is the intersection of all normal subgroups of G of index coprime to p.

We call G^{\square} the p-connected componant.

Example. If $G = \mathbb{Q}_p^{\times}$, then $G^{\square} = 1 + p\mathbb{Z}_p$.

p-ADIC EXPONENTIAL AND LOGARITHM

Proposition/Definition 4. Let K a finite extension of \mathbb{Q}_p , we define :

- the exponential by $\exp(x) = \sum_{n\geq 0} \frac{x^n}{n!}$, its convergence domain is $E_p = \{x \in K \mid v_p(x) > \frac{1}{n-1}\}$;
- the logarithm by $\log(1+x) = \sum_{n\geq 1} \frac{(-1)^{n-1}}{n} x^n$, its convergence domain contains $1+E_p$.

Fact 5. The fonction \exp is an isomorphism from E_p^+ to $(1 + E_p)^{\times}$, and \log is its inverse.

Application 6. *If* K *is a finite extension of* \mathbb{Q}_p *then* :

$$K^{\times} = \mathbb{Z} \times k^{\times} \times (1 + \pi \mathcal{O})^{\times}$$

 $(1+\pi\mathcal{O})^{\times}$ contains a subgroup of finite index isomorphic to \mathbb{Z}_p^{+m} .

JORDAN DECOMPOSITION AND TORI

Let G be a algebraic subgroup of $GL_n(K)$, and $g \in G$, we say that:

- g is *semi-simple* if g is diagonalizable over some finite extension of K, we denote $G_s = \{g \in G \mid g \text{ is semi-simple } \}$;
- g is *unipotent*, if there exist m such that $(g I)^m = 0$, we denote $G_u = \{g \in G \mid g \text{ is unipotent } \}.$

Fact 10 ([2]). Let G a commutative algebraic linear group, then :

$$G = G_s \times G_u$$

Fact 11. We have $G_s = G_a \cdot G_d$ and $G_a \cap G_d$ is finite, where :

- G_d is a split torus, (elements of G_d are diaonalizable over K);
- G_a is an anisotropic torus, (elements of G_a are not digonalizable over K).

SKETCH OF THE PROOF

Jordan decomposition for p-connected linear definable groups in Q_p :

Lemma 12. For $p \neq 2$, let H be an algebraic linear commutative group defined over Q_p . We denote G the p-conected component of $H(Q_p)$, then G is semi-algebraically isomorphic to :

$$T \times (1 + p\mathcal{Z}_p)^{\times m} \times \mathcal{Q}_p^{+l}$$

where T is an anisotropic torus over Q_p .

Definable subgroups of \mathcal{Z}_p^+ and \mathcal{Q}_p^+ :

Lemma 13. The \mathcal{L} -definable subgroups of \mathcal{Z}_p^{+m} are semi-algebraic and semi-algebraically isomorphic to $\mathcal{Z}_p^{m'}$.

Lemma 14. The \mathcal{L} -definable subgroups of \mathcal{Q}_p^{+l} are semi-algebraic and semi-algebraically isomorphic to $\mathcal{Q}_p^{l_1} \times \mathcal{Z}_p^{l_2}$.

What does anisotropic torus over Q_p look like?

Lemma 15. If T is an anisotropic torus over Q_p of dimension n, then:

$$T = \widetilde{T} \times T^{\square}$$

where $\widetilde{T} = res(T)$ and T^{\square} contains a subgroup of finite index definably isomorphic (by exponential) to \mathbb{Z}_p^n .

WORK IN PROGRESS

The next step is to study nilpotent groups. We expect a similar result to be true for these groups...

What about language without exponential? We should describe semialgebraic subgroups of anisotropic torus ...

REFERENCES

- [1] Dierdre Haskell and Dugald Macpherson. A versin of *o*-minimality for the *p*-adics. *Journal of Symbolic Logic*, 62(4):1075–1092, 1997.
- [2] Armand Borel. *Linear Algebraic Groups*. Graduate Texts in Mathematics. Springer, second enlarged edition edition, 1991.