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Introduction and Notations

e G a graph on n vertices (loops allowed). Its adjacency matrix
A = (aj ;) is defined by
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Introduction and Notations

e G a graph on n vertices (loops allowed). Its adjacency matrix
A = (aj ;) is defined by

ajj=1ifi —j and 0 otherwise.

e G(n,p) = Erdos-Renyi graph: each edge is formed with
probability p independently of others.

Adjacency matrix: entries are iid Bernoulli B(p).

e d-regular directed graph on n vertices < each vertex has
exactly d in-neighbors and d out-neighbors.

Adjacency matrix: “d"” double stochastic matrix.

D, 4 = set of all directed d-regular graphs on n vertices
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e In this talk: G uniform d-regular directed graph:

1
’Dn,d‘.

VH € Dpg, P{G = H} =
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e In this talk: G uniform d-regular directed graph:

1

VH € Dpg, P{G = H} = Do
n7

e McKay'81 used switching to estimate cardinalities.

it ! it N
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Conjecture
B = (&)i iid Bernoulli £1. P{B is singular } = (3 + o(1))".
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Komlés'77:0(n~ 2 ); Kahn-Komlés-Szemerédi'95: 0.9997;

Tao-Vu'06:(3/4+ o(1))"; Bourgain-Vu-Wood'09: (% +0(1))".

4/ 24



4/ 24

Conjecture
B = (&)i iid Bernoulli £1. P{B is singular } = (3 + o(1))".

Komlés'??:O(n*%); Kahn-Komlés-Szemerédi'95: 0.999";
Tao-Vu'06:(3/4+ o(1))"; Bourgain-Vu-Wood'09: (% +0(1))".

Conjecture (Vu'08)
M: nxn adjacency of uniform d-regular graph. For any
3<d<n)/2 IP{M is 5ingu/ar} — 0.

n—oo

Also mentioned in Vu's 2014 ICM talk, Frieze's 2014 ICM talk.



M: n x n adjacency of uniform d-regular directed graph.

Theorem (Cook'14)
There exists an absolute constant ¢ < 1/20 such that for
In>n< d< n/2,

]P’{/\/I is singular } < %
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M: n x n adjacency of uniform d-regular directed graph.

Theorem (Cook'14)

There exists an absolute constant ¢ < 1/20 such that for
In>n< d< n/2,

IP’{/\/I is singu/ar} < %

Theorem (LLTTY'15)

There exist absolute constants ¢, C such that for
C<d< cn/|n2n,

IP’{/\/I is sin u/ar} < C@
gUar = d



Decrypting the proof

Key ingredient: Littlewood-Offord anti-concentration.

Theorem (Erdos'43)
&€ = (&)i<n iid Bernoulli £1. Then for any a € R",

P{(¢,a) = 0} = O(1/+/|suppal)

Kleitman, Halasz, Stanley, Sarkozy-Szemeredi, Frankl-Furedi,
Tao-Vu, Rudelson-Vershynin, Friedland-Sodin, Nguyen-Vu,
Friedland-Giladi-Guédon, Costello, Meka-Nguyen-Vu.
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Komlés's approach: Condition on rows R», ..., R, and use
randomness of Rj.
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Komlés's approach: Condition on rows R», ..., R, and use
randomness of Rj.

v normal vector to span{Rg, cees R,,}.
P{Rl € span{Ry, ..., Rn}} < P{(Rl, v) = O}

If v is not sparse, anti-concentration finishes the proof.
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Komlés's approach: Condition on rows R», ..., R, and use
randomness of Rj.

v normal vector to span{Rg, cees R,,}.
P{Rl € span{Ry, ..., Rn}} < P{(Rl, v) = 0}

If v is not sparse, anti-concentration finishes the proof.

In our setting (uniform model): Fixing Ry, ..., R, completely
determines R;.

Cook's idea: Fix Rs3,..., R,. The support of Ry U Ry is completely
determined. But there is randomness left in the choice of Ry, R».



For (i,j) € [n]*,  Vij := span{Ru} ki,

tkM=n—-1=3(i,j) dimV;j=n—-2 and Ri+R; &V,
= 3(i,j) KerM = {Vij, Ri+ Ri}* = {vi;}

= E](I',j) Vij € KerM (<:> <V,',J'7 R,'> = 0)
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For (i,j) € [n]*,  Vij := span{Ru} ki,

tkM=n—-1=3(i,j) dimV;j=n—-2 and Ri+R; &V,
= 3(i,j) KerM = {Vij, Ri+ Ri}* = {vi;}

= E](I',j) Vij € KerM (<:> <V,',J'7 R,'> = 0)

v j is completely determined by V; ;.
Conditioned on V; ;, it is stable under switching in R;, R;.

Goal: Conditioned on V; j, with small probability KerM is stable
under switching in R;, R;.



Problems

Problem 1: Avoid the union bound. Otherwise we would get
P{tkM =n—1} < n’P{v» € KerM}

Conditioned on V4, the randomness remaining lies in less than 2d
variables. No hope.
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Problems

Problem 1: Avoid the union bound. Otherwise we would get
P{tkM =n—1} < n’P{v» € KerM}

Conditioned on V4, the randomness remaining lies in less than 2d

variables. No hope.

Solution: Show that many (i, ) satisfy the desired setting.

Problem 2: We need that Ry, R» are almost disjoint. Otherwise
almost no randomness is left when conditioned on V4> < no place
for switching between R, R».

Problem 3: Need v; > not mainly one valued on supp Ry Usupp R».

Otherwise (v1 2, R1) becomes invariant under switching.



Suppose Problems 1, 2, 3 settled and condition on Vj 5.

e Prob 1= only care for P{(v1 2, Ri) = 0}.
e Prob 2= Ry, R are (almost) disjoint.

e Prob 3= vy is two valued on / := supp Ry U supp R».
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e Prob 2= Ry, R are (almost) disjoint.

e Prob 3= vy is two valued on / := supp Ry U supp R».

Write I = hUb, |l|=2d, |h|=|k =d.

Almost all coordinates of vy in /i # coordinates of v 5 in k.
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Suppose Problems 1, 2, 3 settled and condition on Vj 5.

e Prob 1= only care for P{<V1’2, Ry) = O}.

e Prob 2= Ry, R are (almost) disjoint.

e Prob 3= vy is two valued on / := supp Ry U supp R».
Write | = L U b, |”:2d, ‘/1‘:‘/2‘:d.
Almost all coordinates of vy in /i # coordinates of v 5 in k.
Goal: P{(v1,2, R1) =0} is small.

— Reconstruct Ry and check (vq2, Ry).



Reconstruct Ry: flip d coins ¢; independently.

If &, = 1: Put 1 on the ith component of Ry in /.
If &, = 0: Put 1 on the ith component of Ry in b.
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If &, = 1: Put 1 on the ith component of Ry in /.
If &, = 0: Put 1 on the ith component of Ry in b.

We formed (almost) d independent r.v

ith coordinate of v; 2 in /; with prob 1/2

ith coordinate of v; 2 in /» with prob 1/2



Reconstruct Ry: flip d coins ¢; independently.

If &, = 1: Put 1 on the ith component of Ry in /.
If &, = 0: Put 1 on the ith component of Ry in b.

We formed (almost) d independent r.v

ith coordinate of v; 2 in /; with prob 1/2

ith coordinate of v; 2 in /» with prob 1/2

Erdos anti-concentration=

P{(vi2, Ry) =0} =P{) & =0} = O(1/V~ d) = O(In* d/Vd).

The proof is done!
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Small set expansion

e For any J C [n], define Ng"*(J) ={v € [n],J = v} .
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Small set expansion

e For any J C [n], define Ng"*(J) ={v € [n],J = v} .
e max (d,|J]) < INZ(J)] < min (n,d|J]).
e On the scale |J| < n/d: min (n,d|J]) = d|J].

Question: Is IN2“!(J)| concentrated around any of the
extreme bounds?

In particular, if J = {i, }, we needed |N2"*(J)| to be big.
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Theorem (LLTTY'15)

Let 8<d <n/12,e€(0,1) and k < cen/d. Then with
probability 1 — exp (—ce2dk In (esn/dk)) we have

VJ C [n] of size [J] = k,  ||[Ng"(J)| — d|J|| < ed|J].
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Theorem (LLTTY'15)

Let 8<d <n/12,e€(0,1) and k < cen/d. Then with
probability 1 — exp (—ce2dk In (een/dk)) we have

VJ C [n] of size [J] = k,  ||[Ng"(J)| — d|J|| < ed|J].

Remark
e Ifi,j € [n] are two vertices. With high probability,

INE"{i j} = 2(1 —¢€)d.

= at most 2ed common out-neighbors to i and j.
= Rj, R; almost disjoint (Prob 2 settled).

e Cook '14: Concentration inequalities for codegrees when
d > logn.
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Connectivity of large sets

Theorem (LLTTY'15)

There exist absolute positive constants c, C such that the following
holds. Let C < d < cn and let natural numbers ¢ and r satisfy

Cnin(en/r)
—g

Pﬂjﬂ%ﬁﬂ}ﬁem<—a?v7

where the union is taken over all |, J C [n] with |I| > ¢ and |J| > r.

>r>0>

NS

Then



e Previous theorem < No large zero minors in adjacency matrix.
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Previous theorem < No large zero minors in adjacency matrix.

For Erdos-Renyi model (with parameter d/n)
d\r

B{I A Jp=(1-)"

Independence number:

a(G) = max{|l|,] C [n] and | /4 I}.

Theorem 5=

Ind In? d
IP’{a(G)>Cn2 }gexp<—cn2 )
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Previous theorem < No large zero minors in adjacency matrix.
For Erdos-Renyi model (with parameter d/n)
d.r

B{I A Jp=(1-)"

Independence number:

a(G) = max{|l|,] C [n] and | 4 I}.

Theorem 5=

Ind In? d
]P’{a(G)>Cn2 }gexp(—cn; )

Undirected setting:Bollobas'81,Mckay'87,Frieze-
Luczak'92,Krivelevich-Sudakov-Vu-Wormald'01,Cooper-
Frieze-Reed-Riordan’'02.




No almost constant null vectors

For 0 < p < 1/2 consider the following set of vectors

AC(p) = {x €R"\ {0} : B\ R [{i : x = A} > (1—p)n}.
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No almost constant null vectors

For 0 < p < 1/2 consider the following set of vectors

AC(p) = {x €R"\ {0} : B\ R [{i : x = A} > (1—p)n}.

Theorem (LLTTY'15)

There are absolute positive constants C, ¢ such that for
C<d<cnandp<c/Ind one has

P{KerM N AC(p) =0} >1— <Cnd>Cd.



No AC(p) null vectors + No large zero minor=- settles Prob 1, 3.
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No AC(p) null vectors + No large zero minor=- settles Prob 1, 3.
rk M = n—1, x right null vector, y left null vector.

xZ€AC(p) =3, pn < |J| < (1 —=p)n, Vied, jeJ x #Xx.
(g~ d/In?d). No p/2q x p/2 zero minor =

{i : |[suppRiNJ|>q}| > (1—p/2q)n

and

[{i : |supp RN J°[ > g} > (1 — p/2q)n.
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No AC(p) null vectors + No large zero minor=- settles Prob 1, 3.
rk M = n—1, x right null vector, y left null vector.

xZ€AC(p) =3, pn < |J| < (1 —=p)n, Vied, jeJ x #Xx.
(g~ d/In?d). No p/2q x p/2 zero minor =

{i : |[suppRiNJ|>q}| > (1—p/2q)n

and

[{i : |supp RN J°[ > g} > (1 — p/2q)n.

Conclusion: x is two valued on the support of almost all rows.

17/ 24



y & AC(p) = 3 at least pn indices s.t y; # 0.

>.;¥iRi = 0= 3 at least pn indices s.t tk M; = n— 1.

18/ 24



y & AC(p) = 3 at least pn indices s.t y; # 0.
>.;¥iRi = 0= 3 at least pn indices s.t tk M; = n— 1.

3 pn/2 rows s.t tk M; = n — 1 and x not one valued on supp R;.

18/ 24
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>.;¥iRi = 0= 3 at least pn indices s.t tk M; = n— 1.

3 pn/2 rows s.t tk M; = n — 1 and x not one valued on supp R;.
Fix such i. 3 pn indices j s.t y; # y;.

= Ri+ R ¢ Vi.
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y & AC(p) = 3 at least pn indices s.t y; # 0.
>.;¥iRi = 0= 3 at least pn indices s.t tk M; = n— 1.
3 pn/2 rows s.t tk M; = n — 1 and x not one valued on supp R;.
Fix such i. 3 pn indices j s.t y; # y;.
= Ri+ R ¢ Vi.
Conclusion: 3p?n?/2 pais (i,j) such that
dimV;j=n-2, R+R ¢V

and
vjj not one valued on supp R; U supp R;.

Prob 1, 3 settled!
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Ruling out AC null vectors

x € AC(p) st |x1| > ... > |xal.
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Ruling out AC null vectors
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e Easy to rull out very sparse vectors: If myg < n/d and
Xmo = 0.

Expansion = 3 many rows R; (~ mod/4) with one 1 on [mp].

= |(MX),| > 0.
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Ruling out AC null vectors

x€AC(p) st |xi|>...> x|

e Easy to rull out very sparse vectors: If myg < n/d and
Xmo = 0.

Expansion = 3 many rows R; (~ mod/4) with one 1 on [mp].
= |(MX),| > 0.
e Now xm, # 0, rescale so |xm,,| = 1 and suppose A > 0.
Hh={i|lxi=A}, J={i>mgp||xi— A >1/2d}

We have |Jy| ~ (1 —p)n, |J] ~7



Ji={i>mo| |xi— Al >1/2d}
e If |J| < n/d, then it is easy.
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Ji={i>mo| |xi— Al >1/2d}
e If |J| < n/d, then it is easy.
e )\ > 1/2d = few negative coord in x, easy to avoid them.
e X\ <1/2d = we have a big jump at my := mg + |J|.
[Xmo| = 1 while |xm,,| < 1/d.
Expansion=- 3 row R; with one 1 on [mg] and 0 on J.

= [(Mx)i| = |ximo| = (d = 1)|xem, | > 0.
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Ji={i>mo| |xi— Al >1/2d}
e If |J| < n/d, then it is easy.
e )\ > 1/2d = few negative coord in x, easy to avoid them.
e X\ <1/2d = we have a big jump at my := mg + |J|.
[Xmo| = 1 while |xm,,| < 1/d.
Expansion=- 3 row R; with one 1 on [mg] and 0 on J.
= |(MX)I| > ‘Xm0| - (d - 1)|Xm1| > 0.
o |J| ~ n/d, we have a partition I LI JU Jy = [n] s.t

Xmo =1, YeJy xp=X and VjeJ Xj—)\Zl/Qd.

(1)
Show that P{3x satisfying (1) s.t. ||[Mx]|[c = 0} ~ 0.

Net argument: outside [mg], special net on the cube.
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Fix y satisfying (1), So = rows which are 0 on [my].
Goal: P{||Ps,My|loc < 1/4d | I fixed } < exp(—n).
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Fix y satisfying (1), So = rows which are 0 on [my].
Goal: P{||Ps,My|loc < 1/4d | I fixed } < exp(—n).
|Ps,My||c < 1/4d < Vi€ S, [(My);| <1/4d.

How does it translate in terms of connectivity of the graph?

Fix I and i € Sp,
{M, [(My)i| <1/4d} C{M,i— J}

{M, |(My)i| <1/4d} C{M, i+ J}

Conclusion: Matrices satisfying || Ps,My||oc < 1/4d share the same
configuration of edges from Sp to J.



Anti-concentration

Define
5,-J =1ifi—J and 0 otherwise.

Set 07 = (6{,...,67) € {0,1}".
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Anti-concentration

Define
5,-J =1ifi—J and 0 otherwise.

Set 07 = (6{,...,67) € {0,1}".

Theorem 3 (LLTTY'15)
Let 8 < d < cn and l,J C [n] disjoint such that

dlJ]
I <
1<%

n

d |J| <c—.
and |J]| < c
Let F C [n] x [n]. For any v € {0,1}",

P{6’ = v | EZ(])= F} <exp < cd|J| In d‘”JO .



What's next?

e Show the conjecture for fixed d.

e Limiting spectral distribution.

Conjecture (Chafai-Bordenave): The limiting spectral
empirical measure is given by

1 d?(d—-1)
7 (d% — [z2)2 Lz 1<vaydxdy

This is the non-symmetric version of Kesten-Mckay measure.

e The non-directed version of our main theorem.
— In progress with LLTT.
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Thank you

Happy New Year!



