Singularity of the adjacency matrix of a random digraph

Pierre YOUSSEF joint work with A. Litvak, A. Lytova, K. Tikhomirov and N. Tomczak-Jaegermann

LPMA, Université Paris-Diderot

January 4, 2016

Introduction and Notations

• G a graph on *n* vertices (loops allowed). Its adjacency matrix $A = (a_{i,j})$ is defined by

 $a_{i,j} = 1$ if $i \rightarrow j$ and 0 otherwise.

Introduction and Notations

• G a graph on *n* vertices (loops allowed). Its adjacency matrix $A = (a_{i,j})$ is defined by

 $a_{i,j} = 1$ if $i \rightarrow j$ and 0 otherwise.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

• $\mathcal{G}(n, p) = \text{Erdös-Renyi graph: each edge is formed with probability } p$ independently of others.

Adjacency matrix: entries are iid Bernoulli B(p).

Introduction and Notations

• G a graph on *n* vertices (loops allowed). Its adjacency matrix $A = (a_{i,j})$ is defined by

 $a_{i,j} = 1$ if $i \rightarrow j$ and 0 otherwise.

• $\mathcal{G}(n, p) = \text{Erdös-Renyi graph: each edge is formed with probability } p$ independently of others.

Adjacency matrix: entries are iid Bernoulli B(p).

d-regular directed graph on *n* vertices ⇔ each vertex has exactly *d* in-neighbors and *d* out-neighbors.

Adjacency matrix: "d" double stochastic matrix.

 $\mathcal{D}_{n,d}$ = set of all directed *d*-regular graphs on *n* vertices

• In this talk: G uniform d-regular directed graph:

$$\forall H \in \mathcal{D}_{n,d}, \ \mathbb{P}\{G = H\} = \frac{1}{|\mathcal{D}_{n,d}|}.$$

• In this talk: G uniform d-regular directed graph:

$$\forall H \in \mathcal{D}_{n,d}, \ \mathbb{P}\{G = H\} = \frac{1}{|\mathcal{D}_{n,d}|}.$$

• McKay'81 used switching to estimate cardinalities.

Conjecture $B = (\xi_{i,j})_{i,j}$ iid Bernoulli ± 1 . $\mathbb{P}\{B \text{ is singular }\} = (\frac{1}{2} + o(1))^n$.

Conjecture $B = (\xi_{i,j})_{i,j}$ iid Bernoulli ± 1 . $\mathbb{P}\{B \text{ is singular }\} = (\frac{1}{2} + o(1))^n$.

Komlós'77: $O(n^{-\frac{1}{2}})$; Kahn-Komlós-Szemerédi'95: 0.999^{*n*}; Tao-Vu'06: $(3/4 + o(1))^n$; Bourgain-Vu-Wood'09: $(\frac{1}{\sqrt{2}} + o(1))^n$.

<ロ> (四) (四) (三) (三) (三) (三)

Conjecture $B = (\xi_{i,j})_{i,j}$ iid Bernoulli ± 1 . $\mathbb{P}\{B \text{ is singular }\} = (\frac{1}{2} + o(1))^n$.

Komlós'77: $O(n^{-\frac{1}{2}})$; Kahn-Komlós-Szemerédi'95: 0.999^{*n*}; Tao-Vu'06: $(3/4 + o(1))^n$; Bourgain-Vu-Wood'09: $(\frac{1}{\sqrt{2}} + o(1))^n$.

Conjecture (**Vu**'08) \widetilde{M} : $n \times n$ adjacency of uniform *d*-regular graph. For any $3 \le d \le n/2$, $\mathbb{P}\left\{\widetilde{M} \text{ is singular}\right\} \xrightarrow[n \to \infty]{} 0.$

Also mentioned in Vu's 2014 ICM talk, Frieze's 2014 ICM talk.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

M: $n \times n$ adjacency of uniform *d*-regular directed graph. Theorem (**Cook**'14)

There exists an absolute constant $c \le 1/20$ such that for $\ln^2 n \ll d \le n/2$,

$$\mathbb{P}\left\{M \text{ is singular } \right\} \leq \frac{1}{d^c}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

M: $n \times n$ adjacency of uniform *d*-regular directed graph. Theorem (**Cook**'14)

There exists an absolute constant $c \le 1/20$ such that for $\ln^2 n \ll d \le n/2$,

$$\mathbb{P}\left\{M \text{ is singular } \right\} \leq \frac{1}{d^c}.$$

Theorem (**LLTTY**'15)

There exist absolute constants c, C such that for $C \le d \le cn/\ln^2 n$,

$$\mathbb{P}ig\{M \ is \ singular \ ig\} \leq C rac{\ln^3 d}{\sqrt{d}}.$$

Decrypting the proof

Key ingredient: Littlewood-Offord anti-concentration. Theorem (Erdös'43) $\xi = (\xi)_{i \le n}$ iid Bernoulli ± 1 . Then for any $a \in \mathbb{R}^n$, $\mathbb{P}\{\langle \xi, a \rangle = 0\} = O(1/\sqrt{|suppa|})$

Kleitman, Halasz, Stanley, Sarkozy-Szemeredi, Frankl-Furedi, Tao-Vu, Rudelson-Vershynin, Friedland-Sodin, Nguyen-Vu, Friedland-Giladi-Guédon, Costello, Meka-Nguyen-Vu.

Komlós's approach: Condition on rows R_2, \ldots, R_n and use randomness of R_1 .

Komlós's approach: Condition on rows R_2, \ldots, R_n and use randomness of R_1 .

v normal vector to $\operatorname{span}\{R_2,\ldots,R_n\}$.

 $\mathbb{P}\big\{R_1 \in \operatorname{span}\{R_2, \ldots, R_n\}\big\} \leq \mathbb{P}\big\{\langle R_1, v \rangle = 0\big\}$

If v is not sparse, anti-concentration finishes the proof.

Komlós's approach: Condition on rows R_2, \ldots, R_n and use randomness of R_1 .

v normal vector to $\operatorname{span}\{R_2,\ldots,R_n\}$.

 $\mathbb{P}\big\{R_1 \in \operatorname{span}\{R_2, \ldots, R_n\}\big\} \le \mathbb{P}\big\{\langle R_1, \nu \rangle = 0\big\}$

If v is not sparse, anti-concentration finishes the proof.

In our setting (uniform model): Fixing R_2, \ldots, R_n completely determines R_1 .

Cook's idea: Fix R_3, \ldots, R_n . The support of $R_1 \cup R_2$ is completely determined. But there is randomness left in the choice of R_1 , R_2 .

For $(i,j) \in [n]^2$, $V_{i,j} := \operatorname{span}\{R_k\}_{k \neq i,j}$.

 $\operatorname{rk} M = n - 1 \Rightarrow \exists (i,j) \quad \dim V_{i,j} = n - 2 \text{ and } R_i + R_j \notin V_{i,j}$

$$\Rightarrow \exists (i,j) \quad \mathrm{Ker} M = \{V_{i,j}, R_i + R_j\}^{\perp} = \{v_{i,j}\}$$

$$\Rightarrow \exists (i,j) \quad v_{i,j} \in \mathrm{Ker} M \quad (\Leftrightarrow \langle v_{i,j}, R_i \rangle = 0).$$

For $(i,j) \in [n]^2$, $V_{i,j} := \operatorname{span}\{R_k\}_{k \neq i,j}$.

 $\operatorname{rk} M = n - 1 \Rightarrow \exists (i,j) \quad \dim V_{i,j} = n - 2 \text{ and } R_i + R_j \notin V_{i,j}$

$$\Rightarrow \exists (i,j) \quad \operatorname{Ker} M = \{V_{i,j}, R_i + R_j\}^{\perp} = \{v_{i,j}\}$$

$$\Rightarrow \exists (i,j) \quad v_{i,j} \in \mathrm{Ker} M \quad (\Leftrightarrow \langle v_{i,j}, R_i \rangle = 0).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $v_{i,j}$ is completely determined by $V_{i,j}$.

Conditioned on $V_{i,j}$, it is stable under switching in R_i, R_j .

Goal: Conditioned on $V_{i,j}$, with small probability Ker*M* is stable under switching in R_i, R_j .

Problem 1: Avoid the union bound. Otherwise we would get

$$\mathbb{P}\{\operatorname{rk} M = n-1\} \le n^2 \mathbb{P}\{v_{1,2} \in \operatorname{Ker} M\}$$

Conditioned on $V_{1,2}$, the randomness remaining lies in less than 2d variables. No hope.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problem 1: Avoid the union bound. Otherwise we would get

$$\mathbb{P}\{\operatorname{rk} M = n-1\} \le n^2 \mathbb{P}\{v_{1,2} \in \operatorname{Ker} M\}$$

Conditioned on $V_{1,2}$, the randomness remaining lies in less than 2d variables. No hope.

Solution: Show that many (i, j) satisfy the desired setting.

Problem 1: Avoid the union bound. Otherwise we would get

 $\mathbb{P}\big\{\operatorname{rk} M = n-1\big\} \le n^2 \mathbb{P}\big\{v_{1,2} \in \operatorname{Ker} M\big\}$

Conditioned on $V_{1,2}$, the randomness remaining lies in less than 2d variables. No hope.

Solution: Show that many (i, j) satisfy the desired setting.

Problem 2: We need that R_1, R_2 are almost disjoint. Otherwise almost no randomness is left when conditioned on $V_{1,2} \Leftrightarrow$ no place for switching between R_1, R_2 .

Problem 1: Avoid the union bound. Otherwise we would get

$$\mathbb{P}\{\operatorname{rk} M = n-1\} \le n^2 \mathbb{P}\{v_{1,2} \in \operatorname{Ker} M\}$$

Conditioned on $V_{1,2}$, the randomness remaining lies in less than 2d variables. No hope.

Solution: Show that many (i, j) satisfy the desired setting.

Problem 2: We need that R_1, R_2 are almost disjoint. Otherwise almost no randomness is left when conditioned on $V_{1,2} \Leftrightarrow$ no place for switching between R_1, R_2 .

Problem 3: Need $v_{1,2}$ not mainly one valued on supp $R_1 \cup$ supp R_2 . Otherwise $\langle v_{1,2}, R_1 \rangle$ becomes invariant under switching. Suppose Problems 1, 2, 3 settled and condition on $V_{1,2}$.

- Prob 1 \Rightarrow only care for $\mathbb{P}\left\{\langle v_{1,2}, R_1 \rangle = 0\right\}$.
- Prob $2 \Rightarrow R_1$, R_2 are (almost) disjoint.
- Prob $3 \Rightarrow v_{1,2}$ is two valued on $I := \operatorname{supp} R_1 \cup \operatorname{supp} R_2$.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Suppose Problems 1, 2, 3 settled and condition on $V_{1,2}$.

- Prob 1 \Rightarrow only care for $\mathbb{P}\{\langle v_{1,2}, R_1 \rangle = 0\}$.
- Prob $2 \Rightarrow R_1$, R_2 are (almost) disjoint.
- Prob $3 \Rightarrow v_{1,2}$ is two valued on $I := \operatorname{supp} R_1 \cup \operatorname{supp} R_2$.

Write $I = I_1 \sqcup I_2$, |I| = 2d, $|I_1| = |I_2| = d$.

Almost all coordinates of $v_{1,2}$ in $l_1 \neq$ coordinates of $v_{1,2}$ in l_2 .

Suppose Problems 1, 2, 3 settled and condition on $V_{1,2}$.

- Prob 1 \Rightarrow only care for $\mathbb{P}\{\langle v_{1,2}, R_1 \rangle = 0\}$.
- Prob $2 \Rightarrow R_1$, R_2 are (almost) disjoint.
- Prob $3 \Rightarrow v_{1,2}$ is two valued on $I := \operatorname{supp} R_1 \cup \operatorname{supp} R_2$.

Write $I = I_1 \sqcup I_2$, |I| = 2d, $|I_1| = |I_2| = d$.

Almost all coordinates of $v_{1,2}$ in $l_1 \neq$ coordinates of $v_{1,2}$ in l_2 .

(日) (同) (三) (三) (三) (○) (○)

Goal: $\mathbb{P}\{\langle v_{1,2}, R_1 \rangle = 0\}$ is small.

 \longrightarrow Reconstruct R_1 and check $\langle v_{1,2}, R_1 \rangle$.

Reconstruct R_1 : flip *d* coins ε_i independently.

If $\varepsilon_i = 1$: Put 1 on the *ith* component of R_1 in I_1 .

If $\varepsilon_i = 0$: Put 1 on the *ith* component of R_1 in I_2 .

Reconstruct R_1 : flip *d* coins ε_i independently.

If $\varepsilon_i = 1$: Put 1 on the *ith* component of R_1 in I_1 .

If $\varepsilon_i = 0$: Put 1 on the *ith* component of R_1 in I_2 .

We formed (almost) *d* independent r.v

 $\xi_i = \begin{cases} \text{ ith coordinate of } v_{1,2} \text{ in } I_1 \text{ with prob } 1/2 \\ \\ \text{ ith coordinate of } v_{1,2} \text{ in } I_2 \text{ with prob } 1/2 \end{cases}$

Reconstruct R_1 : flip *d* coins ε_i independently.

If $\varepsilon_i = 1$: Put 1 on the *ith* component of R_1 in I_1 .

If $\varepsilon_i = 0$: Put 1 on the *ith* component of R_1 in I_2 .

We formed (almost) *d* independent r.v

$$\xi_i = \begin{cases} \text{ith coordinate of } v_{1,2} \text{ in } l_1 \text{ with prob } 1/2 \\ \\ \text{ith coordinate of } v_{1,2} \text{ in } l_2 \text{ with prob } 1/2 \end{cases}$$

Erdös anti-concentration \Rightarrow

$$\mathbb{P}\left\{\langle v_{1,2}, R_1 \rangle = 0\right\} = \mathbb{P}\left\{\sum_i \xi_i = 0\right\} = O(1/\sqrt{-d}) = O(\ln^3 d/\sqrt{d}).$$

(日) (日) (日) (日) (日) (日) (日) (日)

The proof is done!

• For any $J \subset [n]$, define $\mathcal{N}^{out}_G(J) = \{v \in [n], J \to v\}$.

- For any $J \subset [n]$, define $\mathcal{N}^{out}_G(J) = \{v \in [n], J \to v\}$.
- $\max(d, |J|) \leq |\mathcal{N}_{G}^{out}(J)| \leq \min(n, d|J|).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- For any $J \subset [n]$, define $\mathcal{N}_G^{out}(J) = \{v \in [n], J \to v\}$.
- $\max(d, |J|) \leq |\mathcal{N}_{G}^{out}(J)| \leq \min(n, d|J|).$
- On the scale $|J| \leq n/d$: min (n, d|J|) = d|J|.

- For any $J \subset [n]$, define $\mathcal{N}_G^{out}(J) = \{v \in [n], J \to v\}$.
- $\max(d, |J|) \leq |\mathcal{N}_{G}^{out}(J)| \leq \min(n, d|J|).$
- On the scale $|J| \le n/d$: min (n, d|J|) = d|J|.

Question: Is $|\mathcal{N}_{G}^{out}(J)|$ concentrated around any of the extreme bounds?

(日) (日) (日) (日) (日) (日) (日) (日)

- For any $J \subset [n]$, define $\mathcal{N}_G^{out}(J) = \{v \in [n], J \to v\}$.
- $\max(d, |J|) \leq |\mathcal{N}_{G}^{out}(J)| \leq \min(n, d|J|).$
- On the scale $|J| \leq n/d$: min (n, d|J|) = d|J|.

Question: Is $|\mathcal{N}_{G}^{out}(J)|$ concentrated around any of the extreme bounds?

In particular, if $J = \{i, j\}$, we needed $|\mathcal{N}_{G}^{out}(J)|$ to be big.

Theorem (LLTTY'15) Let $8 \le d \le n/12$, $\varepsilon \in (0, 1)$ and $k \le c\varepsilon n/d$. Then with probability $1 - \exp(-c\varepsilon^2 dk \ln(e\varepsilon n/dk))$ we have

 $\forall J \subset [n] \text{ of size } |J| = k, \quad \left| |\mathcal{N}_G^{out}(J)| - d|J| \right| \leq \varepsilon d|J|.$

Theorem (LLTTY'15) Let $8 \le d \le n/12$, $\varepsilon \in (0, 1)$ and $k \le c\varepsilon n/d$. Then with probability $1 - \exp(-c\varepsilon^2 dk \ln(e\varepsilon n/dk))$ we have

 $\forall J \subset [n] \text{ of size } |J| = k, \quad \left| |\mathcal{N}_{G}^{out}(J)| - d|J| \right| \leq \varepsilon d|J|.$

Remark

• If $i, j \in [n]$ are two vertices. With high probability,

 $|\mathcal{N}_{G}^{out}\{i,j\}| \geq 2(1-\varepsilon)d.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- \Rightarrow at most $2\varepsilon d$ common out-neighbors to i and j.
- \Rightarrow R_i , R_j almost disjoint (Prob 2 settled).
- Cook '14: Concentration inequalities for codegrees when $d \gg \log n$.

Connectivity of large sets

Theorem (LLTTY'15)

There exist absolute positive constants c, C such that the following holds. Let $C \le d \le cn$ and let natural numbers ℓ and r satisfy

$$\frac{n}{4} \ge r \ge \ell \ge \frac{Cn\ln(en/r)}{d}$$

Then

$$\mathbb{P}\left\{\bigcup\{I \not\to J\}\right\} \leq \exp\left(-\frac{cr\ell d}{n}\right),$$

where the union is taken over all $I, J \subset [n]$ with $|I| \ge \ell$ and $|J| \ge r$.

• Previous theorem \Leftrightarrow No large zero minors in adjacency matrix.

- Previous theorem \Leftrightarrow No large zero minors in adjacency matrix.
- For Erdös-Renyi model (with parameter d/n)

$$\mathbb{P}\big\{I \not\to J\big\} = \big(1 - \frac{d}{n}\big)^{r\ell}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Previous theorem ⇔ No large zero minors in adjacency matrix.
- For Erdös-Renyi model (with parameter d/n)

$$\mathbb{P}\big\{I \not\to J\big\} = \big(1 - \frac{d}{n}\big)^{r\ell}.$$

• Independence number:

$$\alpha(G) = \max\{|I|, I \subset [n] \text{ and } I \not\rightarrow I\}.$$

- Previous theorem ⇔ No large zero minors in adjacency matrix.
- For Erdös-Renyi model (with parameter d/n)

$$\mathbb{P}\big\{I \not\to J\big\} = \big(1 - \frac{d}{n}\big)^{r\ell}.$$

Independence number:

$$\alpha(G) = \max\{|I|, I \subset [n] \text{ and } I \not\rightarrow I\}.$$

• Theorem 5 \Rightarrow

$$\mathbb{P}\left\{\alpha(G) > C \, \frac{n \ln d}{d}\right\} \le \exp\left(-\frac{c n \ln^2 d}{d}\right)$$

٠

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

- Previous theorem ⇔ No large zero minors in adjacency matrix.
- For Erdös-Renyi model (with parameter d/n)

$$\mathbb{P}\big\{I \not\to J\big\} = \big(1 - \frac{d}{n}\big)^{r\ell}.$$

Independence number:

$$\alpha(G) = \max\{|I|, I \subset [n] \text{ and } I \not\to I\}.$$

Theorem 5⇒

$$\mathbb{P}\left\{ lpha(G) > C \, rac{n \ln d}{d}
ight\} \leq \exp\left(-rac{c n \ln^2 d}{d}
ight)$$

 Undirected setting:Bollobàs'81,Mckay'87,Frieze-Luczak'92,Krivelevich-Sudakov-Vu-Wormald'01,Cooper-Frieze-Reed-Riordan'02.

No almost constant null vectors

For 0 consider the following set of vectors

 $AC(p) = \{x \in \mathbb{R}^n \setminus \{0\} : \exists \lambda_x \in \mathbb{R} \mid |\{i : x_i = \lambda_x\}| \ge (1-p)n\}.$

No almost constant null vectors

For 0 consider the following set of vectors

 $AC(p) = \{x \in \mathbb{R}^n \setminus \{0\} : \exists \lambda_x \in \mathbb{R} \mid |\{i : x_i = \lambda_x\}| \ge (1-p)n\}.$

Theorem (LLTTY'15)

There are absolute positive constants C, c such that for $C \le d \le cn$ and $p \le c/\ln d$ one has

$$\mathbb{P}\big\{\mathrm{Ker} M \cap AC(p) = \emptyset\big\} \geq 1 - \left(\frac{Cd}{n}\right)^{cd}$$

•

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

 $\operatorname{rk} M = n - 1$, x right null vector, y left null vector.

 $\operatorname{rk} M = n - 1$, x right null vector, y left null vector.

 $x \notin AC(p) \Rightarrow \exists J, pn \leq |J| \leq (1-p)n, \quad \forall i \in J, j \in J^c \ x_i \neq x_j.$

 $\operatorname{rk} M = n - 1$, x right null vector, y left null vector.

 $x \notin AC(p) \Rightarrow \exists J, pn \leq |J| \leq (1-p)n, \quad \forall i \in J, j \in J^{c} \ x_i \neq x_j.$

 $(q \sim d/\ln^2 d)$. No $p/2q \times p/2$ zero minor \Rightarrow

 $|\{i : | \sup R_i \cap J | \ge q\}| \ge (1 - p/2q)n$

and

 $|\{i : |\text{supp } R_i \cap J^c| \ge q\}| \ge (1 - p/2q)n.$

(日) (日) (日) (日) (日) (日) (日) (日)

 $\operatorname{rk} M = n - 1$, x right null vector, y left null vector.

 $x \notin AC(p) \Rightarrow \exists J, pn \leq |J| \leq (1-p)n, \quad \forall i \in J, j \in J^c \ x_i \neq x_j.$ $(q \sim d/\ln^2 d). \text{ No } p/2q \times p/2 \text{ zero minor} \Rightarrow$ $|\{i : | \operatorname{supp} R_i \cap J | \geq q\}| \geq (1-p/2q)n$ and

 $|\{i : | \operatorname{supp} R_i \cap J^c | \ge q\}| \ge (1 - p/2q)n.$

・ロト ・ 日 ・ モ ・ ト ・ 日 ・ うへつ

Conclusion: x is two valued on the support of almost all rows.

 $y \notin AC(p) \Rightarrow \exists$ at least *pn* indices s.t $y_i \neq 0$.

 $\sum_{i} y_i R_i = 0 \Rightarrow \exists$ at least *pn* indices s.t rk $M_i = n - 1$.

 $y \notin AC(p) \Rightarrow \exists$ at least *pn* indices s.t $y_i \neq 0$.

 $\sum_i y_i R_i = 0 \Rightarrow \exists$ at least *pn* indices s.t rk $M_i = n - 1$.

 $\exists pn/2 \text{ rows s.t } \text{rk } M_i = n - 1 \text{ and } x \text{ not one valued on } \sup R_i.$

 $y \notin AC(p) \Rightarrow \exists$ at least *pn* indices s.t $y_i \neq 0$. $\sum_i y_i R_i = 0 \Rightarrow \exists$ at least *pn* indices s.t rk $M_i = n - 1$. $\exists pn/2$ rows s.t rk $M_i = n - 1$ and x not one valued on supp R_i . Fix such *i*. $\exists pn$ indices *j* s.t $y_j \neq y_i$. $\Rightarrow R_i + R_i \notin V_{i,j}$.

(日) (日) (日) (日) (日) (日) (日) (日)

 $y \notin AC(p) \Rightarrow \exists$ at least *pn* indices s.t $y_i \neq 0$. $\sum_{i} y_i R_i = 0 \Rightarrow \exists$ at least *pn* indices s.t rk $M_i = n - 1$. $\exists pn/2 \text{ rows s.t } \operatorname{rk} M_i = n - 1 \text{ and } x \text{ not one valued on } \sup R_i$. Fix such *i*. \exists *pn* indices *j* s.t $y_i \neq y_i$. $\Rightarrow R_i + R_i \notin V_{i,i}$ Conclusion: $\exists p^2 n^2/2$ pais (i, j) such that $\dim V_{i,i} = n-2, \quad R_i + R_i \notin V_{i,i}$

and

 $v_{i,j}$ not one valued on supp $R_i \cup \text{supp } R_j$.

(日) (日) (日) (日) (日) (日) (日) (日)

Prob 1, 3 settled!

Ruling out AC null vectors

 $x \in AC(p)$ s.t $|x_1| \ge \ldots \ge |x_n|$.

Ruling out AC null vectors

 $x \in AC(p)$ s.t $|x_1| \ge \ldots \ge |x_n|$.

• Easy to rull out very sparse vectors: If $m_0 \ll n/d$ and $x_{m_0} = 0$.

Expansion $\Rightarrow \exists$ many rows R_i ($\sim m_0 d/4$) with one 1 on $[m_0]$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\Rightarrow |(Mx)_i| > 0.$$

Ruling out AC null vectors

 $x \in AC(p)$ s.t $|x_1| \ge \ldots \ge |x_n|$.

• Easy to rull out very sparse vectors: If $m_0 \ll n/d$ and $x_{m_0} = 0$.

Expansion $\Rightarrow \exists$ many rows $R_i \ (\sim m_0 d/4)$ with one 1 on $[m_0]$. $\Rightarrow |(M_x)_i| > 0.$

• Now $x_{m_0} \neq 0$, rescale so $|x_{m_0}| = 1$ and suppose $\lambda \ge 0$.

 $J_{\lambda} := \{i \mid x_i = \lambda\}, \quad J := \{i \ge m_0 \mid |x_i - \lambda| > 1/2d\}$

We have $|J_{\lambda}| \sim (1-p)n$, $|J| \sim$?

- $J := \{i \ge m_0 \mid |x_i \lambda| > 1/2d\}$
 - If $|J| \ll n/d$, then it is easy.

- $J:=\{i\geq m_0\mid |x_i-\lambda|>1/2d\}$
 - If $|J| \ll n/d$, then it is easy.
 - $\lambda > 1/2d \Rightarrow$ few negative coord in x, easy to avoid them.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- $J := \{i \ge m_0 \mid |x_i \lambda| > 1/2d\}$
 - If $|J| \ll n/d$, then it is easy.
 - $\lambda > 1/2d \Rightarrow$ few negative coord in x, easy to avoid them.
 - $\lambda \leq 1/2d \Rightarrow$ we have a big jump at $m_1 := m_0 + |J|$.

 $|x_{m_0}| = 1$ while $|x_{m_1}| \le 1/d$.

- $J := \{i \ge m_0 \mid |x_i \lambda| > 1/2d\}$
 - If $|J| \ll n/d$, then it is easy.
 - $\lambda > 1/2d \Rightarrow$ few negative coord in x, easy to avoid them.
 - $\lambda \leq 1/2d \Rightarrow$ we have a big jump at $m_1 := m_0 + |J|$.

 $|x_{m_0}| = 1$ while $|x_{m_1}| \le 1/d$.

Expansion $\Rightarrow \exists$ row R_i with one 1 on $[m_0]$ and 0 on J.

$$\Rightarrow |(Mx)_i| \ge |x_{m_0}| - (d-1)|x_{m_1}| > 0.$$

 $J := \{i \ge m_0 \mid |x_i - \lambda| > 1/2d\}$

- If $|J| \ll n/d$, then it is easy.
 - $\lambda > 1/2d \Rightarrow$ few negative coord in x, easy to avoid them.
 - $\lambda \leq 1/2d \Rightarrow$ we have a big jump at $m_1 := m_0 + |J|$.

 $|x_{m_0}| = 1$ while $|x_{m_1}| \le 1/d$.

Expansion $\Rightarrow \exists$ row R_i with one 1 on $[m_0]$ and 0 on J.

$$\Rightarrow |(Mx)_i| \ge |x_{m_0}| - (d-1)|x_{m_1}| > 0.$$

• $|J| \sim n/d$, we have a partition $I \sqcup J \sqcup J_{\lambda} = [n]$ s.t

$$\begin{split} x_{m_0} &= 1, \quad \forall \ell \in J_\lambda \ x_\ell = \lambda \quad \text{and} \quad \forall j \in J \ x_j - \lambda \geq 1/2d. \end{split}$$
(1) Show that $\mathbb{P}\{\exists x \text{ satisfying (1) s.t. } \|Mx\|_{\infty} = 0\} \sim 0. \end{cases}$ Net argument: outside $[m_0]$, special net on the cube. Fix y satisfying (1), $S_0 = \text{rows which are 0 on } [m_0]$. Goal: $\mathbb{P}\{\|P_{S_0}My\|_{\infty} < 1/4d \mid I \text{ fixed }\} \le \exp(-n)$. Fix y satisfying (1), $S_0 = \text{rows which are 0 on } [m_0]$. Goal: $\mathbb{P}\{\|P_{S_0}My\|_{\infty} < 1/4d \mid I \text{ fixed }\} \le \exp(-n)$. $\|P_{S_0}My\|_{\infty} < 1/4d \Leftrightarrow \forall i \in S_0, \quad |(My)_i| < 1/4d$.

How does it translate in terms of connectivity of the graph?

Fix y satisfying (1), $S_0 = \text{rows which are 0 on } [m_0]$. Goal: $\mathbb{P}\{\|P_{S_0}My\|_{\infty} < 1/4d \mid I \text{ fixed }\} \le \exp(-n)$. $\|P_{S_0}My\|_{\infty} < 1/4d \Leftrightarrow \forall i \in S_0, \quad |(My)_i| < 1/4d$. How does it translate in terms of connectivity of the graph? Fix I and $i \in S_0$,

 $\{M, | (My)_i| < 1/4d\} \subseteq \{M, i \to J\}$

or

 $\{M, | (My)_i| < 1/4d\} \subseteq \{M, i \not\to J\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Fix y satisfying (1), $S_0 = \text{rows which are 0 on } [m_0]$. Goal: $\mathbb{P}\{\|P_{S_0}My\|_{\infty} < 1/4d \mid I \text{ fixed }\} \le \exp(-n)$. $\|P_{S_0}My\|_{\infty} < 1/4d \Leftrightarrow \forall i \in S_0, \quad |(My)_i| < 1/4d$. How does it translate in terms of connectivity of the graph? Fix I and $i \in S_0$,

 $\{M, |(My)_i| < 1/4d\} \subseteq \{M, i \to J\}$

or

 $\{M, |(My)_i| < 1/4d\} \subseteq \{M, i \not\rightarrow J\}$

Conclusion: Matrices satisfying $||P_{S_0}My||_{\infty} < 1/4d$ share the same configuration of edges from S_0 to J.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Anti-concentration

Define

 $\delta_i^J = 1 \text{ if } i \to J \quad \text{and} \quad 0 \text{ otherwise.}$ Set $\delta^J = (\delta_1^J, \dots, \delta_n^J) \in \{0, 1\}^n$.

Anti-concentration

Define

 $\delta_i^J = 1 \text{ if } i \to J \quad \text{and} \quad 0 \text{ otherwise.}$ Set $\delta^J = (\delta_1^J, \dots, \delta_n^J) \in \{0, 1\}^n$. Theorem 3 (LLTTY'15) Let $8 \le d \le cn$ and $I, J \subset [n]$ disjoint such that $|I| \le \frac{d|J|}{8} \quad \text{and} \quad |J| \le c \frac{n}{d}$.

Let $F \subset [n] \times [n]$. For any $v \in \{0,1\}^n$, $\mathbb{P}\left\{\delta^J = v \mid E_G^{in}(I) = F\right\} \le \exp\left(-cd|J|\ln\frac{n}{d|J|}\right)$.

What's next?

- Show the conjecture for fixed *d*.
- Limiting spectral distribution.

Conjecture (Chafai-Bordenave): The limiting spectral empirical measure is given by

$$\frac{1}{\pi} \frac{d^2(d-1)}{(d^2-|z|^2)^2} \mathbf{1}_{\{|z|<\sqrt{d}\}} dx dy$$

This is the non-symmetric version of Kesten-Mckay measure.

• The non-directed version of our main theorem. \rightarrow In progress with **LLTT**. Thank you

Happy New Year!