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LPMA, Université Paris-Diderot

January 4, 2016

1/ 24



Introduction and Notations

• G a graph on n vertices (loops allowed). Its adjacency matrix
A = (ai ,j) is defined by

ai ,j = 1 if i → j and 0 otherwise.

• G(n, p) = Erd
..
os-Renyi graph: each edge is formed with

probability p independently of others.

Adjacency matrix: entries are iid Bernoulli B(p).

• d-regular directed graph on n vertices ⇔ each vertex has
exactly d in-neighbors and d out-neighbors.

Adjacency matrix: “d” double stochastic matrix.

Dn,d = set of all directed d-regular graphs on n vertices
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• In this talk: G uniform d-regular directed graph:

∀H ∈ Dn,d , P{G = H} =
1

|Dn,d |
.

• McKay’81 used switching to estimate cardinalities.

i1• // j1•

i2• // j2•

i1• //

$$

j1•

i2• //

::

j2•
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Conjecture

B = (ξi ,j)i ,j iid Bernoulli ±1. P
{
B is singular

}
=
(
1
2 + o(1)

)n
.

Komlós’77:O(n−
1
2 ); Kahn-Komlós-Szemerédi’95: 0.999n;

Tao-Vu’06:
(
3/4 + o(1)

)n
; Bourgain-Vu-Wood’09:

(
1√
2

+ o(1)
)n

.

Conjecture (Vu’08)

M̃: n × n adjacency of uniform d-regular graph. For any
3 ≤ d ≤ n/2, P

{
M̃ is singular

}
−→
n→∞

0.

Also mentioned in Vu’s 2014 ICM talk, Frieze’s 2014 ICM talk.
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M: n × n adjacency of uniform d-regular directed graph.

Theorem (Cook’14)

There exists an absolute constant c ≤ 1/20 such that for
ln2 n� d ≤ n/2,

P
{
M is singular

}
≤ 1

dc
.

Theorem (LLTTY’15)

There exist absolute constants c ,C such that for
C ≤ d ≤ cn/ ln2 n,

P
{
M is singular

}
≤ C

ln3 d√
d
.
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Decrypting the proof

Key ingredient: Littlewood-Offord anti-concentration.

Theorem (Erd
..
os’43)

ξ = (ξ)i≤n iid Bernoulli ±1. Then for any a ∈ Rn,

P
{
〈ξ, a〉 = 0

}
= O

(
1/
√
|suppa|

)
Kleitman, Halasz, Stanley, Sarkozy-Szemeredi, Frankl-Furedi,
Tao-Vu, Rudelson-Vershynin, Friedland-Sodin, Nguyen-Vu,
Friedland-Giladi-Guédon, Costello, Meka-Nguyen-Vu.
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Komlós’s approach: Condition on rows R2, . . . ,Rn and use
randomness of R1.

v normal vector to span
{
R2, . . . ,Rn

}
.

P
{
R1 ∈ span{R2, . . . ,Rn}

}
≤ P

{
〈R1, v〉 = 0

}
If v is not sparse, anti-concentration finishes the proof.

In our setting (uniform model): Fixing R2, . . . ,Rn completely
determines R1.

Cook’s idea: Fix R3, . . . ,Rn. The support of R1 ∪ R2 is completely
determined. But there is randomness left in the choice of R1, R2.
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For (i , j) ∈ [n]2, Vi ,j := span{Rk}k 6=i ,j .

rkM = n − 1⇒ ∃(i , j) dimVi ,j = n − 2 and Ri + Rj 6∈ Vi ,j

⇒ ∃(i , j) KerM = {Vi ,j ,Ri + Rj}⊥ = {vi ,j}

⇒ ∃(i , j) vi ,j ∈ KerM (⇔ 〈vi ,j ,Ri 〉 = 0).

vi ,j is completely determined by Vi ,j .

Conditioned on Vi ,j , it is stable under switching in Ri ,Rj .

Goal: Conditioned on Vi ,j , with small probability KerM is stable
under switching in Ri ,Rj .
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Problems

Problem 1: Avoid the union bound. Otherwise we would get

P
{
rkM = n − 1

}
≤ n2P

{
v1,2 ∈ KerM

}
Conditioned on V1,2, the randomness remaining lies in less than 2d
variables. No hope.

Solution: Show that many (i , j) satisfy the desired setting.

Problem 2: We need that R1,R2 are almost disjoint. Otherwise
almost no randomness is left when conditioned on V1,2 ⇔ no place
for switching between R1, R2.

Problem 3: Need v1,2 not mainly one valued on suppR1 ∪ suppR2.

Otherwise 〈v1,2,R1〉 becomes invariant under switching.
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Suppose Problems 1, 2, 3 settled and condition on V1,2.

• Prob 1⇒ only care for P
{
〈v1,2,R1〉 = 0

}
.

• Prob 2⇒ R1, R2 are (almost) disjoint.

• Prob 3⇒ v1,2 is two valued on I := suppR1 ∪ suppR2.

Write I = I1 t I2, |I | = 2d , |I1| = |I2| = d .

Almost all coordinates of v1,2 in I1 6= coordinates of v1,2 in I2.

Goal: P
{
〈v1,2,R1〉 = 0

}
is small.

−→ Reconstruct R1 and check 〈v1,2,R1〉.
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Reconstruct R1: flip d coins εi independently.

If εi = 1: Put 1 on the ith component of R1 in I1.

If εi = 0: Put 1 on the ith component of R1 in I2.

We formed (almost) d independent r.v

ξi =


ith coordinate of v1,2 in I1 with prob 1/2

ith coordinate of v1,2 in I2 with prob 1/2

Erd
..
os anti-concentration⇒

P
{
〈v1,2,R1〉 = 0

}
= P

{∑
i

ξi = 0
}

= O(1/
√
∼ d) = O(ln3 d/

√
d).

The proof is done!

11/ 24



Reconstruct R1: flip d coins εi independently.

If εi = 1: Put 1 on the ith component of R1 in I1.

If εi = 0: Put 1 on the ith component of R1 in I2.

We formed (almost) d independent r.v

ξi =


ith coordinate of v1,2 in I1 with prob 1/2

ith coordinate of v1,2 in I2 with prob 1/2

Erd
..
os anti-concentration⇒

P
{
〈v1,2,R1〉 = 0

}
= P

{∑
i

ξi = 0
}

= O(1/
√
∼ d) = O(ln3 d/

√
d).

The proof is done!

11/ 24



Reconstruct R1: flip d coins εi independently.

If εi = 1: Put 1 on the ith component of R1 in I1.

If εi = 0: Put 1 on the ith component of R1 in I2.

We formed (almost) d independent r.v

ξi =


ith coordinate of v1,2 in I1 with prob 1/2

ith coordinate of v1,2 in I2 with prob 1/2

Erd
..
os anti-concentration⇒

P
{
〈v1,2,R1〉 = 0

}
= P

{∑
i

ξi = 0
}

= O(1/
√
∼ d) = O(ln3 d/

√
d).

The proof is done!

11/ 24



Small set expansion

• For any J ⊂ [n], define N out
G (J) = {v ∈ [n], J → v} .

• max
(
d , |J|

)
≤ |N out

G (J)| ≤ min
(
n, d |J|

)
.

• On the scale |J| ≤ n/d : min
(
n, d |J|

)
= d |J|.

Question: Is |N out
G (J)| concentrated around any of the

extreme bounds?

In particular, if J = {i , j}, we needed |N out
G (J)| to be big.
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Theorem (LLTTY’15)

Let 8 ≤ d ≤ n/12, ε ∈ (0, 1) and k ≤ cεn/d. Then with
probability 1− exp

(
−cε2dk ln

(
eεn/dk

))
we have

∀J ⊂ [n] of size |J| = k ,
∣∣|N out

G (J)| − d |J|
∣∣ ≤ εd |J|.

Remark
• If i , j ∈ [n] are two vertices. With high probability,

|N out
G {i , j}| ≥ 2(1− ε)d .

⇒ at most 2εd common out-neighbors to i and j.

⇒ Ri , Rj almost disjoint (Prob 2 settled).

• Cook’14: Concentration inequalities for codegrees when
d � log n.
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Connectivity of large sets

Theorem (LLTTY’15)

There exist absolute positive constants c ,C such that the following
holds. Let C ≤ d ≤ cn and let natural numbers ` and r satisfy

n

4
≥ r ≥ ` ≥ Cn ln(en/r)

d
.

Then

P
{⋃
{I 6→ J}

}
≤ exp

(
−cr`d

n

)
,

where the union is taken over all I , J ⊂ [n] with |I | ≥ ` and |J| ≥ r .
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• Previous theorem ⇔ No large zero minors in adjacency matrix.

• For Erd
..
os-Renyi model (with parameter d/n)

P
{
I 6→ J

}
=
(
1− d

n

)r`
.

• Independence number:

α(G ) = max{|I |, I ⊂ [n] and I 6→ I}.

• Theorem 5⇒

P
{
α(G ) > C

n ln d

d

}
≤ exp

(
−cn ln2 d

d

)
.

• Undirected setting:Bollobàs’81,Mckay’87,Frieze-
Luczak’92,Krivelevich-Sudakov-Vu-Wormald’01,Cooper-
Frieze-Reed-Riordan’02.
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No almost constant null vectors

For 0 < p < 1/2 consider the following set of vectors

AC (p) = {x ∈ Rn \ {0} : ∃λx ∈ R |{i : xi = λx}| ≥ (1− p)n}.

Theorem (LLTTY’15)

There are absolute positive constants C , c such that for
C ≤ d ≤ cn and p ≤ c/ ln d one has

P
{
KerM ∩ AC (p) = ∅

}
≥ 1−

(
Cd

n

)cd

.
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No AC(p) null vectors + No large zero minor⇒ settles Prob 1, 3.

rkM = n − 1, x right null vector, y left null vector.

x 6∈ AC (p)⇒ ∃J, pn ≤ |J| ≤ (1− p)n, ∀i ∈ J, j ∈ Jc xi 6= xj .

(q ∼ d/ ln2 d). No p/2q × p/2 zero minor ⇒

|{i : |suppRi ∩ J| ≥ q}| ≥ (1− p/2q)n

and

|{i : |suppRi ∩ Jc | ≥ q}| ≥ (1− p/2q)n.

Conclusion: x is two valued on the support of almost all rows.

17/ 24



No AC(p) null vectors + No large zero minor⇒ settles Prob 1, 3.

rkM = n − 1, x right null vector, y left null vector.

x 6∈ AC (p)⇒ ∃J, pn ≤ |J| ≤ (1− p)n, ∀i ∈ J, j ∈ Jc xi 6= xj .

(q ∼ d/ ln2 d). No p/2q × p/2 zero minor ⇒

|{i : |suppRi ∩ J| ≥ q}| ≥ (1− p/2q)n

and

|{i : |suppRi ∩ Jc | ≥ q}| ≥ (1− p/2q)n.

Conclusion: x is two valued on the support of almost all rows.

17/ 24



No AC(p) null vectors + No large zero minor⇒ settles Prob 1, 3.

rkM = n − 1, x right null vector, y left null vector.

x 6∈ AC (p)⇒ ∃J, pn ≤ |J| ≤ (1− p)n, ∀i ∈ J, j ∈ Jc xi 6= xj .

(q ∼ d/ ln2 d). No p/2q × p/2 zero minor ⇒

|{i : |suppRi ∩ J| ≥ q}| ≥ (1− p/2q)n

and

|{i : |suppRi ∩ Jc | ≥ q}| ≥ (1− p/2q)n.

Conclusion: x is two valued on the support of almost all rows.

17/ 24



No AC(p) null vectors + No large zero minor⇒ settles Prob 1, 3.

rkM = n − 1, x right null vector, y left null vector.

x 6∈ AC (p)⇒ ∃J, pn ≤ |J| ≤ (1− p)n, ∀i ∈ J, j ∈ Jc xi 6= xj .

(q ∼ d/ ln2 d). No p/2q × p/2 zero minor ⇒

|{i : |suppRi ∩ J| ≥ q}| ≥ (1− p/2q)n

and

|{i : |suppRi ∩ Jc | ≥ q}| ≥ (1− p/2q)n.

Conclusion: x is two valued on the support of almost all rows.

17/ 24



No AC(p) null vectors + No large zero minor⇒ settles Prob 1, 3.

rkM = n − 1, x right null vector, y left null vector.

x 6∈ AC (p)⇒ ∃J, pn ≤ |J| ≤ (1− p)n, ∀i ∈ J, j ∈ Jc xi 6= xj .

(q ∼ d/ ln2 d). No p/2q × p/2 zero minor ⇒

|{i : |suppRi ∩ J| ≥ q}| ≥ (1− p/2q)n

and

|{i : |suppRi ∩ Jc | ≥ q}| ≥ (1− p/2q)n.

Conclusion: x is two valued on the support of almost all rows.

17/ 24



y 6∈ AC (p)⇒ ∃ at least pn indices s.t yi 6= 0.∑
i yiRi = 0⇒ ∃ at least pn indices s.t rkMi = n − 1.

∃ pn/2 rows s.t rkMi = n − 1 and x not one valued on suppRi .

Fix such i . ∃ pn indices j s.t yj 6= yi .

⇒ Ri + Rj 6∈ Vi ,j .

Conclusion: ∃p2n2/2 pais (i , j) such that

dimVi ,j = n − 2, Ri + Rj 6∈ Vi ,j

and
vi ,j not one valued on suppRi ∪ suppRj .

Prob 1, 3 settled!
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Ruling out AC null vectors

x ∈ AC (p) s.t |x1| ≥ . . . ≥ |xn|.

• Easy to rull out very sparse vectors: If m0 � n/d and
xm0 = 0.

Expansion ⇒ ∃ many rows Ri (∼ m0d/4) with one 1 on [m0].

⇒ |(Mx)i | > 0.

• Now xm0 6= 0, rescale so |xm0 | = 1 and suppose λ ≥ 0.

Jλ := {i | xi = λ}, J := {i ≥ m0 | |xi − λ| > 1/2d}

We have |Jλ| ∼ (1− p)n, |J| ∼?
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J := {i ≥ m0 | |xi − λ| > 1/2d}
• If |J| � n/d , then it is easy.

• λ > 1/2d ⇒ few negative coord in x , easy to avoid them.

• λ ≤ 1/2d ⇒ we have a big jump at m1 := m0 + |J|.

|xm0 | = 1 while |xm1 | ≤ 1/d .

Expansion⇒ ∃ row Ri with one 1 on [m0] and 0 on J.

⇒ |(Mx)i | ≥ |xm0 | − (d − 1)|xm1 | > 0.

• |J| ∼ n/d , we have a partition I t J t Jλ = [n] s.t

xm0 = 1, ∀` ∈ Jλ x` = λ and ∀j ∈ J xj − λ ≥ 1/2d .
(1)

Show that P
{
∃x satisfying (1) s.t. ‖Mx‖∞ = 0

}
∼ 0.

Net argument: outside [m0], special net on the cube.
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Fix y satisfying (1), S0 = rows which are 0 on [m0].

Goal: P
{
‖PS0My‖∞ < 1/4d | I fixed

}
≤ exp(−n).

‖PS0My‖∞ < 1/4d ⇔ ∀i ∈ S0, |(My)i | < 1/4d .

How does it translate in terms of connectivity of the graph?

Fix I and i ∈ S0,

{M, |(My)i | < 1/4d} ⊆ {M, i → J}

or
{M, |(My)i | < 1/4d} ⊆ {M, i 6→ J}

Conclusion: Matrices satisfying ‖PS0My‖∞ < 1/4d share the same
configuration of edges from S0 to J.
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Anti-concentration

Define
δJi = 1 if i → J and 0 otherwise.

Set δJ = (δJ1 , . . . , δ
J
n) ∈ {0, 1}n.

Theorem 3 (LLTTY’15)

Let 8 ≤ d ≤ cn and I , J ⊂ [n] disjoint such that

|I | ≤ d |J|
8

and |J| ≤ c
n

d
.

Let F ⊂ [n]× [n]. For any v ∈ {0, 1}n,

P
{
δJ = v | E in

G (I ) = F
}
≤ exp

(
−cd |J| ln n

d |J|

)
.
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What’s next?

• Show the conjecture for fixed d .

• Limiting spectral distribution.

Conjecture (Chafai-Bordenave): The limiting spectral
empirical measure is given by

1

π

d2(d − 1)

(d2 − |z |2)2
1{|z|<

√
d}dxdy

This is the non-symmetric version of Kesten-Mckay measure.

• The non-directed version of our main theorem.
→ In progress with LLTT.
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Thank you

Happy New Year!
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