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Erdős-Rényi random graphs

G(n, p)
• vertex set {1, . . . n}
• vertices linked by an edge independently with

probability p

• symmetric
• if i 6= j, P (Ai,j = 1) = 1− P (Ai,j = 0) = p
• for every i, Ai,i = 0

What does the spectrum of A look like ?

• if np→ 0, single atom mass at 0
• if np→∞, semi circle law
• if np→ c > 0, not much is known...

Adjacency matrix A
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Numerical simulations on diluted graphs with 5000 vertices

c = 20
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∑
λ∈Sp(c−1/2A)

δλ : empirical spectral distribution of G(n, c/n)

Fact : as n→∞, µcn converges weakly to a probability measure µc

Known properties of µc:

• unbounded support

• dense set of atoms

• µc ({0}) known explicitly

• µc is not purely atomic iif c > 1

• if c→∞, µc converges weakly to Wigner semi-circle law

[Bordenave, Lelarge, Salez 2011]

[Bordenave, Sen, Virág 2013]
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Asymptotic expansion of the spectrum

Theorem: For every k ≥ 0 and as c→∞

mk(µc) = mk(σ) +
1

c
mk(σ{1}) + o

(
1

c

)

where σ is the semi-circle law having density
1

2π

√
4− x21|x|<2

and σ{1} is a measure with total mass 0 and density

1

2π

x4 − 4x2 + 2√
4− x2

1|x|<2.

If µ is a (signed) mesure and
∫
|x|k|dµ(x)| <∞, denote mk(µ) =

∫
xkdµ(x)
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Asymptotic expansion of the spectrum – numerical simulations

100 matrices of size 10000 with c = 20

Histogram of c (µcn − σ)

Density of σ{1}
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Asymptotic expansion of the spectrum: second order (I)

Proposition: For every k > 0 we have the following asymtotic
expansion in c:

mk(µc) = mk(σ) +
1

c
mk(σ{1}) +

1

c2
dk + o

(
1

c2

)
where the numbers dk are NOT the moments of a measure!

The asymptotic expansion must take into account the fact that

µc (R \ [−2; 2]) = O
(

1

c2

)
.

Dilation operator Λα for measures defined by Λα(µ)(A) = µ (A/α)
for a measure µ and a Borel set A.

For example, Λα(σ) is supported on [−2α; 2α].



Asymptotic expansion of the spectrum: second order (II)

Theorem: For every k ≥ 0 and as c→∞

mk(µc) = mk

(
Λ1+ 1

2c

(
σ +

1

c
σ̂{1} +

1

c2
σ̂{2}

))
+ o

(
1

c2

)
where σ̂{1} is a measure with null total mass and density

−x
4 − 5x2 + 4

2π
√

4− x2
1|x|<2

and where σ̂{2} is a measure with null total mass and density

−
2x8 − 17x6 + 46x4 − 325

8 x2 + 21
4

π
√

4− x2
1|x|<2.



Second order – numerical simulations

100 matrices of size 10000 with c = 20

Density of Λ1+ 1
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Second order – numerical simulations

100 matrices of size 10000 with c = 20

Density of Λ1+ 1
2c

(
σ̂{2})Histogram of c2

(
µcn − Λ1+ 1

2c

(
σ + 1

c σ̂
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Thank you!


