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o vertex set {1,...n}
G(n, p) e vertices linked by an edge independently with
probability p

e symmetric
Adjacency matrix A o If /) # j, P(Az',j — 1) =1 — P(A,L',j = O) =P
o foreveryi, A;; =0

What does the spectrum of A look like ?

o if np — 0, single atom mass at 0
o if np — oo, semi circle law
e if np — ¢ > 0, not much is known...
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c = 3 (zoomed in)
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Numerical simulations on diluted graphs with 5000 vertices
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e = — Z 0 : empirical spectral distribution of G(n,c/n)
AESp(c—1/2A)

Fact : as n — oo, u;, converges weakly to a probability measure ;1©

Known properties of u:

o if c — oo, u® converges weakly to Wigner semi-circle law
e unbounded support
e dense set of atoms

o 11€({0}) known explicitly  [Bordenave, Lelarge, Salez 2011]
e 1€ is not purely atomic iif ¢ > 1 [Bordenave, Sen, Virdg 2013]
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Asymptotic expansion of the spectrum

If 1 is a (signed) mesure and [ |z|¥|du(z)| < oo, denote my(p) = [z du(z)

Theorem: For every k > 0 and as ¢ — o0

my (1) = my(0) + %mk(gu}) Y (1)

1
where o is the semi-circle law having density %\/4 — 221 5|2

and o'} is a measure with total mass 0 and density
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Asymptotic expansion of the spectrum: second order (I)

Proposition: For every k > 0 we have the following asymtotic
expansion In c:

mg(p°) = mg (o)

where the numbers di are NOT the moments of a measure!

—» [ he asymptotic expansion must take into account the fact that
: 1
pe R\ [-2,2) =0 (5 )

Dilation operator A, for measures defined by A, (u)(A) = u(A/«)
for a measure 1 and a Borel set A.

For example, A, (o) is supported on [—2a; 2a].



Asymptotic expansion of the spectrum: second order (Il)

Theorem: For every £ > 0 and as ¢ — o©

1.
mye (1€) = my, (AHQ% (0 + —0

C

where 611 is a measure with null total mass and density

x* —5x2 +4
24 — 12

|z | <2

and where 512! is a measure with null total mass and density

208 — 172° 4+ 462* — %xz + %
— 1igj<2-

/4 — x2




Second order — numerical simulations

100 matrices of size 10000 with ¢ = 20
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Second order — numerical simulations

100 matrices of size 10000 with ¢ = 20

Histogram of c? (,uc — A1+2i (a + %&{1})) Density of A;, 1 (6{2})

n 2¢c
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Edge of the Spectrum

c . 1
m (1) = myg <A1+% (0+ Co'{l} 4 6_20{2}>> + 0 <02>

The measure on the right hand side is supported on [—2 —1/¢;2 + 1/¢].

— This suggests that for ¢ > 0, as ¢ — o0,
1 1 1
c c C

Thank you!




