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Background on Riemannian geometry

Let (Mn, g) be a Riemannian manifold.

I Laplacian:

writing g =
∑

j,k gjk (x)dxj dxk and (g jk (x)) = (gjk (x))−1

∆g =
∑
j,k

g jk (x)∂xj ∂xk −
∑
i,j,k

g jk (x)Γi
jk (x)∂xi ,

I Riemannian measure:

dvg = |g(x)|dx1 · · · dxn, |g(x)| := det
(
gjk (x)

)1/2

I Principal symbol:

p(x , ξ) =
∑
j,k

g jk (x)ξjξk .

Invariantly defined as a function on T∗M (locally M × Rn)

I Measure on T∗M: dx1 · · · dxndξ1 · · · dξn

Rem: setting ∂x = (∂x1 , . . . , ∂xn ),

∆g = p(x , ∂x ) + lower order terms (in ∂x )
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Background on Riemannian geometry

I Geodesic flow: φt : T∗M → T∗M, i.e. φt (x , ξ) := (x t , ξt ) with

ẋ t
j =

∂p

∂ξj
(x t , ξt ), ξ̇t

j = −
∂p

∂xj
(x t , ξt ) (x t , ξt )|t=0 = (x , ξ)

The curves t 7→ x t are the geodesics (i.e. locally length minimizing) on M

Let
L := −∆g

Fact: If M is compact, there is an orthonormal basis of L2(M, dvg ) of eigenfunctions
of L:

Lej = λj ej , 0 ≤ λ0 ≤ λ1 ≤ λ2 ≤ · · · λj ↑ +∞.

Purpose of spectral geometry/semiclassical analysis: to get information on

I Quantum data: λj and/or ej

in term of

I Classical data: principal symbol, geodesic flow,...

in the semiclassical (or high energy) limit λj →∞.
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Examples of problems

1- Distribution of eigenvalues: the Weyl law

#{j | λj ≤ λ} = (2π)−nvolg (M)vol(Bn)λ
n
2
(
1 + o(1)

)
, λ→∞

Using the semiclassical normalization

Lh := h2L, λ =: h−2

(h ∼ effective Planck’s constant), this is a special case of

#spec(Lh) ∩ [a, b] = (2πh)−nvolT∗M

(
p−1

(
[a, b]

))
+ h−nε(h)

with a = 0 and b = 1 (global/macroscopic law).

Rem: Can be pushed to a microscopic law (b − a� 1) as long as

volT∗M

(
p−1

(
[a, b]

))
� ε(h)

Question How small is ε(h) ?
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Examples of problems
• in general (Avakumovic-Hormander bound - optimal on the sphere)

ε(h) = O(h)

• if the set of periodic geodesics has zero measure (Duistermaat-Guillemin bound)

ε(h) = o(h)

• if the curvature is negative (Bérard bound)

ε(h) = O

(
h

log(1/h)

)

Open question: can one improve on the last bound ?

Comparison with RMT: if Nh = #spec(Lh) ∩ [0, 1] (i.e. exactly Nh eigenvalues in
[0, 1])

1

Nh
#spec(Lh) ∩ [a, b] =

volT∗M

(
p−1([a, b])

)
volT∗M

(
p−1([0, 1])

) + ε̃(Nh) =
n

2

∫ b

a
λ

n
2
−1dλ+ ε̃(Nh)

as long as b − a� ε̃(Nh) and with ε̃(Nh) either

O(N
− 1

n
h ) o(N

− 1
n

h ) O

 N
− 1

n
h

log Nh


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Examples of problems

2- Lq norms of eigenfunctions: Sogge’s estimates (see also Seger, Zelditch,...)

Lheh = eh =⇒ ||eh||q . h−µ(q)||eh||2

(here h−2 = λj is a large eigenvalue of L and eh = ej ) with

µ(q) = max

(
n − 1

4
−

n − 1

2q
,

n

2
−

n

q
−

1

2

)
, q ∈ [2,∞]

• Optimal on the sphere

• Don’t worry about the precise numerology (in this talk): just remember this is
better than (trivial) Sobolev bounds

||χ(Lh)||2→q .χ h−σ(q), σ(q) =
n

2
−

n

q
, χ ∈ C∞0 (R).

(think of χ(−h2∆) on Rn whose kernel is of the form h−nf
(

x−y
h

)
with f ∈ S(R))

• There are log improvments in negative curvature and stronger ones in arithmetic
cases (Iwaniec-Sarnak): if M = Γ\H2 and eh are Hecke eigenfunctions, then

||eh||∞ .ε h−
5

12
−ε||eh||2

(in dimension 2, µ(∞) = 1
2

)

Open question: can one get similar improvment in non arithmetic cases ?
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Basic strategy

For the previous problems, we need to analyze spectral projections 1[a,b](Lh)

• Weyl’s law:
#spec(Lh) ∩ [a, b] = tr

(
1[a,b](Lh)

)
• Sogge’s bounds:

||eh||q ≤ ||1[a,b](Lh)||2→q ||eh||L2 , a ≤ 1 ≤ b

Pbm: the fine structure of the projections is hard to touch.
→ Rather than 1[a,b](λ) (which is not smooth), we will consider

ρε(h)(λ) := ρ

(
λ

ε(h)

)
with suitable ρ ∈ S(R)
Principle of the proof of Sogge’s bounds : Choose ρ s.t. ρ(0) = 1 so that

ρε(h)(Lh − 1)eh = eh.

and suitably so that, with ε(h) = h,

||ρε(h)(Lh − 1)||2→q . h−µ(q)

Suitably means: ρ̂ is compactly supported in some [δ, 2δ], 0 < δ � 1
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Basic strategy
For the Weyl law: Let χ ∈ C∞0 be equal to 1 on [a, b]. Then

tr
[
1[a,b](Lh)

]
= tr

[
χ(Lh)1[a,b](Lh)

]

=
1

ε(h)
tr

[
χ(Lh)

(
1

ε(h)
ρε(h) ∗ 1[a,b]

)
(Lh)

]
+ R(h)

=

∫ b

a

1

ε(h)
tr

[
1

ε(h)
χ(Lh)ρε(h)(Lh − λ)

]
dλ+ R(h)

where
1

ε(h)
ρε(h)(Lh − λ) =

1

2πh

∫
R

ei t
h

(Lh−λ)ρ̂

(
t

T (h)

)
dt

with

T (h) =
h

ε(h)

Here we use the propagator ei t
h

Lh . Note that it solves the Schroedinger equation

ih∂t ei t
h

Lh = h2∆g ei t
h

Lh , ei t
h

Lh

∣∣∣
t=0

= I

Core of the proof: try to get a precise description over times |t| . T (h) of

ei t
h

(Lh−λ)χ(Lh)

Rem 1: We use the propagator ei t
h

Lh rather than the resolvent (Lh − z)−1

Rem 2: the control of R(h)(= O(h−nε(h))) is also based on this description



Basic strategy
For the Weyl law: Let χ ∈ C∞0 be equal to 1 on [a, b]. Then

tr
[
1[a,b](Lh)

]
= tr

[
χ(Lh)1[a,b](Lh)

]
=

1

ε(h)
tr

[
χ(Lh)

(
1

ε(h)
ρε(h) ∗ 1[a,b]

)
(Lh)

]
+ R(h)

=

∫ b

a

1

ε(h)
tr

[
1

ε(h)
χ(Lh)ρε(h)(Lh − λ)

]
dλ+ R(h)

where
1

ε(h)
ρε(h)(Lh − λ) =

1

2πh

∫
R

ei t
h

(Lh−λ)ρ̂

(
t

T (h)

)
dt

with

T (h) =
h

ε(h)

Here we use the propagator ei t
h

Lh . Note that it solves the Schroedinger equation

ih∂t ei t
h

Lh = h2∆g ei t
h

Lh , ei t
h

Lh

∣∣∣
t=0

= I

Core of the proof: try to get a precise description over times |t| . T (h) of

ei t
h

(Lh−λ)χ(Lh)

Rem 1: We use the propagator ei t
h

Lh rather than the resolvent (Lh − z)−1

Rem 2: the control of R(h)(= O(h−nε(h))) is also based on this description



Basic strategy
For the Weyl law: Let χ ∈ C∞0 be equal to 1 on [a, b]. Then

tr
[
1[a,b](Lh)

]
= tr

[
χ(Lh)1[a,b](Lh)

]
=

1

ε(h)
tr

[
χ(Lh)

(
1

ε(h)
ρε(h) ∗ 1[a,b]

)
(Lh)

]
+ R(h)

=

∫ b

a

1

ε(h)
tr

[
1

ε(h)
χ(Lh)ρε(h)(Lh − λ)

]
dλ+ R(h)

where
1

ε(h)
ρε(h)(Lh − λ) =

1

2πh

∫
R

ei t
h

(Lh−λ)ρ̂

(
t

T (h)

)
dt

with

T (h) =
h

ε(h)

Here we use the propagator ei t
h

Lh . Note that it solves the Schroedinger equation

ih∂t ei t
h

Lh = h2∆g ei t
h

Lh , ei t
h

Lh

∣∣∣
t=0

= I

Core of the proof: try to get a precise description over times |t| . T (h) of

ei t
h

(Lh−λ)χ(Lh)

Rem 1: We use the propagator ei t
h

Lh rather than the resolvent (Lh − z)−1

Rem 2: the control of R(h)(= O(h−nε(h))) is also based on this description



Basic strategy
For the Weyl law: Let χ ∈ C∞0 be equal to 1 on [a, b]. Then

tr
[
1[a,b](Lh)

]
= tr

[
χ(Lh)1[a,b](Lh)

]
=

1

ε(h)
tr

[
χ(Lh)

(
1

ε(h)
ρε(h) ∗ 1[a,b]

)
(Lh)

]
+ R(h)

=

∫ b

a

1

ε(h)
tr

[
1

ε(h)
χ(Lh)ρε(h)(Lh − λ)

]
dλ+ R(h)

where
1

ε(h)
ρε(h)(Lh − λ)

=
1

2πh

∫
R

ei t
h

(Lh−λ)ρ̂

(
t

T (h)

)
dt

with

T (h) =
h

ε(h)

Here we use the propagator ei t
h

Lh . Note that it solves the Schroedinger equation

ih∂t ei t
h

Lh = h2∆g ei t
h

Lh , ei t
h

Lh

∣∣∣
t=0

= I

Core of the proof: try to get a precise description over times |t| . T (h) of

ei t
h

(Lh−λ)χ(Lh)

Rem 1: We use the propagator ei t
h

Lh rather than the resolvent (Lh − z)−1

Rem 2: the control of R(h)(= O(h−nε(h))) is also based on this description



Basic strategy
For the Weyl law: Let χ ∈ C∞0 be equal to 1 on [a, b]. Then

tr
[
1[a,b](Lh)

]
= tr

[
χ(Lh)1[a,b](Lh)

]
=

1

ε(h)
tr

[
χ(Lh)

(
1

ε(h)
ρε(h) ∗ 1[a,b]

)
(Lh)

]
+ R(h)

=

∫ b

a

1

ε(h)
tr

[
1

ε(h)
χ(Lh)ρε(h)(Lh − λ)

]
dλ+ R(h)

where
1

ε(h)
ρε(h)(Lh − λ) =

1

2πh

∫
R

ei t
h

(Lh−λ)ρ̂

(
t

T (h)

)
dt

with

T (h) =
h

ε(h)

Here we use the propagator ei t
h

Lh . Note that it solves the Schroedinger equation

ih∂t ei t
h

Lh = h2∆g ei t
h

Lh , ei t
h

Lh

∣∣∣
t=0

= I

Core of the proof: try to get a precise description over times |t| . T (h) of

ei t
h

(Lh−λ)χ(Lh)

Rem 1: We use the propagator ei t
h

Lh rather than the resolvent (Lh − z)−1

Rem 2: the control of R(h)(= O(h−nε(h))) is also based on this description



Basic strategy
For the Weyl law: Let χ ∈ C∞0 be equal to 1 on [a, b]. Then

tr
[
1[a,b](Lh)

]
= tr

[
χ(Lh)1[a,b](Lh)

]
=

1

ε(h)
tr

[
χ(Lh)

(
1

ε(h)
ρε(h) ∗ 1[a,b]

)
(Lh)

]
+ R(h)

=

∫ b

a

1

ε(h)
tr

[
1

ε(h)
χ(Lh)ρε(h)(Lh − λ)

]
dλ+ R(h)

where
1

ε(h)
ρε(h)(Lh − λ) =

1

2πh

∫
R

ei t
h

(Lh−λ)ρ̂

(
t

T (h)

)
dt

with

T (h) =
h

ε(h)

Here we use the propagator ei t
h

Lh .

Note that it solves the Schroedinger equation

ih∂t ei t
h

Lh = h2∆g ei t
h

Lh , ei t
h

Lh

∣∣∣
t=0

= I

Core of the proof: try to get a precise description over times |t| . T (h) of

ei t
h

(Lh−λ)χ(Lh)

Rem 1: We use the propagator ei t
h

Lh rather than the resolvent (Lh − z)−1

Rem 2: the control of R(h)(= O(h−nε(h))) is also based on this description



Basic strategy
For the Weyl law: Let χ ∈ C∞0 be equal to 1 on [a, b]. Then

tr
[
1[a,b](Lh)

]
= tr

[
χ(Lh)1[a,b](Lh)

]
=

1

ε(h)
tr

[
χ(Lh)

(
1

ε(h)
ρε(h) ∗ 1[a,b]

)
(Lh)

]
+ R(h)

=

∫ b

a

1

ε(h)
tr

[
1

ε(h)
χ(Lh)ρε(h)(Lh − λ)

]
dλ+ R(h)

where
1

ε(h)
ρε(h)(Lh − λ) =

1

2πh

∫
R

ei t
h

(Lh−λ)ρ̂

(
t

T (h)

)
dt

with

T (h) =
h

ε(h)

Here we use the propagator ei t
h

Lh . Note that it solves the Schroedinger equation

ih∂t ei t
h

Lh = h2∆g ei t
h

Lh , ei t
h

Lh

∣∣∣
t=0

= I

Core of the proof: try to get a precise description over times |t| . T (h) of

ei t
h

(Lh−λ)χ(Lh)

Rem 1: We use the propagator ei t
h

Lh rather than the resolvent (Lh − z)−1

Rem 2: the control of R(h)(= O(h−nε(h))) is also based on this description



Basic strategy
For the Weyl law: Let χ ∈ C∞0 be equal to 1 on [a, b]. Then

tr
[
1[a,b](Lh)

]
= tr

[
χ(Lh)1[a,b](Lh)

]
=

1

ε(h)
tr

[
χ(Lh)

(
1

ε(h)
ρε(h) ∗ 1[a,b]

)
(Lh)

]
+ R(h)

=

∫ b

a

1

ε(h)
tr

[
1

ε(h)
χ(Lh)ρε(h)(Lh − λ)

]
dλ+ R(h)

where
1

ε(h)
ρε(h)(Lh − λ) =

1

2πh

∫
R

ei t
h

(Lh−λ)ρ̂

(
t

T (h)

)
dt

with

T (h) =
h

ε(h)

Here we use the propagator ei t
h

Lh . Note that it solves the Schroedinger equation

ih∂t ei t
h

Lh = h2∆g ei t
h

Lh , ei t
h

Lh

∣∣∣
t=0

= I

Core of the proof: try to get a precise description over times |t| . T (h) of

ei t
h

(Lh−λ)χ(Lh)

Rem 1: We use the propagator ei t
h

Lh rather than the resolvent (Lh − z)−1

Rem 2: the control of R(h)(= O(h−nε(h))) is also based on this description



Basic strategy
For the Weyl law: Let χ ∈ C∞0 be equal to 1 on [a, b]. Then

tr
[
1[a,b](Lh)

]
= tr

[
χ(Lh)1[a,b](Lh)

]
=

1

ε(h)
tr

[
χ(Lh)

(
1

ε(h)
ρε(h) ∗ 1[a,b]

)
(Lh)

]
+ R(h)

=

∫ b

a

1

ε(h)
tr

[
1

ε(h)
χ(Lh)ρε(h)(Lh − λ)

]
dλ+ R(h)

where
1

ε(h)
ρε(h)(Lh − λ) =

1

2πh

∫
R

ei t
h

(Lh−λ)ρ̂

(
t

T (h)

)
dt

with

T (h) =
h

ε(h)

Here we use the propagator ei t
h

Lh . Note that it solves the Schroedinger equation

ih∂t ei t
h

Lh = h2∆g ei t
h

Lh , ei t
h

Lh

∣∣∣
t=0

= I

Core of the proof: try to get a precise description over times |t| . T (h) of

ei t
h

(Lh−λ)χ(Lh)

Rem 1: We use the propagator ei t
h

Lh rather than the resolvent (Lh − z)−1

Rem 2: the control of R(h)(= O(h−nε(h))) is also based on this description



Basic strategy
For the Weyl law: Let χ ∈ C∞0 be equal to 1 on [a, b]. Then

tr
[
1[a,b](Lh)

]
= tr

[
χ(Lh)1[a,b](Lh)

]
=

1

ε(h)
tr

[
χ(Lh)

(
1

ε(h)
ρε(h) ∗ 1[a,b]

)
(Lh)

]
+ R(h)

=

∫ b

a

1

ε(h)
tr

[
1

ε(h)
χ(Lh)ρε(h)(Lh − λ)

]
dλ+ R(h)

where
1

ε(h)
ρε(h)(Lh − λ) =

1

2πh

∫
R

ei t
h

(Lh−λ)ρ̂

(
t

T (h)

)
dt

with

T (h) =
h

ε(h)

Here we use the propagator ei t
h

Lh . Note that it solves the Schroedinger equation

ih∂t ei t
h

Lh = h2∆g ei t
h

Lh , ei t
h

Lh

∣∣∣
t=0

= I

Core of the proof: try to get a precise description over times |t| . T (h) of

ei t
h

(Lh−λ)χ(Lh)

Rem 1: We use the propagator ei t
h

Lh rather than the resolvent (Lh − z)−1

Rem 2: the control of R(h)(= O(h−nε(h))) is also based on this description



Basic strategy

We then approach ei t
h

Lhχ(Lh) using Fourier Integral Operators,

i.e. operators with
integral kernels of the form

Kh(t, x , y) = h−d(D)
∫
RD

e
i
h

F (t,x,y,Z)A(t, x , y ,Z , h)dZ , x , y ∈ M

where

I the phase F is given by the geodesic flow (also F ∈ C∞, Im(F ) ≥ 0)

I the amplitude has an asymptotic expansion

A ∼ A0 + h1/2A1 + hA2 + · · ·

One can then retrieve information on ρε(h)(Lh − λ)χ(Lh) by using stationary phase
asymptotics in

h−d(D)
∫
R

∫
RD

e
i
h

(
F (t,x,y,Z)−tλ

)
A(t, x , y ,Z , h)ρ̂

(
t

T (h)

)
dZdt

or for the trace

h−1−d(D)
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M

∫
R

∫
RD

e
i
h

(
F (t,x,x,Z)−tλ

)
A(t, x , x ,Z , h)ρ̂

(
t

T (h)

)
dZdtdvg (x)
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Basic strategy

In practice
Ak = O(ekγ|t|)

with eγ|t| an upper bound bound on Dφt ,

so we get an asymptotic expansion provided

h
1
2 eγ|t| � 1

Consequence: such approximations are in general limited to |t| ≤ c log(1/h)
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Relationship with the geodesic flow

Theorem [Propagator approximation] (B. 2016+)

Let ψ ∈ C∞(M) be supported in a

coordinate patch U. The integral kernel of e−i t
h

Lhχ(Lh)ψ is well approximated by

Kh(t, x , y) = h−
3n
2

∫ ∫
T∗U

A(t, x , y , z, ζ, h) exp
i

h
F (t, x , y , z, ζ)dzdζ

for times |t| ≤ c| log h|. The phase reads

F = tp(z, ζ) + ζt ·W x
zt +

1

2

〈
Γt

(z,ζ)W x
zt ,W

x
zt

〉
zt
− ζ ·W y

z +
1

2

〈
Γ̃0

(z,ζ)
W y

z ,W
y
z

〉
z

where Γt
(z,ζ)

: Tzt MC → Tzt MC is complex linear, symmetric with positive definite

imaginary part, and solves

∇żt Γt
(z,ζ) = −Rzt

(
., ż t

)
ż t −

(
Γt

(z,ζ)

)2
, Γ0

(z,ζ) = i(g jk (z)) + real correction

where Rzt is the Riemann tensor at z t〈
Γ̃0

(z,ζ)
W y

z ,W
y
z

〉
z

= −Re
〈

Γ0
(z,ζ)W y

z ,W
y
z

〉
z

+ i Im
〈

Γ0
(z,ζ)W y

z ,W
y
z

〉
z

and
y = expz (W y

z )



Relationship with the geodesic flow

Theorem [Propagator approximation] (B. 2016+) Let ψ ∈ C∞(M) be supported in a

coordinate patch U. The integral kernel of e−i t
h

Lhχ(Lh)ψ

is well approximated by

Kh(t, x , y) = h−
3n
2

∫ ∫
T∗U

A(t, x , y , z, ζ, h) exp
i

h
F (t, x , y , z, ζ)dzdζ

for times |t| ≤ c| log h|. The phase reads

F = tp(z, ζ) + ζt ·W x
zt +

1

2

〈
Γt

(z,ζ)W x
zt ,W

x
zt

〉
zt
− ζ ·W y

z +
1

2

〈
Γ̃0

(z,ζ)
W y

z ,W
y
z

〉
z

where Γt
(z,ζ)

: Tzt MC → Tzt MC is complex linear, symmetric with positive definite

imaginary part, and solves
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coordinate patch U. The integral kernel of e−i t
h
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Kh(t, x , y) = h−
3n
2
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T∗U
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i
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for times |t| ≤ c| log h|. The phase reads

F = tp(z, ζ) + ζt ·W x
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An idea of proof: the Bérard bound

Stationary phase in the integral

h−
3n
2
−1
∫ ∫ ∫

ρ̂

(
t

T (h)

)
A(t, x , x , z, ζ, h) exp

i

h

(
tλ− F (t, x , x , z, ζ)

)
dtdzdζdvg (x)

Critical points given by the conditions:

Im(F (t, x , x , z, ζ)) = 0 and dt,z,ζ,x (tλ− F (t, x , x , z, ζ)) = 0

i.e.
z = z t = x , p(z, ζ) = λ, ζt = ζ

In particular

φt (z, ζ) = (z, ζ) =⇒ t is the length of a closed geodesic (if λ = 1)

Main contribution of the trivial period t = 0:

h−n
∫

p=λ
dΣ = O(h−n)

Main contribution of non trivial periods: if T (h) = ε log(1/h) it is (at most)

O(h−
n
2
−O(ε)−1)� h−n (at least if n ≥ 3)
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Some problems in spectral geometry

Let (M, g) be a Riemannian manifold of dimension n. Let dvg be the natural measure
and ∆g be the Laplace-Beltrami operator, in local coordinates

dvg = |g(x)|dx1 · · · dxn, |g(x)| := det
(
gjk (x)

)1/2
(1)

∆g =
∑
j,k

g jk (x)∂xj ∂xk −
∑
i,j,k

g jk (x)Γi
jk (x)∂xi

where (g jk (x)) = (gjk (x))−1 and g =
∑

j,k gjk (x)dxj dxk .

Proposition. If M is closed (and connected), there exists an orthonormal basis (ϕj )j≥0

of eigenfunctions of ∆g

−∆gϕj = λjϕj , 0 = λ0 < λ1 ≤ λ2 ≤ · · · , λj ↑ +∞.
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Simple example: on Rn

χ(x)f (−h2∆)v(x) = (2πh)−n
∫ ∫

e
i
h

(x−y)·ξχ(x)f (|ξ|2)v(y)dydξ



Wave packets: a review of basic facts

Canonical example: gaussian wave packet

ψz,ζ(x) = π−
n
4 exp

(
iζ · (x − z)−

|x − z|2

2

)
, x ∈ Rn

localized around (or centered at) z in space, and near ζ in momentum

(
Fψz,ζ

)
(ξ) = π−

n
4 exp

(
−iz · ξ −

|ξ − ζ|2

2

)
Think of (z, ζ) as a point in phase space T∗Rn

We call ψz,ζ a Gaussian wave packet centered at (z, ζ)

Main interests (for us) :

1. One can write ”waves” (i.e. functions) as superposition of wave packets

2. The evolution of a wave packet under a Schrödinger flow can be described rather
explicitly (in a suitable regime)
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Wave packets: a review of basic facts

1. Wave packet decomposition

Define the Bargmann transform of a function u by

Bu(z, ζ) =

∫
Rn
ψz,ζ(x)u(x)dx

Then, one has the inversion formula

u = (2π)−nB∗Bu

In other words

u(x) = (2π)−n
∫ ∫

T∗Rn
(Bu)(z, ζ)ψz,ζ(x)dzdζ

is a decomposition of u as a (continuous) sum of wave packets
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Wave packets: a review of basic facts

2. Evolution of wave packets under the Schrödinger equation

For quadratic potentials, one has exact formulas. Set

pν(x , ξ) =
|ξ|2

2
+ ν
|x |2

2
, Hν = −

∆

2
+ ν
|x |2

2
, ν = 0,+1,−1

Then

e−itHνψz,ζ(x) = π−
n
4 γt
ν exp i

(
S t
ν + ζt

ν · (x − z t
ν) +

Γt
ν

2
(x − z t

ν) · (x − z t
ν)

)
where (

z t
ν , ζ

t
ν

)
= Φt

pν (z, ζ), S t
ν =

∫ t

0
żs
ν · ζs

ν − pν(zs
ν , ζ

s
ν)ds

and γt
ν , Γt

ν are given in term of the differential of flow Φt
pν ,

DΦt
pν (z, ζ) =

(
At
ν Bt

ν
C t
ν Dt

ν

)
,

by
Γt
ν = (C t

ν + iDt
ν)(At

ν + iBt
ν)−1, γt

ν = det(At
ν + iBt

ν)−1/2.
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Wave packets: a review of basic facts

Explicitly, we obtain

Γt
0 =

t + i

1 + t2
In, γt

0 = (1 + it)−
n
2

Γt
1 = iIn, γt

1 = (cos t + i sin t)−
n
2

Γt
−1 =

sinh(2t) + i

cosh(2t)
In, γt

−1 = (cosh t + i sinh t)−
n
2

This allows in particular to read the profile and spreading of the packets:

|eitH0ψz,ζ(x)| =
1

(π(1 + t2))
n
4

exp

(
−
|x − z t

0 |2

2(1 + t2)

)
|eitH1ψz,ζ(x)| =

1

π
n
4

exp

(
−
|x − z t

1 |2

2

)
|eitH−1ψz,ζ(x)| =

1

(π cosh(2t))
n
4

exp

(
−
|x − z t

−1|2

2 cosh(2t)

)
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Wave packets for semiclassical Schrödinger operators

From now on, we use a semiclassical normalization

ψh
z,ζ(x) = (πh)−

n
4 exp

(
i

h
ζ · (x − z)−

|x − z|2

2h

)

=⇒ Localization around z on a scale h1/2

Consider a semiclassical Schrödinger operator on Rn

H(h) = −
h2∆

2
+ V (x), p(x , ξ) =

|ξ|2

2
+ V (x),

with V ∈ C∞(Rn,R). Denote

(z t , ζt ) = Φt
p(z, ζ),

(
At Bt

C t Dt

)
:= DΦt

p(z, ζ)

and

S t =

∫ t

0
żs · ζs − p(zs , ζs )ds

Proposition [action of the symplectic group on the Siegel half space]
At + iBt is invertible and

Γt := (C t + iDt )(At + iBt )−1

is symmetric complex, with positive definite imaginary part
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żs · ζs − p(zs , ζs )ds

Proposition [action of the symplectic group on the Siegel half space]
At + iBt is invertible and

Γt := (C t + iDt )(At + iBt )−1

is symmetric complex, with positive definite imaginary part



Wave packets for semiclassical Schrödinger operators

From now on, we use a semiclassical normalization

ψh
z,ζ(x) = (πh)−

n
4 exp

(
i

h
ζ · (x − z)−

|x − z|2

2h

)
=⇒ Localization around z on a scale h1/2

Consider a semiclassical Schrödinger operator on Rn

H(h) = −
h2∆

2
+ V (x), p(x , ξ) =

|ξ|2

2
+ V (x),

with V ∈ C∞(Rn,R).

Denote

(z t , ζt ) = Φt
p(z, ζ),

(
At Bt

C t Dt

)
:= DΦt

p(z, ζ)

and

S t =

∫ t

0
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Wave packets for semiclassical Schrödinger operators

Theorem (Hagedorn-Joye, Combescure-Robert) In the limit h→ 0, and under
general conditions on V ,

e−i t
h

H(h)ψh
z,ζ(x)

is well approximated by

(πh)−
n
4 γtAh

t (x) exp
i

h

(
S t + ζt · (x − z t ) +

Γt

2
(x − z t ) · (x − z t )

)

for times |t| ≤ C0| ln h| (C0 dynamical constant). Here γt = det(At + iBt )−1/2. The
amplitude is of the form

Ah
t (x) ∼ 1 +

∑
j≥1

h
j
2 Aj

(
z, ζ, t,

x − z t

h
1
2

)

with Aj (z, ζ, t,X ) polynomial of degree ≤ 3j in X , with coeff. depending on the
classical trajectory t 7→ (z t , ζt ) and the Taylor expansion of V at z t

Rem. The polynomial growth of the amplitude in (x − z t )/h
1
2 is beaten by the

exponential decay of the exponential since Im(Γt ) is positive definite
=⇒ Concentration near the classical trajectory, at least as long as Im(Γt )� h
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Wave packets in semiclassical analysis
Sketch of proof.

Lemma The matrix Γt satisfies the Ricatti equation

Γ̇t = −V (2)(z t )− (Γt )2, Γ0 = iIn,

and the function γt satisfies

γ̇t = −
tr(Γt )

2
γt .

Set

ϕ := S t + ζt · (x − z t ) +
Γt

2
(x − z t ) · (x − z t ).

Then

H(h)γt e
i
h
ϕ =

[(
ϕ̇+

∇xϕ · ∇xϕ

2
+ V (x)

)
− ih

(
γ̇t

γt
+

∆ϕ

2

)]
γt e

i
h
ϕ

=

[
V (x)− V (z t )− V (1)(z t ) · (x − z t )−

V (2)(z t )

2
(x − z t ) · (x − z t )

]
γt e

i
h
ϕ

= O
(
|x − z t |3

)
γt e

i
h
ϕ

= h3/2O

(
|x − z t |3

h3/2

)
γt e

i
h
ϕ
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Wave packets on Riemannian manifolds

Goal: to emulate the construction on Rn

Previous related works:

I Construction of quasimodes: by propagating a single wave packet along a closed
geodesic (Babich-Lazutkin, Ralston, Paul-Uribe, Nonnenmacher-Eswarathasan...).
Allows to use Fermi coordinates.

I More general propagation results: Paul-Uribe, Guillemin-Uribe-Wang:
qualitative description of wave packets and their evolutions (for Hamiltonians
with non homogeneous symbols). General but not so explicit, using local
coordinates and given for finite times

Motivations and interests:

1. Consider more than the propagation along a single trajectory ⇒ vary (z, ζ)

2. Get an (at most as possible) intrinsinc description of wave packets propagation

3. Get (relatively) explicit approximation of eitH(h)/h as a single integral, without
need to go to the universal cover, up to |t| ≤ C0| log h|

4. See e.g. quite explicitly the effect of (negative) curvature

5. ...
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Wave packets on Riemannian manifolds

Let (Mn, g) be a Riemannian manifold with bounded geometry

i.e.

1. injectivity radius bounded from below by r0 > 0

2. all covariant derivatives of the Riemann curvature tensor bounded on M

3. complete (for simplicity)

Example. Any closed Riemannian manifold

Lemma [Inverse exponential map close to the diagonal of M ×M] If dg (z,m) < r0,
there is a unique W m

z ∈ Tz M such that

m = expz

(
W m

z

)
.

For fixed m, z 7→W m
z is a vector field and one can expand its covariant derivative

∇W m
z ∼ −I +

1

3
Rz (.,W m

z ) W m
z +

1

12
(∇R)z (W m

z ; .,W m
z )W m

z + · · ·

All tensors in this expansion are bounded (similar result for higher covariant
derivatives)

Rem: on Rn, W m
z = m − z.
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Example. Any closed Riemannian manifold
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Wave packets on Riemannian manifolds

Consider V ∈ C∞(M,R) and

H(h) := −h2 ∆g

2
+ V

(z t , ζt ) = Φt (z, ζ), Hamiltonian flow of
|ξ|2m

2
+ V (m)

Proposition. Let U be a coordinate patch, with coordinates y1, . . . , yn. Along each
trajectory starting at (z, ζ) ∈ T∗U, one can define intrinsincally

Γt : Tzt MC → Tzt MC, where Tzt MC = Tzt M ⊗ C

(i.e. Γt is a complex tensor along the curve t 7→ z t ) which is symmetric〈
Γt X ,Y

〉
zt =

〈
X , Γt Y

〉
zt , X ,Y ∈ Tzt M

has positive definite imaginary part

Im
〈
Γt X ,X

〉
zt > 0, X 6= 0, X ∈ Tzt M

and satisfies the Ricatti equation

∇żt Γt = −Hess(V )zt − Rzt

(
., ż t

)
ż t −

(
Γt
)2

where Rzt is the Riemann tensor at z t
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., ż t

)
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ż t −

(
Γt
)2

where Rzt is the Riemann tensor at z t



Wave packets on Riemannian manifolds

Consider V ∈ C∞(M,R) and

H(h) := −h2 ∆g

2
+ V

(z t , ζt ) = Φt (z, ζ), Hamiltonian flow of
|ξ|2m

2
+ V (m)

Proposition. Let U be a coordinate patch, with coordinates y1, . . . , yn. Along each
trajectory starting at (z, ζ) ∈ T∗U, one can define intrinsincally

Γt : Tzt MC → Tzt MC, where Tzt MC = Tzt M ⊗ C

(i.e. Γt is a complex tensor along the curve t 7→ z t ) which is symmetric〈
Γt X ,Y

〉
zt =

〈
X , Γt Y

〉
zt , X ,Y ∈ Tzt M

has positive definite imaginary part

Im
〈
Γt X ,X

〉
zt > 0, X 6= 0, X ∈ Tzt M

and satisfies the Ricatti equation
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Wave packets on Riemannian manifolds

Proof.
To construct Γt on Rn, we have used the natural identifications

T(z,ζ)(T∗Rn) = Rn ⊕ Rn, T(zt ,ζt )(T∗Rn) = Rn ⊕ Rn

How to proceed on a manifold ?

1. At starting points (z, ζ) with z ∈ U, we split

T(z,ζ)(T∗M) ≈ Rn
y ⊕ Rn

η

using the (symplectic) coordinates (y1, . . . , yn, η1, . . . , ηn) on T∗U

2. At points (z t , ζt ), we use the (global) identification Ig : T∗M → TM

Ig (z t , ζt ) = (z t , ż t )

and split along horizontal and vertical spaces

T(zt ,żt )(Ig T∗M) = H(zt ,żt ) ⊕ V(zt ,żt )

This gives a natural block decomposition

d
(
Ig ◦ Φt

)
=

(
LA LB

LC LD

)
: Rn

y ⊕ Rn
η →H(zt ,żt ) ⊕ V(zt ,żt )
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Wave packets on Riemannian manifolds

Proof (continued). One can then define(
LC + iLD

)(
LA + iLB

)−1
: HC

(zt ,żt ) → V
C
(zt ,żt )

and then define Γt by composition with the natural isomorphisms

Tzt MC →HC
(zt ,żt ), VC

(zt ,żt ) → Tzt MC

More concretely, using local coordinates (x1, . . . , xn) near z t , the matrix of Γt reads

G−1(C t + iDt )(At + iBt )−1 − G−1Σt

with
G−1 = (g ij (x t )), Σt

ij =
∑
k,l

gkl (x t )Γl
ij (x t )ẋ t

k , x t = x(z t )

and (
At Bt

C t Dt

)
=

(
∂x t/∂y ∂x t/∂η
∂ξt/∂y ∂ξt/∂η

)
=⇒ Symmetry of Γt , positivity of Im(Γt ) + Ricatti equation by direct computation #

Rem. If (ỹ1, . . . , ỹn) are other coordinates on U, the matrix of Γt is changed into

G−1
(
C̃ t + D̃t Z

)(
Ãt + B̃t Z

)−1 − G−1Σt , Z =

(
∂η̃

∂y
+ i

∂η̃

∂η

)(
∂ỹ

∂y
+ i

∂ỹ

∂η

)−1
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∂ỹ

∂y
+ i

∂ỹ
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(zt ,żt ) → Tzt MC

More concretely, using local coordinates (x1, . . . , xn) near z t , the matrix of Γt reads

G−1(C t + iDt )(At + iBt )−1 − G−1Σt

with
G−1 = (g ij (x t )), Σt

ij =
∑
k,l

gkl (x t )Γl
ij (x t )ẋ t
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Wave packets on Riemannian manifolds
Definition of gaussian wave packets

Let ρ ∈ C∞0 (−r0, r0), equal to 1 near 0.

Ψh
z,ζ(m) := (πh)−

n
4 γ0 exp

i

h

(
ζ ·W m

z +
1

2
〈Γ0W m

z ,W
m
z 〉z

)
ρ (dg (z,m)) ,

for m ∈ M and (z, ζ) ∈ T∗U (i.e. ζ ∈ T∗z U)

γ0 = det
(
gjk (y(z))

)− 1
4

Rem. Ψh
z,ζ(m) = 0 if dg (z,m) ≥ r0.

Proposition [Wave packet decomposition - Approximate Bargmann transform] Set

Bhu(z, ζ) :=
〈

Ψh
z,ζ , u

〉
L2(M)

, u ∈ C∞0 (U)

Then

(2πh)−nB∗h Bhu = a(h)u =
(

1 + h
1
2 a1 + h1a2 + · · ·

)
u

with a(h), a1, a2, . . . ∈ C∞, i.e.

(2πh)−n
∫ ∫

T∗U
Bhu(z, ζ)Ψh

z,ζdzdζ = a(h)u
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Wave packets on Riemannian manifolds

Theorem [Propagation of gaussian wave packets]

In the limit h→ 0, and under
general conditions on V (e.g. all covariant derivatives bounded),

e−i t
h

H(h)ψh
z,ζ(m)

is well approximated by

(πh)−
n
4 γtAh

t (x) exp
i

h

(
S t + ζt ·W m

zt +
1

2

〈
Γt W m

zt ,W
m
zt

〉
zt

)
ρ
(
dg (zt ,m)

)
with

γt = det(gjk (x t ))−1/4det(At + iBt )−1/2

and an amplitude of the form

Ah
t (x) ∼ 1 +

∑
j≥1

h
j
2 Tj

(
t, z t , ζt ,

W m
zt

h
1
2

)

for times |t| ≤ C0| ln h| with Tj (t, z t , ζt , .) polynomial (i.e. sum of tensors) of degree
at most 3j , depending on the classical trajectory and the Taylor expansions of V and
W m
. at z t .
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Wave packets on Riemannian manifolds

Remark on the proof: The transport equations

are of the form

(∇żt T )(., . . . , .︸ ︷︷ ︸
k factors

) + T [Γt ·, . . .] + · · ·+ T [. . . , Γt ·]︸ ︷︷ ︸
k terms

= F [., . . . , .]

which turns out to be equivalent to

d

dt
(T [Et ·, . . . ,Et ·]) = F [Et ·, . . . ,Et ·]

with Et := dπ(LA + iLB ) : Cn → Tzt M ⊗ C (dπ = projection from the horizontal
space at (z t , ż t ) to the tangent space at z t )

=⇒ Control on the exponential growth in time of Tj (t, z t , ζt , .).
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Wave packets on Riemannian manifolds

Theorem [Propagator approximation]

If Ah is a pseudodifferential operator supported

in U, with principal symbol χ, then (the kernel of) e−i t
h

H(h)Ah is well approximated by

K h
t (m,m′) = h−

3n
2

∫ ∫
T∗U

bh(t, z, ζ,m,m′) exp
i

h
F (t, z, ζ,m,m′)dzdζ

for times |t| ≤ C0| log h|. The phase reads
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(z,ζ) + ζt ·W m
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1
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(z,ζ)W m′
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The amplitude bh(t, z, ζ,m,m′) reads b0(t, z, ζ,m,m′) + Ot (h1/2),

b0 = det
(
(gjk (x t ))1/2(At + iBt )

)− 1
2 det

(
gjk (y))

)− 1
4 χ(z, ζ)ρ

(
dg (z,m′)

)
ρ
(
dg (z t ,m)

)
Proof:

e−i t
h

H(h)Ahu = (2πh)−n
∫ ∫

T∗U
e−i t

h
H(h)Ψh

z,ζ

〈
A∗h a−1

h Ψh
z,ζ , u

〉
L2(M)

dzdζ
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