On some problems and techniques in spectral geometry

Jean-Marc Bouclet Institut de Mathématiques de Toulouse

January 8, 2016

Outline of the talk

- 1. Background on Riemannian geometry
- 2. Examples of problems in spectral geometry

- 3. Basic strategy to handle these questions
- 4. Relationship with the geodesic flow
- 5. An idea of proof

Let (M^n, g) be a Riemannian manifold.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Laplacian:

Let (M^n, g) be a Riemannian manifold.

• Laplacian: writing $g = \sum_{j,k} g_{jk}(x) dx_j dx_k$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Let (M^n, g) be a Riemannian manifold.

• Laplacian: writing $g = \sum_{j,k} g_{jk}(x) dx_j dx_k$ and $(g^{jk}(x)) = (g_{jk}(x))^{-1}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Let (M^n, g) be a Riemannian manifold.

• Laplacian: writing $g = \sum_{j,k} g_{jk}(x) dx_j dx_k$ and $(g^{jk}(x)) = (g_{jk}(x))^{-1}$

$$\Delta_{g} = \sum_{j,k} g^{jk}(x) \partial_{x_{j}} \partial_{x_{k}} - \sum_{i,j,k} g^{jk}(x) \Gamma^{i}_{jk}(x) \partial_{x_{i}},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Let (M^n, g) be a Riemannian manifold.

• Laplacian: writing $g = \sum_{j,k} g_{jk}(x) dx_j dx_k$ and $(g^{jk}(x)) = (g_{jk}(x))^{-1}$

$$\Delta_{g} = \sum_{j,k} g^{jk}(x) \partial_{x_{j}} \partial_{x_{k}} - \sum_{i,j,k} g^{jk}(x) \Gamma^{i}_{jk}(x) \partial_{x_{i}},$$

Riemannian measure:

$$dv_g = |g(x)|dx_1 \cdots dx_n, \qquad |g(x)| := \det(g_{jk}(x))^{1/2}$$

- 10

Let (M^n, g) be a Riemannian manifold.

• Laplacian: writing $g = \sum_{j,k} g_{jk}(x) dx_j dx_k$ and $(g^{jk}(x)) = (g_{jk}(x))^{-1}$

$$\Delta_{g} = \sum_{j,k} g^{jk}(x) \partial_{x_{j}} \partial_{x_{k}} - \sum_{i,j,k} g^{jk}(x) \Gamma^{i}_{jk}(x) \partial_{x_{i}},$$

Riemannian measure:

$$dv_g = |g(x)|dx_1\cdots dx_n, \qquad |g(x)| := \det(g_{jk}(x))^{1/2}$$

Principal symbol:

$$p(x,\xi) = \sum_{j,k} g^{jk}(x)\xi_j\xi_k.$$

- 10

Invariantly defined as a function on T^*M (locally $M \times \mathbb{R}^n$)

Let (M^n, g) be a Riemannian manifold.

• Laplacian: writing $g = \sum_{j,k} g_{jk}(x) dx_j dx_k$ and $(g^{jk}(x)) = (g_{jk}(x))^{-1}$

$$\Delta_{g} = \sum_{j,k} g^{jk}(x) \partial_{x_{j}} \partial_{x_{k}} - \sum_{i,j,k} g^{jk}(x) \Gamma^{i}_{jk}(x) \partial_{x_{i}},$$

Riemannian measure:

$$dv_g = |g(x)|dx_1\cdots dx_n, \qquad |g(x)| := \det(g_{jk}(x))^{1/2}$$

Principal symbol:

$$p(x,\xi) = \sum_{j,k} g^{jk}(x)\xi_j\xi_k.$$

Invariantly defined as a function on T^*M (locally $M \times \mathbb{R}^n$)

• Measure on T^*M : $dx_1 \cdots dx_n d\xi_1 \cdots d\xi_n$

Let (M^n, g) be a Riemannian manifold.

• Laplacian: writing $g = \sum_{j,k} g_{jk}(x) dx_j dx_k$ and $(g^{jk}(x)) = (g_{jk}(x))^{-1}$

$$\Delta_{g} = \sum_{j,k} g^{jk}(x) \partial_{x_{j}} \partial_{x_{k}} - \sum_{i,j,k} g^{jk}(x) \Gamma^{i}_{jk}(x) \partial_{x_{i}},$$

Riemannian measure:

$$dv_g = |g(x)|dx_1\cdots dx_n, \qquad |g(x)| := \det(g_{jk}(x))^{1/2}$$

Principal symbol:

$$p(x,\xi) = \sum_{j,k} g^{jk}(x)\xi_j\xi_k.$$

Invariantly defined as a function on T^*M (locally $M \times \mathbb{R}^n$)

• Measure on T^*M : $dx_1 \cdots dx_n d\xi_1 \cdots d\xi_n$

Rem: setting $\partial_x = (\partial_{x_1}, \ldots, \partial_{x_n})$,

$$\Delta_g = p(x, \partial_x) +$$
lower order terms (in ∂_x)

• Geodesic flow: $\phi^t : T^*M \to T^*M$, i.e. $\phi^t(x,\xi) := (x^t,\xi^t)$ with

$$\dot{x}_j^t = \frac{\partial \rho}{\partial \xi_j}(x^t, \xi^t), \qquad \dot{\xi}_j^t = -\frac{\partial \rho}{\partial x_j}(x^t, \xi^t) \qquad (x^t, \xi^t)_{|t=0} = (x, \xi)$$

The curves $t \mapsto x^t$ are the geodesics (i.e. locally length minimizing) on M

• Geodesic flow: $\phi^t : T^*M \to T^*M$, i.e. $\phi^t(x,\xi) := (x^t,\xi^t)$ with

$$\dot{x}_j^t = \frac{\partial \rho}{\partial \xi_j}(x^t, \xi^t), \qquad \dot{\xi}_j^t = -\frac{\partial \rho}{\partial x_j}(x^t, \xi^t) \qquad (x^t, \xi^t)_{|t=0} = (x, \xi)$$

The curves $t \mapsto x^t$ are the geodesics (i.e. locally length minimizing) on MLet

$$L := -\Delta_g$$

Fact: If M is compact, there is an orthonormal basis of $L^2(M, dv_g)$ of eigenfunctions of L:

$$Le_j = \lambda_j e_j, \qquad 0 \le \lambda_0 \le \lambda_1 \le \lambda_2 \le \cdots \qquad \lambda_j \uparrow +\infty.$$

• Geodesic flow: $\phi^t : T^*M \to T^*M$, i.e. $\phi^t(x,\xi) := (x^t,\xi^t)$ with

$$\dot{x}_j^t = \frac{\partial \rho}{\partial \xi_j}(x^t, \xi^t), \qquad \dot{\xi}_j^t = -\frac{\partial \rho}{\partial x_j}(x^t, \xi^t) \qquad (x^t, \xi^t)_{|t=0} = (x, \xi)$$

The curves $t \mapsto x^t$ are the geodesics (i.e. locally length minimizing) on MLet

$$L := -\Delta_g$$

Fact: If M is compact, there is an orthonormal basis of $L^2(M, dv_g)$ of eigenfunctions of L:

$$Le_j = \lambda_j e_j, \qquad 0 \le \lambda_0 \le \lambda_1 \le \lambda_2 \le \cdots \qquad \lambda_j \uparrow +\infty.$$

Purpose of spectral geometry/semiclassical analysis: to get information on

Quantum data: λ_j and/or e_j

• Geodesic flow: $\phi^t : T^*M \to T^*M$, i.e. $\phi^t(x,\xi) := (x^t,\xi^t)$ with

$$\dot{x}_j^t = \frac{\partial \rho}{\partial \xi_j}(x^t, \xi^t), \qquad \dot{\xi}_j^t = -\frac{\partial \rho}{\partial x_j}(x^t, \xi^t) \qquad (x^t, \xi^t)_{|t=0} = (x, \xi)$$

The curves $t \mapsto x^t$ are the geodesics (i.e. locally length minimizing) on MLet

$$L := -\Delta_g$$

Fact: If M is compact, there is an orthonormal basis of $L^2(M, dv_g)$ of eigenfunctions of L:

$$Le_j = \lambda_j e_j, \qquad 0 \leq \lambda_0 \leq \lambda_1 \leq \lambda_2 \leq \cdots \qquad \lambda_j \uparrow +\infty.$$

Purpose of spectral geometry/semiclassical analysis: to get information on

Quantum data: λ_j and/or e_j

in term of

Classical data: principal symbol, geodesic flow,...

in the semiclassical (or high energy) limit $\lambda_j \to \infty$.

1- Distribution of eigenvalues: the Weyl law

1- Distribution of eigenvalues: the Weyl law

$$\#\{j \mid \lambda_j \leq \lambda\} = (2\pi)^{-n} \operatorname{vol}_g(M) \operatorname{vol}(\mathbb{B}^n) \lambda^{\frac{n}{2}} (1 + o(1)), \qquad \lambda \to \infty$$

1- Distribution of eigenvalues: the Weyl law

$$\#\{j \mid \lambda_j \leq \lambda\} = (2\pi)^{-n} \operatorname{vol}_g(M) \operatorname{vol}(\mathbb{B}^n) \lambda^{\frac{n}{2}} (1 + o(1)), \qquad \lambda \to \infty$$

Using the semiclassical normalization

$$L_h := h^2 L, \qquad \lambda =: h^{-2}$$

($h \sim$ effective Planck's constant), this is a special case of

$$\#\operatorname{spec}(L_h) \cap [a, b] = (2\pi h)^{-n} \operatorname{vol}_{T^*M} \left(p^{-1}([a, b]) \right) + h^{-n} \epsilon(h)$$

with a = 0 and b = 1 (global/macroscopic law).

1- Distribution of eigenvalues: the Weyl law

$$\#\{j \mid \lambda_j \leq \lambda\} = (2\pi)^{-n} \operatorname{vol}_g(M) \operatorname{vol}(\mathbb{B}^n) \lambda^{\frac{n}{2}} (1 + o(1)), \qquad \lambda \to \infty$$

Using the semiclassical normalization

$$L_h := h^2 L, \qquad \lambda =: h^{-2}$$

($h \sim$ effective Planck's constant), this is a special case of

$$\#\operatorname{spec}(L_h) \cap [a, b] = (2\pi h)^{-n} \operatorname{vol}_{T^*M} \left(p^{-1}([a, b]) \right) + h^{-n} \epsilon(h)$$

with a = 0 and b = 1 (global/macroscopic law).

Rem: Can be pushed to a microscopic law $(b-a\ll 1)$ as long as

$$\operatorname{vol}_{T^*M}\left(p^{-1}([a,b])\right) \gg \epsilon(h)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1- Distribution of eigenvalues: the Weyl law

$$\#\{j \mid \lambda_j \leq \lambda\} = (2\pi)^{-n} \operatorname{vol}_g(M) \operatorname{vol}(\mathbb{B}^n) \lambda^{\frac{n}{2}} (1 + o(1)), \qquad \lambda \to \infty$$

Using the semiclassical normalization

$$L_h := h^2 L, \qquad \lambda =: h^{-2}$$

 $(h \sim \text{effective Planck's constant})$, this is a special case of

$$\#\operatorname{spec}(L_h)\cap [a,b] = (2\pi h)^{-n} \operatorname{vol}_{T^*M} \left(p^{-1}([a,b])\right) + h^{-n} \epsilon(h)$$

with a = 0 and b = 1 (global/macroscopic law).

Rem: Can be pushed to a microscopic law $(b-a\ll 1)$ as long as

$$\operatorname{vol}_{T^*M}\left(p^{-1}([a,b])\right) \gg \epsilon(h)$$

Question How small is $\epsilon(h)$?

• in general (Avakumovic-Hormander bound - optimal on the sphere)

 $\epsilon(h) = O(h)$

• in general (Avakumovic-Hormander bound - optimal on the sphere)

$$\epsilon(h) = O(h)$$

• if the set of periodic geodesics has zero measure (Duistermaat-Guillemin bound)

$$\epsilon(h) = o(h)$$

(ロ)、(型)、(E)、(E)、 E) の(の)

• in general (Avakumovic-Hormander bound - optimal on the sphere)

$$\epsilon(h) = O(h)$$

• if the set of periodic geodesics has zero measure (Duistermaat-Guillemin bound)

$$\epsilon(h) = o(h)$$

• if the curvature is negative (Bérard bound)

$$\epsilon(h) = O\left(rac{h}{\log(1/h)}
ight)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• in general (Avakumovic-Hormander bound - optimal on the sphere)

$$\epsilon(h) = O(h)$$

• if the set of periodic geodesics has zero measure (Duistermaat-Guillemin bound)

$$\epsilon(h) = o(h)$$

• if the curvature is negative (Bérard bound)

$$\epsilon(h) = O\left(rac{h}{\log(1/h)}
ight)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Open question: can one improve on the last bound ?

• in general (Avakumovic-Hormander bound - optimal on the sphere)

$$\epsilon(h)=O(h)$$

• if the set of periodic geodesics has zero measure (Duistermaat-Guillemin bound)

$$\epsilon(h) = o(h)$$

• if the curvature is negative (Bérard bound)

$$\epsilon(h) = O\left(\frac{h}{\log(1/h)}\right)$$

Open question: can one improve on the last bound ?

Comparison with RMT: if $N_h = \# \operatorname{spec}(L_h) \cap [0, 1]$ (i.e. exactly N_h eigenvalues in [0, 1])

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

$$\frac{1}{N_h} \# \operatorname{spec}(L_h) \cap [a, b]$$

• in general (Avakumovic-Hormander bound - optimal on the sphere)

$$\epsilon(h) = O(h)$$

• if the set of periodic geodesics has zero measure (Duistermaat-Guillemin bound)

$$\epsilon(h) = o(h)$$

• if the curvature is negative (Bérard bound)

$$\epsilon(h) = O\left(\frac{h}{\log(1/h)}\right)$$

Open question: can one improve on the last bound ?

Comparison with RMT: if $N_h = \# \operatorname{spec}(L_h) \cap [0, 1]$ (i.e. exactly N_h eigenvalues in [0, 1])

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\frac{1}{N_h} \# \operatorname{spec}(L_h) \cap [a, b] = \frac{\operatorname{vol}_{\mathcal{T}^*M} (p^{-1}([a, b]))}{\operatorname{vol}_{\mathcal{T}^*M} (p^{-1}([0, 1]))} + \tilde{\epsilon}(N_h)$$

• in general (Avakumovic-Hormander bound - optimal on the sphere)

$$\epsilon(h) = O(h)$$

• if the set of periodic geodesics has zero measure (Duistermaat-Guillemin bound)

$$\epsilon(h) = o(h)$$

• if the curvature is negative (Bérard bound)

$$\epsilon(h) = O\left(\frac{h}{\log(1/h)}\right)$$

Open question: can one improve on the last bound ?

Comparison with RMT: if $N_h = \# \operatorname{spec}(L_h) \cap [0, 1]$ (i.e. exactly N_h eigenvalues in [0, 1])

$$\frac{1}{N_h} \# \operatorname{spec}(L_h) \cap [a, b] = \frac{\operatorname{vol}_{\mathcal{T}^*M} \left(p^{-1}([a, b]) \right)}{\operatorname{vol}_{\mathcal{T}^*M} \left(p^{-1}([0, 1]) \right)} + \tilde{\epsilon}(N_h) = \frac{n}{2} \int_a^b \lambda^{\frac{n}{2} - 1} d\lambda + \tilde{\epsilon}(N_h)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• in general (Avakumovic-Hormander bound - optimal on the sphere)

$$\epsilon(h)=O(h)$$

• if the set of periodic geodesics has zero measure (Duistermaat-Guillemin bound)

$$\epsilon(h) = o(h)$$

• if the curvature is negative (Bérard bound)

$$\epsilon(h) = O\left(\frac{h}{\log(1/h)}\right)$$

Open question: can one improve on the last bound ?

Comparison with RMT: if $N_h = \# \operatorname{spec}(L_h) \cap [0, 1]$ (i.e. exactly N_h eigenvalues in [0, 1])

$$\frac{1}{N_h} \# \operatorname{spec}(L_h) \cap [a, b] = \frac{\operatorname{vol}_{\mathcal{T}^*M}(p^{-1}([a, b]))}{\operatorname{vol}_{\mathcal{T}^*M}(p^{-1}([0, 1]))} + \tilde{\epsilon}(N_h) = \frac{n}{2} \int_a^b \lambda^{\frac{n}{2} - 1} d\lambda + \tilde{\epsilon}(N_h)$$

as long as $b - a \gg \tilde{\epsilon}(N_h)$ and with $\tilde{\epsilon}(N_h)$ either

$$O(N_h^{-\frac{1}{n}}) \qquad o(N_h^{-\frac{1}{n}}) \qquad O\left(\frac{N_h^{-\frac{1}{n}}}{\log N_h}\right)$$

2- L^q norms of eigenfunctions: Sogge's estimates (see also Seger, Zelditch,...)

2- L^q norms of eigenfunctions: Sogge's estimates (see also Seger, Zelditch,...)

 $L_h e_h = e_h \implies ||e_h||_q \lesssim h^{-\mu(q)} ||e_h||_2$

(here $h^{-2} = \lambda_i$ is a large eigenvalue of *L* and $e_h = e_i$)

2- L^q norms of eigenfunctions: Sogge's estimates (see also Seger, Zelditch,...)

 $L_h e_h = e_h \implies ||e_h||_q \lesssim h^{-\mu(q)} ||e_h||_2$

(here $h^{-2} = \lambda_j$ is a large eigenvalue of L and $e_h = e_j$) with

$$\mu(q) = \max\left(\frac{n-1}{4} - \frac{n-1}{2q}, \frac{n}{2} - \frac{n}{q} - \frac{1}{2}\right), \qquad q \in [2,\infty]$$

2- L^q norms of eigenfunctions: Sogge's estimates (see also Seger, Zelditch,...)

 $L_h e_h = e_h \implies ||e_h||_q \lesssim h^{-\mu(q)} ||e_h||_2$

(here $h^{-2} = \lambda_j$ is a large eigenvalue of L and $e_h = e_j$) with

$$\mu(q) = \max\left(\frac{n-1}{4} - \frac{n-1}{2q}, \frac{n}{2} - \frac{n}{q} - \frac{1}{2}\right), \qquad q \in [2,\infty]$$

• Optimal on the sphere

2- L^q norms of eigenfunctions: Sogge's estimates (see also Seger, Zelditch,...)

 $L_h e_h = e_h \implies ||e_h||_q \lesssim h^{-\mu(q)} ||e_h||_2$

(here $h^{-2} = \lambda_j$ is a large eigenvalue of L and $e_h = e_j$) with

$$\mu(q) = \max\left(\frac{n-1}{4} - \frac{n-1}{2q}, \frac{n}{2} - \frac{n}{q} - \frac{1}{2}\right), \qquad q \in [2,\infty]$$

Optimal on the sphere

• Don't worry about the precise numerology (in this talk): just remember this is better than (trivial) Sobolev bounds

 $||\chi(L_h)||_{2\to q} \lesssim_{\chi} h^{-\sigma(q)}, \qquad \sigma(q) = \frac{n}{2} - \frac{n}{q}, \qquad \chi \in C_0^\infty(\mathbb{R}).$

(think of $\chi(-h^2\Delta)$ on \mathbb{R}^n whose kernel is of the form $h^{-n}f\left(\frac{x-y}{h}\right)$ with $f \in \mathcal{S}(\mathbb{R})$)

2- L^q norms of eigenfunctions: Sogge's estimates (see also Seger, Zelditch,...)

 $L_h e_h = e_h \implies ||e_h||_q \lesssim h^{-\mu(q)} ||e_h||_2$

(here $h^{-2} = \lambda_j$ is a large eigenvalue of L and $e_h = e_j$) with

$$\mu(q) = \max\left(\frac{n-1}{4} - \frac{n-1}{2q}, \frac{n}{2} - \frac{n}{q} - \frac{1}{2}\right), \qquad q \in [2,\infty]$$

• Optimal on the sphere

• Don't worry about the precise numerology (in this talk): just remember this is better than (trivial) Sobolev bounds

$$||\chi(L_h)||_{2\to q} \lesssim_{\chi} h^{-\sigma(q)}, \qquad \sigma(q) = \frac{n}{2} - \frac{n}{q}, \qquad \chi \in C_0^{\infty}(\mathbb{R}).$$

(think of $\chi(-h^2\Delta)$ on \mathbb{R}^n whose kernel is of the form $h^{-n}f\left(\frac{x-y}{h}\right)$ with $f \in \mathcal{S}(\mathbb{R})$)

• There are log improvments in negative curvature

2- L^q norms of eigenfunctions: Sogge's estimates (see also Seger, Zelditch,...)

 $L_h e_h = e_h \implies ||e_h||_q \lesssim h^{-\mu(q)} ||e_h||_2$

(here $h^{-2} = \lambda_j$ is a large eigenvalue of L and $e_h = e_j$) with

$$\mu(q) = \max\left(\frac{n-1}{4} - \frac{n-1}{2q}, \frac{n}{2} - \frac{n}{q} - \frac{1}{2}\right), \qquad q \in [2,\infty]$$

Optimal on the sphere

• Don't worry about the precise numerology (in this talk): just remember this is better than (trivial) Sobolev bounds

$$||\chi(L_h)||_{2 \to q} \lesssim_{\chi} h^{-\sigma(q)}, \qquad \sigma(q) = \frac{n}{2} - \frac{n}{q}, \qquad \chi \in C_0^\infty(\mathbb{R}).$$

(think of $\chi(-h^2\Delta)$ on \mathbb{R}^n whose kernel is of the form $h^{-n}f\left(\frac{x-y}{h}\right)$ with $f \in \mathcal{S}(\mathbb{R})$)

• There are log improvments in negative curvature and stronger ones in arithmetic cases (Iwaniec-Sarnak): if $M = \Gamma \setminus \mathbb{H}^2$ and e_h are Hecke eigenfunctions, then

$$||e_h||_{\infty} \lesssim_{\epsilon} h^{-\frac{5}{12}-\epsilon} ||e_h||_2$$

(in dimension 2, $\mu(\infty) = \frac{1}{2}$)

2- L^q norms of eigenfunctions: Sogge's estimates (see also Seger, Zelditch,...)

 $L_h e_h = e_h \implies ||e_h||_q \lesssim h^{-\mu(q)} ||e_h||_2$

(here $h^{-2} = \lambda_j$ is a large eigenvalue of L and $e_h = e_j$) with

$$\mu(q) = \max\left(\frac{n-1}{4} - \frac{n-1}{2q}, \frac{n}{2} - \frac{n}{q} - \frac{1}{2}\right), \qquad q \in [2,\infty]$$

• Optimal on the sphere

• Don't worry about the precise numerology (in this talk): just remember this is better than (trivial) Sobolev bounds

$$||\chi(L_h)||_{2\to q} \lesssim_{\chi} h^{-\sigma(q)}, \qquad \sigma(q) = \frac{n}{2} - \frac{n}{q}, \qquad \chi \in C_0^{\infty}(\mathbb{R}).$$

(think of $\chi(-h^2\Delta)$ on \mathbb{R}^n whose kernel is of the form $h^{-n}f\left(\frac{x-y}{h}\right)$ with $f \in \mathcal{S}(\mathbb{R})$)

• There are log improvments in negative curvature and stronger ones in arithmetic cases (Iwaniec-Sarnak): if $M = \Gamma \setminus \mathbb{H}^2$ and e_h are Hecke eigenfunctions, then

$$||e_h||_{\infty} \lesssim_{\epsilon} h^{-\frac{5}{12}-\epsilon} ||e_h||_2$$

(in dimension 2, $\mu(\infty) = \frac{1}{2}$)

Open question: can one get similar improvment in non arithmetic cases ?

Basic strategy

For the previous problems, we need to analyze spectral projections $\mathbbm{1}_{[a,b]}(L_h)$

For the previous problems, we need to analyze spectral projections $\mathbb{1}_{[a,b]}(L_h)$ • Weyl's law:

$$\#\operatorname{spec}(L_h)\cap [a,b]=\operatorname{tr}\left(\mathbbm{1}_{[a,b]}(L_h)\right)$$

For the previous problems, we need to analyze spectral projections $\mathbb{1}_{[a,b]}(L_h)$ • Weyl's law:

$$\#\operatorname{spec}(L_h) \cap [a, b] = \operatorname{tr}\left(\mathbb{1}_{[a, b]}(L_h)\right)$$

• Sogge's bounds:

$$||e_h||_q \le ||\mathbb{1}_{[a,b]}(L_h)||_{2 \to q} ||e_h||_{L^2}, \qquad a \le 1 \le b$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

For the previous problems, we need to analyze spectral projections $\mathbbm{1}_{[a,b]}(L_h)$ \bullet Weyl's law:

$$\#\operatorname{spec}(L_h) \cap [a, b] = \operatorname{tr}\left(\mathbb{1}_{[a, b]}(L_h)\right)$$

• Sogge's bounds:

$$||e_h||_q \le ||\mathbb{1}_{[a,b]}(L_h)||_{2 \to q} ||e_h||_{L^2}, \qquad a \le 1 \le b$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Pbm: the fine structure of the projections is hard to touch.

For the previous problems, we need to analyze spectral projections $\mathbb{1}_{[a,b]}(L_h)$ • Weyl's law:

$$\#\operatorname{spec}(L_h) \cap [a, b] = \operatorname{tr}\left(\mathbb{1}_{[a, b]}(L_h)\right)$$

• Sogge's bounds:

$$||e_h||_q \le ||\mathbb{1}_{[a,b]}(L_h)||_{2 \to q} ||e_h||_{L^2}, \qquad a \le 1 \le b$$

Pbm: the fine structure of the projections is hard to touch.

 \rightarrow Rather than $\mathbb{1}_{[a,b]}(\lambda)$ (which is not smooth), we will consider

$$\rho_{\epsilon(h)}(\lambda) := \rho\left(\frac{\lambda}{\epsilon(h)}\right)$$

with suitable $\rho \in \mathcal{S}(\mathbb{R})$

For the previous problems, we need to analyze spectral projections $\mathbb{1}_{[a,b]}(L_h)$ • Weyl's law:

$$\#\operatorname{spec}(L_h) \cap [a, b] = \operatorname{tr}\left(\mathbb{1}_{[a, b]}(L_h)\right)$$

• Sogge's bounds:

$$||e_h||_q \le ||\mathbb{1}_{[a,b]}(L_h)||_{2 \to q} ||e_h||_{L^2}, \qquad a \le 1 \le b$$

Pbm: the fine structure of the projections is hard to touch.

 \rightarrow Rather than $\mathbb{1}_{[a,b]}(\lambda)$ (which is not smooth), we will consider

$$\rho_{\epsilon(h)}(\lambda) := \rho\left(\frac{\lambda}{\epsilon(h)}\right)$$

with suitable $\rho \in \mathcal{S}(\mathbb{R})$

Principle of the proof of Sogge's bounds : Choose ρ s.t. $\rho(0) = 1$ so that

$$\rho_{\epsilon(h)}(L_h-1)e_h=e_h.$$

and suitably so that, with $\epsilon(h) = h$,

$$||
ho_{\epsilon(h)}(L_h-1)||_{2
ightarrow q}\lesssim h^{-\mu(q)}$$

(日) (日) (日) (日) (日) (日) (日) (日)

For the previous problems, we need to analyze spectral projections $\mathbb{1}_{[a,b]}(L_h)$ • Weyl's law:

$$\#\operatorname{spec}(L_h) \cap [a, b] = \operatorname{tr}\left(\mathbb{1}_{[a, b]}(L_h)\right)$$

• Sogge's bounds:

$$||e_h||_q \le ||\mathbb{1}_{[a,b]}(L_h)||_{2 \to q} ||e_h||_{L^2}, \qquad a \le 1 \le b$$

Pbm: the fine structure of the projections is hard to touch.

 \rightarrow Rather than $\mathbb{1}_{[a,b]}(\lambda)$ (which is not smooth), we will consider

$$\rho_{\epsilon(h)}(\lambda) := \rho\left(\frac{\lambda}{\epsilon(h)}\right)$$

with suitable $\rho \in \mathcal{S}(\mathbb{R})$

Principle of the proof of Sogge's bounds : Choose ρ s.t. $\rho(0) = 1$ so that

$$\rho_{\epsilon(h)}(L_h-1)e_h=e_h.$$

and suitably so that, with $\epsilon(h) = h$,

$$||
ho_{\epsilon(h)}(L_h-1)||_{2
ightarrow q}\lesssim h^{-\mu(q)}$$

Suitably means: $\hat{
ho}$ is compactly supported in some $[\delta, 2\delta]$, $0 < \delta \ll 1$

For the Weyl law: Let $\chi \in C_0^\infty$ be equal to 1 on [a, b]. Then

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$\operatorname{tr} \left[\mathbb{1}_{[a,b]}(L_h) \right] = \operatorname{tr} \left[\chi(L_h) \mathbb{1}_{[a,b]}(L_h) \right]$$

For the Weyl law: Let $\chi \in C_0^\infty$ be equal to 1 on [a, b]. Then

$$\begin{aligned} \operatorname{tr} \left[\mathbbm{1}_{[a,b]}(L_h) \right] &= \operatorname{tr} \left[\chi(L_h) \mathbbm{1}_{[a,b]}(L_h) \right] \\ &= \frac{1}{\epsilon(h)} \operatorname{tr} \left[\chi(L_h) \left(\frac{1}{\epsilon(h)} \rho_{\epsilon(h)} * \mathbbm{1}_{[a,b]} \right) (L_h) \right] + R(h) \end{aligned}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

For the Weyl law: Let $\chi \in C_0^\infty$ be equal to 1 on [a, b]. Then

$$\operatorname{tr} \left[\mathbb{1}_{[a,b]}(L_h)\right] = \operatorname{tr} \left[\chi(L_h)\mathbb{1}_{[a,b]}(L_h)\right]$$
$$= \frac{1}{\epsilon(h)}\operatorname{tr} \left[\chi(L_h)\left(\frac{1}{\epsilon(h)}\rho_{\epsilon(h)}*\mathbb{1}_{[a,b]}\right)(L_h)\right] + R(h)$$
$$= \int_a^b \frac{1}{\epsilon(h)}\operatorname{tr} \left[\frac{1}{\epsilon(h)}\chi(L_h)\rho_{\epsilon(h)}(L_h-\lambda)\right]d\lambda + R(h)$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

For the Weyl law: Let $\chi \in C_0^\infty$ be equal to 1 on [a, b]. Then

$$\operatorname{tr} \left[\mathbb{1}_{[a,b]}(\mathcal{L}_h) \right] = \operatorname{tr} \left[\chi(\mathcal{L}_h) \mathbb{1}_{[a,b]}(\mathcal{L}_h) \right]$$
$$= \frac{1}{\epsilon(h)} \operatorname{tr} \left[\chi(\mathcal{L}_h) \left(\frac{1}{\epsilon(h)} \rho_{\epsilon(h)} * \mathbb{1}_{[a,b]} \right) (\mathcal{L}_h) \right] + R(h)$$
$$= \int_a^b \frac{1}{\epsilon(h)} \operatorname{tr} \left[\frac{1}{\epsilon(h)} \chi(\mathcal{L}_h) \rho_{\epsilon(h)}(\mathcal{L}_h - \lambda) \right] d\lambda + R(h)$$

where

$$\frac{1}{\epsilon(h)}\rho_{\epsilon(h)}(L_h-\lambda)$$

For the Weyl law: Let $\chi \in C_0^\infty$ be equal to 1 on [a, b]. Then

$$\operatorname{tr} \left[\mathbb{1}_{[a,b]}(L_h)\right] = \operatorname{tr} \left[\chi(L_h)\mathbb{1}_{[a,b]}(L_h)\right]$$
$$= \frac{1}{\epsilon(h)}\operatorname{tr} \left[\chi(L_h)\left(\frac{1}{\epsilon(h)}\rho_{\epsilon(h)}*\mathbb{1}_{[a,b]}\right)(L_h)\right] + R(h)$$
$$= \int_a^b \frac{1}{\epsilon(h)}\operatorname{tr} \left[\frac{1}{\epsilon(h)}\chi(L_h)\rho_{\epsilon(h)}(L_h-\lambda)\right] d\lambda + R(h)$$

where

$$\frac{1}{\epsilon(h)}\rho_{\epsilon(h)}(L_h-\lambda) = \frac{1}{2\pi h}\int_{\mathbb{R}} e^{i\frac{t}{h}(L_h-\lambda)}\hat{\rho}\left(\frac{t}{T(h)}\right)dt$$

with

$$T(h) = rac{h}{\epsilon(h)}$$

For the Weyl law: Let $\chi \in C_0^\infty$ be equal to 1 on [a, b]. Then

$$\operatorname{tr} \left[\mathbb{1}_{[a,b]}(L_h)\right] = \operatorname{tr} \left[\chi(L_h)\mathbb{1}_{[a,b]}(L_h)\right]$$
$$= \frac{1}{\epsilon(h)}\operatorname{tr} \left[\chi(L_h)\left(\frac{1}{\epsilon(h)}\rho_{\epsilon(h)}*\mathbb{1}_{[a,b]}\right)(L_h)\right] + R(h)$$
$$= \int_a^b \frac{1}{\epsilon(h)}\operatorname{tr} \left[\frac{1}{\epsilon(h)}\chi(L_h)\rho_{\epsilon(h)}(L_h-\lambda)\right] d\lambda + R(h)$$

where

$$\frac{1}{\epsilon(h)}\rho_{\epsilon(h)}(L_h-\lambda)=\frac{1}{2\pi h}\int_{\mathbb{R}}\mathrm{e}^{\mathrm{i}\frac{t}{h}(L_h-\lambda)}\hat{\rho}\left(\frac{t}{T(h)}\right)dt$$

with

$$T(h) = \frac{h}{\epsilon(h)}$$

Here we use the **propagator** $e^{i\frac{t}{h}L_h}$.

For the Weyl law: Let $\chi \in C_0^\infty$ be equal to 1 on [a, b]. Then

$$\operatorname{tr} \left[\mathbb{1}_{[a,b]}(L_h)\right] = \operatorname{tr} \left[\chi(L_h)\mathbb{1}_{[a,b]}(L_h)\right]$$
$$= \frac{1}{\epsilon(h)}\operatorname{tr} \left[\chi(L_h)\left(\frac{1}{\epsilon(h)}\rho_{\epsilon(h)}*\mathbb{1}_{[a,b]}\right)(L_h)\right] + R(h)$$
$$= \int_a^b \frac{1}{\epsilon(h)}\operatorname{tr} \left[\frac{1}{\epsilon(h)}\chi(L_h)\rho_{\epsilon(h)}(L_h-\lambda)\right] d\lambda + R(h)$$

where

$$\frac{1}{\epsilon(h)}\rho_{\epsilon(h)}(L_h-\lambda)=\frac{1}{2\pi h}\int_{\mathbb{R}}e^{i\frac{t}{h}(L_h-\lambda)}\hat{\rho}\left(\frac{t}{T(h)}\right)dt$$

with

$$T(h) = \frac{h}{\epsilon(h)}$$

Here we use the **propagator** $e^{i\frac{t}{\hbar}L_h}$. Note that it solves the Schroedinger equation

$$\mathrm{i}h\partial_t e^{\mathrm{i}\frac{t}{h}L_h} = h^2 \Delta_g e^{\mathrm{i}\frac{t}{h}L_h}, \qquad e^{\mathrm{i}\frac{t}{h}L_h}\Big|_{t=0} = I$$

For the Weyl law: Let $\chi \in C_0^\infty$ be equal to 1 on [a, b]. Then

$$\operatorname{tr} \left[\mathbb{1}_{[a,b]}(L_h) \right] = \operatorname{tr} \left[\chi(L_h) \mathbb{1}_{[a,b]}(L_h) \right]$$
$$= \frac{1}{\epsilon(h)} \operatorname{tr} \left[\chi(L_h) \left(\frac{1}{\epsilon(h)} \rho_{\epsilon(h)} * \mathbb{1}_{[a,b]} \right) (L_h) \right] + R(h)$$
$$= \int_a^b \frac{1}{\epsilon(h)} \operatorname{tr} \left[\frac{1}{\epsilon(h)} \chi(L_h) \rho_{\epsilon(h)}(L_h - \lambda) \right] d\lambda + R(h)$$

where

$$\frac{1}{\epsilon(h)}\rho_{\epsilon(h)}(L_h-\lambda)=\frac{1}{2\pi h}\int_{\mathbb{R}}e^{i\frac{t}{h}(L_h-\lambda)}\hat{\rho}\left(\frac{t}{T(h)}\right)dt$$

with

$$T(h) = \frac{h}{\epsilon(h)}$$

Here we use the **propagator** $e^{i\frac{t}{\hbar}L_h}$. Note that it solves the Schroedinger equation

$$i\hbar\partial_t e^{i\frac{t}{\hbar}L_h} = h^2 \Delta_g e^{i\frac{t}{\hbar}L_h}, \qquad e^{i\frac{t}{\hbar}L_h}\Big|_{t=0} = I$$

Core of the proof: try to get a precise description over times $|t| \lesssim T(h)$ of

$$e^{i\frac{t}{h}(L_h-\lambda)}\chi(L_h)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

For the Weyl law: Let $\chi \in C_0^\infty$ be equal to 1 on [a, b]. Then

$$\operatorname{tr} \left[\mathbb{1}_{[a,b]}(L_h)\right] = \operatorname{tr} \left[\chi(L_h)\mathbb{1}_{[a,b]}(L_h)\right]$$
$$= \frac{1}{\epsilon(h)}\operatorname{tr} \left[\chi(L_h)\left(\frac{1}{\epsilon(h)}\rho_{\epsilon(h)}*\mathbb{1}_{[a,b]}\right)(L_h)\right] + R(h)$$
$$= \int_a^b \frac{1}{\epsilon(h)}\operatorname{tr} \left[\frac{1}{\epsilon(h)}\chi(L_h)\rho_{\epsilon(h)}(L_h-\lambda)\right] d\lambda + R(h)$$

where

$$\frac{1}{\epsilon(h)}\rho_{\epsilon(h)}(L_h-\lambda)=\frac{1}{2\pi h}\int_{\mathbb{R}}e^{i\frac{t}{h}(L_h-\lambda)}\hat{\rho}\left(\frac{t}{T(h)}\right)dt$$

with

$$T(h) = \frac{h}{\epsilon(h)}$$

Here we use the **propagator** $e^{i\frac{t}{\hbar}L_{h}}$. Note that it solves the Schroedinger equation

$$i\hbar\partial_t e^{i\frac{t}{\hbar}L_h} = h^2 \Delta_g e^{i\frac{t}{\hbar}L_h}, \qquad e^{i\frac{t}{\hbar}L_h}\Big|_{t=0} = I$$

Core of the proof: try to get a precise description over times $|t| \lesssim T(h)$ of

$$e^{i\frac{t}{h}(L_h-\lambda)}\chi(L_h)$$

Rem 1: We use the propagator $e^{i\frac{t}{h}L_h}$ rather than the resolvent $(L_h - z)^{-1}$

For the Weyl law: Let $\chi \in C_0^\infty$ be equal to 1 on [a,b]. Then

$$\operatorname{tr} \left[\mathbb{1}_{[a,b]}(L_h)\right] = \operatorname{tr} \left[\chi(L_h)\mathbb{1}_{[a,b]}(L_h)\right]$$
$$= \frac{1}{\epsilon(h)}\operatorname{tr} \left[\chi(L_h)\left(\frac{1}{\epsilon(h)}\rho_{\epsilon(h)}*\mathbb{1}_{[a,b]}\right)(L_h)\right] + R(h)$$
$$= \int_a^b \frac{1}{\epsilon(h)}\operatorname{tr} \left[\frac{1}{\epsilon(h)}\chi(L_h)\rho_{\epsilon(h)}(L_h-\lambda)\right] d\lambda + R(h)$$

where

$$\frac{1}{\epsilon(h)}\rho_{\epsilon(h)}(L_h-\lambda)=\frac{1}{2\pi h}\int_{\mathbb{R}}e^{i\frac{t}{h}(L_h-\lambda)}\hat{\rho}\left(\frac{t}{T(h)}\right)dt$$

with

$$T(h) = \frac{h}{\epsilon(h)}$$

Here we use the **propagator** $e^{i\frac{t}{\hbar}L_h}$. Note that it solves the Schroedinger equation

$$i\hbar\partial_t e^{i\frac{t}{\hbar}L_h} = h^2 \Delta_g e^{i\frac{t}{\hbar}L_h}, \qquad e^{i\frac{t}{\hbar}L_h}\Big|_{t=0} = I$$

Core of the proof: try to get a precise description over times $|t| \lesssim T(h)$ of

$$e^{i\frac{t}{h}(L_h-\lambda)}\chi(L_h)$$

Rem 1: We use the propagator $e^{i\frac{t}{h}L_h}$ rather than the resolvent $(L_h - z)^{-1}$ **Rem 2:** the control of $R(h)(=O(h^{-n}\epsilon(h)))$ is also based on this description $z \to z \to \infty$

We then approach $e^{i\frac{t}{h}L_h}\chi(L_h)$ using Fourier Integral Operators,

We then approach $e^{i\frac{t}{h}L_h}\chi(L_h)$ using Fourier Integral Operators, i.e. operators with integral kernels of the form

$$\mathcal{K}_h(t,x,y) = h^{-d(D)} \int_{\mathbb{R}^D} e^{\frac{i}{h}F(t,x,y,Z)} A(t,x,y,Z,h) dZ, \qquad x,y \in M$$

We then approach $e^{i\frac{t}{h}L_h}\chi(L_h)$ using Fourier Integral Operators, i.e. operators with integral kernels of the form

$$\mathcal{K}_h(t,x,y) = h^{-d(D)} \int_{\mathbb{R}^D} e^{\frac{i}{h}F(t,x,y,Z)} A(t,x,y,Z,h) dZ, \qquad x,y \in M$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

where

• the phase F is given by the geodesic flow

We then approach $e^{i\frac{\hbar}{\hbar}L_h}\chi(L_h)$ using Fourier Integral Operators, i.e. operators with integral kernels of the form

$$\mathcal{K}_h(t,x,y) = h^{-d(D)} \int_{\mathbb{R}^D} e^{\frac{i}{h}F(t,x,y,Z)} A(t,x,y,Z,h) dZ, \qquad x,y \in M$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

where

▶ the phase *F* is given by the geodesic flow (also $F \in C^{\infty}$, $Im(F) \ge 0$)

We then approach $e^{i\frac{t}{h}L_h}\chi(L_h)$ using Fourier Integral Operators, i.e. operators with integral kernels of the form

$$\mathcal{K}_h(t,x,y) = h^{-d(D)} \int_{\mathbb{R}^D} e^{\frac{i}{h}F(t,x,y,Z)} A(t,x,y,Z,h) dZ, \qquad x,y \in M$$

where

- ▶ the phase *F* is given by the geodesic flow (also $F \in C^{\infty}$, $Im(F) \ge 0$)
- the amplitude has an asymptotic expansion

$$A \sim A_0 + h^{1/2}A_1 + hA_2 + \cdots$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We then approach $e^{i\frac{t}{h}L_h}\chi(L_h)$ using Fourier Integral Operators, i.e. operators with integral kernels of the form

$$K_h(t,x,y) = h^{-d(D)} \int_{\mathbb{R}^D} e^{\frac{i}{h}F(t,x,y,Z)} A(t,x,y,Z,h) dZ, \qquad x,y \in M$$

where

- ▶ the phase F is given by the geodesic flow (also $F \in C^{\infty}$, $Im(F) \ge 0$)
- the amplitude has an asymptotic expansion

$$A \sim A_0 + h^{1/2}A_1 + hA_2 + \cdots$$

One can then retrieve information on $\rho_{\epsilon(h)}(L_h - \lambda)\chi(L_h)$ by using stationary phase asymptotics in

$$h^{-d(D)} \int_{\mathbb{R}} \int_{\mathbb{R}^D} e^{\frac{i}{h} \left(F(t,x,y,Z) - t\lambda \right)} A(t,x,y,Z,h) \hat{\rho} \left(\frac{t}{T(h)} \right) dZ dt$$

or for the trace

$$h^{-1-d(D)} \int_{M} \int_{\mathbb{R}} \int_{\mathbb{R}^{D}} e^{\frac{i}{h} \left(F(t,x,x,Z) - t\lambda \right)} A(t,x,x,Z,h) \hat{\rho}\left(\frac{t}{T(h)}\right) dZ dt dv_{g}(x)$$

In practice

$$A_k = O(e^{k\gamma|t|})$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

with $e^{\gamma |t|}$ an upper bound bound on $D\phi^t$,

In practice

$$A_k = O(e^{k\gamma|t|})$$

with $e^{\gamma |t|}$ an upper bound bound on $D\phi^t$, so we get an asymptotic expansion provided

 $h^{rac{1}{2}}e^{\gamma|t|}\ll 1$

In practice

$$A_k = O(e^{k\gamma|t|})$$

with $e^{\gamma |t|}$ an upper bound bound on $D\phi^t$, so we get an asymptotic expansion provided

$$h^{rac{1}{2}}e^{\gamma|t|}\ll 1$$

Consequence: such approximations are in general limited to $|t| \le c \log(1/h)$

Theorem [Propagator approximation] (B. 2016+)

Theorem [Propagator approximation] (B. 2016+) Let $\psi \in C^{\infty}(M)$ be supported in a coordinate patch U. The integral kernel of $e^{-i\frac{L}{h}L_h}\chi(L_h)\psi$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem [Propagator approximation] (B. 2016+) Let $\psi \in C^{\infty}(M)$ be supported in a coordinate patch U. The integral kernel of $e^{-i\frac{t}{\hbar}L_h}\chi(L_h)\psi$ is well approximated by

$$K_h(t,x,y) = h^{-\frac{3n}{2}} \int \int_{T^*U} A(t,x,y,z,\zeta,h) \exp \frac{i}{h} F(t,x,y,z,\zeta) dz d\zeta$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

for times $|t| \leq c |\log h|$.

Theorem [Propagator approximation] (B. 2016+) Let $\psi \in C^{\infty}(M)$ be supported in a coordinate patch U. The integral kernel of $e^{-i\frac{L}{\hbar}L_h}\chi(L_h)\psi$ is well approximated by

$$K_h(t,x,y) = h^{-\frac{3n}{2}} \int \int_{T^*U} A(t,x,y,z,\zeta,h) \exp \frac{\mathrm{i}}{h} F(t,x,y,z,\zeta) dz d\zeta$$

for times $|t| \leq c |\log h|$. The phase reads

$$F = tp(z,\zeta) + \zeta^{t} \cdot W_{zt}^{x} + \frac{1}{2} \left\langle \Gamma_{(z,\zeta)}^{t} W_{zt}^{x}, W_{zt}^{x} \right\rangle_{zt} - \zeta \cdot W_{z}^{y} + \frac{1}{2} \left\langle \widetilde{\Gamma_{(z,\zeta)}^{0}} W_{z}^{y}, W_{z}^{y} \right\rangle_{z}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Theorem [Propagator approximation] (B. 2016+) Let $\psi \in C^{\infty}(M)$ be supported in a coordinate patch U. The integral kernel of $e^{-i\frac{L}{\hbar}L_h}\chi(L_h)\psi$ is well approximated by

$$K_h(t,x,y) = h^{-\frac{3n}{2}} \int \int_{T^*U} A(t,x,y,z,\zeta,h) \exp \frac{\mathrm{i}}{h} F(t,x,y,z,\zeta) dz d\zeta$$

for times $|t| \leq c |\log h|$. The phase reads

$$F = tp(z,\zeta) + \zeta^{t} \cdot W_{z^{t}}^{x} + \frac{1}{2} \left\langle \Gamma_{(z,\zeta)}^{t} W_{z^{t}}^{x}, W_{z^{t}}^{x} \right\rangle_{z^{t}} - \zeta \cdot W_{z}^{y} + \frac{1}{2} \left\langle \widetilde{\Gamma_{(z,\zeta)}^{0}} W_{z}^{y}, W_{z}^{y} \right\rangle_{z}$$

where $\Gamma_{(z,\zeta)}^t: T_{z^t}M^{\mathbb{C}} \to T_{z^t}M^{\mathbb{C}}$ is complex linear, symmetric with positive definite imaginary part, and solves

$$\nabla_{\dot{z}^t} \Gamma^t_{(z,\zeta)} = -R_{z^t} (., \dot{z}^t) \dot{z}^t - (\Gamma^t_{(z,\zeta)})^2,$$

Theorem [Propagator approximation] (B. 2016+) Let $\psi \in C^{\infty}(M)$ be supported in a coordinate patch U. The integral kernel of $e^{-i\frac{t}{h}L_h}\chi(L_h)\psi$ is well approximated by

$$K_h(t,x,y) = h^{-\frac{3n}{2}} \int \int_{T^*U} A(t,x,y,z,\zeta,h) \exp \frac{\mathrm{i}}{h} F(t,x,y,z,\zeta) dz d\zeta$$

for times $|t| \leq c |\log h|$. The phase reads

$$F = tp(z,\zeta) + \zeta^{t} \cdot W_{z^{t}}^{x} + \frac{1}{2} \left\langle \Gamma_{(z,\zeta)}^{t} W_{z^{t}}^{x}, W_{z^{t}}^{x} \right\rangle_{z^{t}} - \zeta \cdot W_{z}^{y} + \frac{1}{2} \left\langle \widetilde{\Gamma_{(z,\zeta)}^{0}} W_{z}^{y}, W_{z}^{y} \right\rangle_{z}$$

where $\Gamma_{(z,\zeta)}^t: T_{z^t}M^{\mathbb{C}} \to T_{z^t}M^{\mathbb{C}}$ is complex linear, symmetric with positive definite imaginary part, and solves

$$\nabla_{\dot{z}^t} \Gamma^t_{(z,\zeta)} = -R_{z^t}(.,\dot{z}^t) \dot{z}^t - \left(\Gamma^t_{(z,\zeta)}\right)^2, \qquad \Gamma^0_{(z,\zeta)} = \mathrm{i}(g^{jk}(z)) + \text{real correction}$$

where R_{z^t} is the Riemann tensor at z^t

Theorem [Propagator approximation] (B. 2016+) Let $\psi \in C^{\infty}(M)$ be supported in a coordinate patch U. The integral kernel of $e^{-i\frac{L}{\hbar}L_{h}}\chi(L_{h})\psi$ is well approximated by

$$K_h(t,x,y) = h^{-\frac{3n}{2}} \int \int_{T^*U} A(t,x,y,z,\zeta,h) \exp \frac{\mathrm{i}}{h} F(t,x,y,z,\zeta) dz d\zeta$$

for times $|t| \leq c |\log h|$. The phase reads

$$F = tp(z,\zeta) + \zeta^{t} \cdot W_{z^{t}}^{x} + \frac{1}{2} \left\langle \Gamma_{(z,\zeta)}^{t} W_{z^{t}}^{x}, W_{z^{t}}^{x} \right\rangle_{z^{t}} - \zeta \cdot W_{z}^{y} + \frac{1}{2} \left\langle \widetilde{\Gamma_{(z,\zeta)}^{0}} W_{z}^{y}, W_{z}^{y} \right\rangle_{z}$$

where $\Gamma_{(z,\zeta)}^t: T_{z^t}M^{\mathbb{C}} \to T_{z^t}M^{\mathbb{C}}$ is complex linear, symmetric with positive definite imaginary part, and solves

$$\nabla_{\dot{z}^t} \Gamma^t_{(z,\zeta)} = -R_{z^t}(.,\dot{z}^t) \dot{z}^t - \left(\Gamma^t_{(z,\zeta)}\right)^2, \qquad \Gamma^0_{(z,\zeta)} = \mathrm{i}(g^{jk}(z)) + \text{real correction}$$

where R_{z^t} is the Riemann tensor at z^t

$$\left\langle \widetilde{\Gamma_{(z,\zeta)}^{0}} W_{z}^{y}, W_{z}^{y} \right\rangle_{z} = -\operatorname{Re}\left\langle \Gamma_{(z,\zeta)}^{0} W_{z}^{y}, W_{z}^{y} \right\rangle_{z} + \operatorname{i} \operatorname{Im} \left\langle \Gamma_{(z,\zeta)}^{0} W_{z}^{y}, W_{z}^{y} \right\rangle_{z}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Theorem [Propagator approximation] (B. 2016+) Let $\psi \in C^{\infty}(M)$ be supported in a coordinate patch U. The integral kernel of $e^{-i\frac{t}{h}L_h}\chi(L_h)\psi$ is well approximated by

$$K_h(t,x,y) = h^{-\frac{3n}{2}} \int \int_{T^*U} A(t,x,y,z,\zeta,h) \exp \frac{\mathrm{i}}{h} F(t,x,y,z,\zeta) dz d\zeta$$

for times $|t| \leq c |\log h|$. The phase reads

$$F = tp(z,\zeta) + \zeta^{t} \cdot W_{z^{t}}^{x} + \frac{1}{2} \left\langle \Gamma_{(z,\zeta)}^{t} W_{z^{t}}^{x}, W_{z^{t}}^{x} \right\rangle_{z^{t}} - \zeta \cdot W_{z}^{y} + \frac{1}{2} \left\langle \widetilde{\Gamma_{(z,\zeta)}^{0}} W_{z}^{y}, W_{z}^{y} \right\rangle_{z}$$

where $\Gamma_{(z,\zeta)}^t: T_{z^t}M^{\mathbb{C}} \to T_{z^t}M^{\mathbb{C}}$ is complex linear, symmetric with positive definite imaginary part, and solves

$$\nabla_{\dot{z}^t} \Gamma^t_{(z,\zeta)} = -R_{z^t}(.,\dot{z}^t) \dot{z}^t - \left(\Gamma^t_{(z,\zeta)}\right)^2, \qquad \Gamma^0_{(z,\zeta)} = \mathrm{i}(g^{jk}(z)) + \text{real correction}$$

where R_{z^t} is the Riemann tensor at z^t

$$\left\langle \widetilde{\Gamma_{(z,\zeta)}^{0}} W_{z}^{y}, W_{z}^{y} \right\rangle_{z} = -\operatorname{Re}\left\langle \Gamma_{(z,\zeta)}^{0} W_{z}^{y}, W_{z}^{y} \right\rangle_{z} + \operatorname{i} \operatorname{Im} \left\langle \Gamma_{(z,\zeta)}^{0} W_{z}^{y}, W_{z}^{y} \right\rangle_{z}$$

and

$$y = \exp_z(W_z^y)$$

Theorem [Propagator approximation] (B. 2016+) Let $\psi \in C^{\infty}(M)$ be supported in a coordinate patch U. The integral kernel of $e^{-i\frac{t}{h}L_h}\chi(L_h)\psi$ is well approximated by

$$K_h(t,x,y) = h^{-\frac{3n}{2}} \int \int_{T^*U} A(t,x,y,z,\zeta,h) \exp \frac{\mathrm{i}}{h} F(t,x,y,z,\zeta) dz d\zeta$$

for times $|t| \leq c |\log h|$. The phase reads

$$F = tp(z,\zeta) + \zeta^{t} \cdot W_{z^{t}}^{x} + \frac{1}{2} \left\langle \Gamma_{(z,\zeta)}^{t} W_{z^{t}}^{x}, W_{z^{t}}^{x} \right\rangle_{z^{t}} - \zeta \cdot W_{z}^{y} + \frac{1}{2} \left\langle \widetilde{\Gamma_{(z,\zeta)}^{0}} W_{z}^{y}, W_{z}^{y} \right\rangle_{z}$$

where $\Gamma_{(z,\zeta)}^t: T_{z^t}M^{\mathbb{C}} \to T_{z^t}M^{\mathbb{C}}$ is complex linear, symmetric with positive definite imaginary part, and solves

$$\nabla_{\dot{z}^t} \Gamma^t_{(z,\zeta)} = -R_{z^t}(.,\dot{z}^t) \dot{z}^t - \left(\Gamma^t_{(z,\zeta)}\right)^2, \qquad \Gamma^0_{(z,\zeta)} = \mathrm{i}(g^{jk}(z)) + \text{real correction}$$

where R_{z^t} is the Riemann tensor at z^t

$$\left\langle \widetilde{\Gamma_{(z,\zeta)}^{0}} W_{z}^{y}, W_{z}^{y} \right\rangle_{z} = -\operatorname{Re}\left\langle \Gamma_{(z,\zeta)}^{0} W_{z}^{y}, W_{z}^{y} \right\rangle_{z} + \operatorname{i} \operatorname{Im} \left\langle \Gamma_{(z,\zeta)}^{0} W_{z}^{y}, W_{z}^{y} \right\rangle_{z}$$

and

$$y = \exp_z(W_z^y)$$

An idea of proof: the Bérard bound

Stationary phase in the integral

$$h^{-\frac{3n}{2}-1} \int \int \int \hat{\rho}\left(\frac{t}{T(h)}\right) A(t, x, x, z, \zeta, h) \exp \frac{\mathrm{i}}{h} \left(t\lambda - F(t, x, x, z, \zeta)\right) dt dz d\zeta dv_g(x)$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

An idea of proof: the Bérard bound

Stationary phase in the integral

$$h^{-\frac{3n}{2}-1} \int \int \int \hat{\rho}\left(\frac{t}{T(h)}\right) A(t, x, x, z, \zeta, h) \exp \frac{\mathrm{i}}{h} \left(t\lambda - F(t, x, x, z, \zeta)\right) dt dz d\zeta dv_g(x)$$

Critical points given by the conditions:

$$\operatorname{Im}(F(t,x,x,z,\zeta))=0$$
 and $d_{t,z,\zeta,x}(t\lambda-F(t,x,x,z,\zeta))=0$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Stationary phase in the integral

i.e.

$$h^{-\frac{3n}{2}-1} \int \int \int \hat{\rho}\left(\frac{t}{T(h)}\right) A(t, x, x, z, \zeta, h) \exp \frac{\mathrm{i}}{h} \left(t\lambda - F(t, x, x, z, \zeta)\right) dt dz d\zeta dv_g(x)$$

Critical points given by the conditions:

 $\operatorname{Im}(F(t,x,x,z,\zeta)) = 0 \quad \text{and} \quad d_{t,z,\zeta,x}(t\lambda - F(t,x,x,z,\zeta)) = 0$

$$z = z^t = x,$$
 $p(z,\zeta) = \lambda, \ \zeta^t = \zeta$

Stationary phase in the integral

$$h^{-\frac{3n}{2}-1} \int \int \int \hat{\rho}\left(\frac{t}{T(h)}\right) A(t,x,x,z,\zeta,h) \exp \frac{\mathrm{i}}{h} \left(t\lambda - F(t,x,x,z,\zeta)\right) dt dz d\zeta dv_g(x)$$

Critical points given by the conditions:

 $\operatorname{Im}(F(t,x,x,z,\zeta)) = 0 \quad \text{and} \quad d_{t,z,\zeta,x}(t\lambda - F(t,x,x,z,\zeta)) = 0$

i.e.

$$z = z^t = x,$$
 $p(z,\zeta) = \lambda, \ \zeta^t = \zeta$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

In particular

 $\phi^t(z,\zeta)=(z,\zeta)$

Stationary phase in the integral

$$h^{-\frac{3n}{2}-1} \int \int \int \hat{\rho}\left(\frac{t}{T(h)}\right) A(t,x,x,z,\zeta,h) \exp \frac{\mathrm{i}}{h} \left(t\lambda - F(t,x,x,z,\zeta)\right) dt dz d\zeta dv_g(x)$$

Critical points given by the conditions:

 $\operatorname{Im}(F(t,x,x,z,\zeta)) = 0 \quad \text{and} \quad d_{t,z,\zeta,x}(t\lambda - F(t,x,x,z,\zeta)) = 0$

i.e.

$$z = z^t = x,$$
 $p(z, \zeta) = \lambda, \ \zeta^t = \zeta$

In particular

 $\phi^t(z,\zeta) = (z,\zeta) \implies t ext{ is the length of a closed geodesic (if } \lambda = 1)$

Stationary phase in the integral

$$h^{-\frac{3n}{2}-1} \int \int \int \hat{\rho}\left(\frac{t}{T(h)}\right) A(t,x,x,z,\zeta,h) \exp \frac{\mathrm{i}}{h} \left(t\lambda - F(t,x,x,z,\zeta)\right) dt dz d\zeta dv_g(x)$$

Critical points given by the conditions:

 $\operatorname{Im}(F(t,x,x,z,\zeta)) = 0 \quad \text{and} \quad d_{t,z,\zeta,x}(t\lambda - F(t,x,x,z,\zeta)) = 0$

i.e.

$$z = z^t = x,$$
 $p(z, \zeta) = \lambda, \ \zeta^t = \zeta$

In particular

 $\phi^t(z,\zeta) = (z,\zeta) \implies t \text{ is the length of a closed geodesic (if } \lambda = 1)$

Main contribution of the trivial period t = 0:

$$h^{-n}\int_{p=\lambda}d\Sigma$$

Stationary phase in the integral

$$h^{-\frac{3n}{2}-1} \int \int \int \hat{\rho}\left(\frac{t}{T(h)}\right) A(t,x,x,z,\zeta,h) \exp \frac{\mathrm{i}}{h} \left(t\lambda - F(t,x,x,z,\zeta)\right) dt dz d\zeta dv_g(x)$$

Critical points given by the conditions:

 $\operatorname{Im}(F(t,x,x,z,\zeta)) = 0 \quad \text{and} \quad d_{t,z,\zeta,x}(t\lambda - F(t,x,x,z,\zeta)) = 0$

i.e.

$$z = z^t = x,$$
 $p(z, \zeta) = \lambda, \ \zeta^t = \zeta$

In particular

 $\phi^t(z,\zeta) = (z,\zeta) \implies t \text{ is the length of a closed geodesic (if } \lambda = 1)$

Main contribution of the trivial period t = 0:

$$h^{-n}\int_{p=\lambda}d\Sigma=O(h^{-n})$$

Stationary phase in the integral

$$h^{-\frac{3n}{2}-1} \int \int \int \hat{\rho}\left(\frac{t}{T(h)}\right) A(t,x,x,z,\zeta,h) \exp \frac{\mathrm{i}}{h} \left(t\lambda - F(t,x,x,z,\zeta)\right) dt dz d\zeta dv_g(x)$$

Critical points given by the conditions:

 $\operatorname{Im}(F(t,x,x,z,\zeta)) = 0 \quad \text{and} \quad d_{t,z,\zeta,x}(t\lambda - F(t,x,x,z,\zeta)) = 0$

i.e.

$$z = z^t = x,$$
 $p(z, \zeta) = \lambda, \ \zeta^t = \zeta$

In particular

 $\phi^t(z,\zeta) = (z,\zeta) \implies t \text{ is the length of a closed geodesic (if } \lambda = 1)$

Main contribution of the trivial period t = 0:

$$h^{-n}\int_{p=\lambda}d\Sigma=O(h^{-n})$$

Stationary phase in the integral

$$h^{-\frac{3n}{2}-1} \int \int \int \hat{\rho}\left(\frac{t}{T(h)}\right) A(t,x,x,z,\zeta,h) \exp \frac{\mathrm{i}}{h} \left(t\lambda - F(t,x,x,z,\zeta)\right) dt dz d\zeta dv_g(x)$$

Critical points given by the conditions:

 $\operatorname{Im}(F(t,x,x,z,\zeta)) = 0 \quad \text{and} \quad d_{t,z,\zeta,x}(t\lambda - F(t,x,x,z,\zeta)) = 0$

i.e.

$$z = z^t = x,$$
 $p(z, \zeta) = \lambda, \ \zeta^t = \zeta$

In particular

 $\phi^t(z,\zeta) = (z,\zeta) \implies t \text{ is the length of a closed geodesic (if } \lambda = 1)$

Main contribution of the trivial period t = 0:

$$h^{-n}\int_{p=\lambda}d\Sigma=O(h^{-n})$$

(日) (日) (日) (日) (日) (日) (日) (日)

 $\frac{\text{Main contribution of non trivial periods:}}{O(h^{-\frac{n}{2}-O(\varepsilon)-1})} \text{ if } T(h) = \varepsilon \log(1/h) \text{ it is (at most)}$

Stationary phase in the integral

$$h^{-\frac{3n}{2}-1} \int \int \int \hat{\rho}\left(\frac{t}{T(h)}\right) A(t,x,x,z,\zeta,h) \exp \frac{\mathrm{i}}{h} \left(t\lambda - F(t,x,x,z,\zeta)\right) dt dz d\zeta dv_g(x)$$

Critical points given by the conditions:

 $\operatorname{Im}(F(t,x,x,z,\zeta)) = 0 \quad \text{and} \quad d_{t,z,\zeta,x}(t\lambda - F(t,x,x,z,\zeta)) = 0$

i.e.

$$z = z^t = x,$$
 $p(z, \zeta) = \lambda, \ \zeta^t = \zeta$

In particular

 $\phi^t(z,\zeta) = (z,\zeta) \implies t \text{ is the length of a closed geodesic (if } \lambda = 1)$

Main contribution of the trivial period t = 0:

$$h^{-n}\int_{p=\lambda}d\Sigma=O(h^{-n})$$

Thank you for your attention

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Thank you for your attention and happy new year

< □ ト < @ ト < 差 ト < 差 ト 差 の < @</p>

▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >

Some problems in spectral geometry

▲□▶ ▲□▶ ▲国▶ ▲国▶ 三国 - のへで

Some problems in spectral geometry

Let (M,g) be a Riemannian manifold of dimension n. Let dv_g be the natural measure and Δ_g be the Laplace-Beltrami operator, in local coordinates

$$dv_{g} = |g(x)|dx_{1}\cdots dx_{n}, \qquad |g(x)| := \det(g_{jk}(x))^{1/2}$$
(1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\Delta_g = \sum_{j,k} g^{jk}(x) \partial_{x_j} \partial_{x_k} - \sum_{i,j,k} g^{jk}(x) \Gamma^i_{jk}(x) \partial_{x_i}$$

where $(g^{jk}(x)) = (g_{jk}(x))^{-1}$ and $g = \sum_{j,k} g_{jk}(x) dx_j dx_k$.

Proposition. If M is closed (and connected), there exists an orthonormal basis $(\varphi_j)_{j\geq 0}$ of eigenfunctions of Δ_g

$$-\Delta_g \varphi_j = \lambda_j \varphi_j, \qquad 0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \cdots, \qquad \lambda_j \uparrow +\infty.$$

Simple example: on \mathbb{R}^n

$$\chi(x)f(-h^2\Delta)v(x) = (2\pi h)^{-n} \int \int e^{\frac{1}{h}(x-y)\cdot\xi}\chi(x)f(|\xi|^2)v(y)dyd\xi$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

<ロ> <回> <回> <回> <三> <三> <三> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

Canonical example: gaussian wave packet

Canonical example: gaussian wave packet

$$\psi_{z,\zeta}(x) = \pi^{-\frac{n}{4}} \exp\left(\mathrm{i}\zeta \cdot (x-z) - \frac{|x-z|^2}{2}\right), \qquad x \in \mathbb{R}^n$$

<□ > < @ > < E > < E > E のQ @

Canonical example: gaussian wave packet

$$\psi_{z,\zeta}(x) = \pi^{-\frac{n}{4}} \exp\left(\mathrm{i}\zeta \cdot (x-z) - \frac{|x-z|^2}{2}\right), \qquad x \in \mathbb{R}^n$$

localized around (or centered at) z in space,

Canonical example: gaussian wave packet

$$\psi_{z,\zeta}(x) = \pi^{-\frac{n}{4}} \exp\left(\mathrm{i}\zeta \cdot (x-z) - \frac{|x-z|^2}{2}\right), \qquad x \in \mathbb{R}^n$$

localized around (or centered at) z in space, and near ζ in momentum

$$(\mathcal{F}\psi_{z,\zeta})(\xi) = \pi^{-\frac{n}{4}} \exp\left(-\mathrm{i}z \cdot \xi - \frac{|\xi-\zeta|^2}{2}\right)$$

Canonical example: gaussian wave packet

$$\psi_{z,\zeta}(x) = \pi^{-\frac{n}{4}} \exp\left(\mathrm{i}\zeta \cdot (x-z) - \frac{|x-z|^2}{2}\right), \qquad x \in \mathbb{R}^n$$

localized around (or centered at) z in space, and near ζ in momentum

$$(\mathcal{F}\psi_{z,\zeta})(\xi) = \pi^{-\frac{n}{4}} \exp\left(-\mathrm{i}z \cdot \xi - \frac{|\xi-\zeta|^2}{2}\right)$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Think of (z,ζ) as a point in phase space $T^*\mathbb{R}^n$

Canonical example: gaussian wave packet

$$\psi_{z,\zeta}(x) = \pi^{-\frac{n}{4}} \exp\left(\mathrm{i}\zeta \cdot (x-z) - \frac{|x-z|^2}{2}\right), \qquad x \in \mathbb{R}^n$$

localized around (or centered at) z in space, and near ζ in momentum

$$(\mathcal{F}\psi_{z,\zeta})(\xi) = \pi^{-\frac{n}{4}} \exp\left(-\mathrm{i}z \cdot \xi - \frac{|\xi-\zeta|^2}{2}\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Think of (z, ζ) as a point in phase space $T^* \mathbb{R}^n$

We call $\psi_{z,\zeta}$ a Gaussian wave packet centered at (z,ζ)

Canonical example: gaussian wave packet

$$\psi_{z,\zeta}(x) = \pi^{-\frac{n}{4}} \exp\left(\mathrm{i}\zeta \cdot (x-z) - \frac{|x-z|^2}{2}\right), \qquad x \in \mathbb{R}^n$$

localized around (or centered at) z in space, and near ζ in momentum

$$(\mathcal{F}\psi_{z,\zeta})(\xi) = \pi^{-\frac{n}{4}} \exp\left(-\mathrm{i}z \cdot \xi - \frac{|\xi-\zeta|^2}{2}\right)$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Think of (z, ζ) as a point in phase space $\mathcal{T}^*\mathbb{R}^n$ We call $\psi_{z,\zeta}$ a Gaussian wave packet centered at (z,ζ) Main interests (for us) :

Canonical example: gaussian wave packet

$$\psi_{z,\zeta}(x) = \pi^{-\frac{n}{4}} \exp\left(\mathrm{i}\zeta \cdot (x-z) - \frac{|x-z|^2}{2}\right), \qquad x \in \mathbb{R}^n$$

localized around (or centered at) z in space, and near ζ in momentum

$$(\mathcal{F}\psi_{z,\zeta})(\xi) = \pi^{-\frac{n}{4}} \exp\left(-\mathrm{i}z \cdot \xi - \frac{|\xi-\zeta|^2}{2}\right)$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Think of (z,ζ) as a point in phase space $T^*\mathbb{R}^n$

We call $\psi_{z,\zeta}$ a Gaussian wave packet centered at (z,ζ)

Main interests (for us) :

1. One can write "waves" (i.e. functions) as superposition of wave packets

Canonical example: gaussian wave packet

$$\psi_{z,\zeta}(x) = \pi^{-\frac{n}{4}} \exp\left(\mathrm{i}\zeta \cdot (x-z) - \frac{|x-z|^2}{2}\right), \qquad x \in \mathbb{R}^n$$

localized around (or centered at) z in space, and near ζ in momentum

$$(\mathcal{F}\psi_{z,\zeta})(\xi) = \pi^{-\frac{n}{4}} \exp\left(-\mathrm{i}z \cdot \xi - \frac{|\xi-\zeta|^2}{2}\right)$$

Think of (z, ζ) as a point in phase space $T^* \mathbb{R}^n$

We call $\psi_{z,\zeta}$ a Gaussian wave packet centered at (z,ζ)

Main interests (for us) :

- 1. One can write "waves" (i.e. functions) as superposition of wave packets
- 2. The evolution of a wave packet under a Schrödinger flow can be described rather explicitly (in a suitable regime)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1. Wave packet decomposition

1. Wave packet decomposition

Define the **Bargmann transform** of a function u by

$$Bu(z,\zeta) = \int_{\mathbb{R}^n} \overline{\psi_{z,\zeta}(x)} u(x) dx$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

1. Wave packet decomposition

Define the **Bargmann transform** of a function u by

$$Bu(z,\zeta) = \int_{\mathbb{R}^n} \overline{\psi_{z,\zeta}(x)} u(x) dx$$

Then, one has the inversion formula

$$u = (2\pi)^{-n} B^* B u$$

(ロ)、(型)、(E)、(E)、 E) の(の)

1. Wave packet decomposition

Define the **Bargmann transform** of a function *u* by

$$Bu(z,\zeta) = \int_{\mathbb{R}^n} \overline{\psi_{z,\zeta}(x)} u(x) dx$$

Then, one has the inversion formula

$$u = (2\pi)^{-n} B^* B u$$

In other words

$$u(x) = (2\pi)^{-n} \int \int_{\mathcal{T}^*\mathbb{R}^n} (Bu)(z,\zeta)\psi_{z,\zeta}(x)dzd\zeta$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

is a decomposition of u as a (continuous) sum of wave packets

2. Evolution of wave packets under the Schrödinger equation

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

2. Evolution of wave packets under the Schrödinger equation

For quadratic potentials, one has exact formulas.

2. Evolution of wave packets under the Schrödinger equation

For quadratic potentials, one has exact formulas. Set

$$p_{\nu}(x,\xi) = rac{|\xi|^2}{2} +
u rac{|x|^2}{2}, \qquad H_{
u} = -rac{\Delta}{2} +
u rac{|x|^2}{2}, \qquad
u = 0, +1, -1$$

(ロ)、(型)、(E)、(E)、 E) の(の)

2. Evolution of wave packets under the Schrödinger equation

For quadratic potentials, one has exact formulas. Set

$$p_{\nu}(x,\xi) = rac{|\xi|^2}{2} +
u rac{|x|^2}{2}, \qquad H_{\nu} = -rac{\Delta}{2} +
u rac{|x|^2}{2}, \qquad
u = 0, +1, -1$$

Then

$$e^{-itH_{\nu}}\psi_{z,\zeta}(x) = \pi^{-\frac{n}{4}}\gamma_{\nu}^{t}\exp i\left(S_{\nu}^{t} + \zeta_{\nu}^{t} \cdot (x - z_{\nu}^{t}) + \frac{\Gamma_{\nu}^{t}}{2}(x - z_{\nu}^{t}) \cdot (x - z_{\nu}^{t})\right)$$

2. Evolution of wave packets under the Schrödinger equation

For quadratic potentials, one has exact formulas. Set

$$p_{\nu}(x,\xi) = rac{|\xi|^2}{2} +
u rac{|x|^2}{2}, \qquad H_{\nu} = -rac{\Delta}{2} +
u rac{|x|^2}{2}, \qquad
u = 0, +1, -1$$

Then

$$e^{-itH_{\nu}}\psi_{z,\zeta}(x) = \pi^{-\frac{n}{4}}\gamma_{\nu}^{t}\exp i\left(S_{\nu}^{t}+\zeta_{\nu}^{t}\cdot(x-z_{\nu}^{t})+\frac{\Gamma_{\nu}^{t}}{2}(x-z_{\nu}^{t})\cdot(x-z_{\nu}^{t})\right)$$

where

$$(z_{\nu}^{t},\zeta_{\nu}^{t})=\Phi_{\rho_{\nu}}^{t}(z,\zeta), \qquad S_{\nu}^{t}=\int_{0}^{t}\dot{z}_{\nu}^{s}\cdot\zeta_{\nu}^{s}-p_{\nu}(z_{\nu}^{s},\zeta_{\nu}^{s})ds$$

(ロ)、(型)、(E)、(E)、 E) の(の)

2. Evolution of wave packets under the Schrödinger equation

For quadratic potentials, one has exact formulas. Set

$$p_{\nu}(x,\xi) = rac{|\xi|^2}{2} +
u rac{|x|^2}{2}, \qquad H_{\nu} = -rac{\Delta}{2} +
u rac{|x|^2}{2}, \qquad
u = 0, +1, -1$$

Then

$$e^{-itH_{\nu}}\psi_{z,\zeta}(x) = \pi^{-\frac{n}{4}}\gamma_{\nu}^{t}\exp i\left(S_{\nu}^{t}+\zeta_{\nu}^{t}\cdot(x-z_{\nu}^{t})+\frac{\Gamma_{\nu}^{t}}{2}(x-z_{\nu}^{t})\cdot(x-z_{\nu}^{t})\right)$$

where

$$(z_{\nu}^{t},\zeta_{\nu}^{t})=\Phi_{\rho_{\nu}}^{t}(z,\zeta), \qquad S_{\nu}^{t}=\int_{0}^{t}\dot{z}_{\nu}^{s}\cdot\zeta_{\nu}^{s}-\rho_{\nu}(z_{\nu}^{s},\zeta_{\nu}^{s})ds$$

and γ_{ν}^{t} , Γ_{ν}^{t} are given in term of the differential of flow $\Phi_{p_{\nu}}^{t}$,

$$D\Phi^t_{\rho_{\nu}}(z,\zeta) = \begin{pmatrix} A^t_{\nu} & B^t_{\nu} \\ C^t_{\nu} & D^t_{\nu} \end{pmatrix},$$

by

$$\Gamma_{\nu}^{t} = (C_{\nu}^{t} + iD_{\nu}^{t})(A_{\nu}^{t} + iB_{\nu}^{t})^{-1}, \qquad \gamma_{\nu}^{t} = \det(A_{\nu}^{t} + iB_{\nu}^{t})^{-1/2}$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Explicitly, we obtain

$$\Gamma_{0}^{t} = \frac{t+i}{1+t^{2}}I_{n}, \qquad \gamma_{0}^{t} = (1+it)^{-\frac{n}{2}}$$

$$\Gamma_{1}^{t} = iI_{n}, \qquad \gamma_{1}^{t} = (\cos t + i\sin t)^{-\frac{n}{2}}$$

$$\Gamma_{-1}^{t} = \frac{\sinh(2t) + i}{\cosh(2t)}I_{n}, \qquad \gamma_{-1}^{t} = (\cosh t + i\sinh t)^{-\frac{n}{2}}$$

<□ > < @ > < E > < E > E のQ @

Explicitly, we obtain

$$\Gamma_{0}^{t} = \frac{t+i}{1+t^{2}}I_{n}, \qquad \gamma_{0}^{t} = (1+it)^{-\frac{n}{2}}$$

$$\Gamma_{1}^{t} = iI_{n}, \qquad \gamma_{1}^{t} = (\cos t + i\sin t)^{-\frac{n}{2}}$$

$$\Gamma_{-1}^{t} = \frac{\sinh(2t) + i}{\cosh(2t)}I_{n}, \qquad \gamma_{-1}^{t} = (\cosh t + i\sinh t)^{-\frac{n}{2}}$$

This allows in particular to read the profile and spreading of the packets:

$$\begin{aligned} |e^{itH_0}\psi_{z,\zeta}(x)| &= \frac{1}{(\pi(1+t^2))^{\frac{n}{4}}}\exp\left(-\frac{|x-z_0^t|^2}{2(1+t^2)}\right) \\ |e^{itH_1}\psi_{z,\zeta}(x)| &= \frac{1}{\pi^{\frac{n}{4}}}\exp\left(-\frac{|x-z_1^t|^2}{2}\right) \\ |e^{itH_{-1}}\psi_{z,\zeta}(x)| &= \frac{1}{(\pi\cosh(2t))^{\frac{n}{4}}}\exp\left(-\frac{|x-z_{-1}^t|^2}{2\cosh(2t)}\right) \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

From now on, we use a semiclassical normalization

$$\psi_{z,\zeta}^h(x) = (\pi h)^{-\frac{n}{4}} \exp\left(\frac{\mathrm{i}}{h}\zeta \cdot (x-z) - \frac{|x-z|^2}{2h}\right)$$

(ロ)、(型)、(E)、(E)、 E) の(の)

From now on, we use a semiclassical normalization

$$\psi_{z,\zeta}^h(x) = (\pi h)^{-\frac{n}{4}} \exp\left(\frac{\mathrm{i}}{h}\zeta \cdot (x-z) - \frac{|x-z|^2}{2h}\right)$$

(ロ)、(型)、(E)、(E)、 E) の(の)

 \implies Localization around z on a scale $h^{1/2}$

From now on, we use a semiclassical normalization

$$\psi_{z,\zeta}^h(x) = (\pi h)^{-\frac{n}{4}} \exp\left(\frac{\mathrm{i}}{h}\zeta \cdot (x-z) - \frac{|x-z|^2}{2h}\right)$$

 \implies Localization around z on a scale $h^{1/2}$ Consider a semiclassical Schrödinger operator on \mathbb{R}^n

$$H(h) = -\frac{h^2\Delta}{2} + V(x), \qquad p(x,\xi) = \frac{|\xi|^2}{2} + V(x),$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

with $V \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$.

From now on, we use a semiclassical normalization

$$\psi_{z,\zeta}^h(x) = (\pi h)^{-\frac{n}{4}} \exp\left(\frac{\mathrm{i}}{h}\zeta \cdot (x-z) - \frac{|x-z|^2}{2h}\right)$$

 \implies Localization around z on a scale $h^{1/2}$ Consider a semiclassical Schrödinger operator on \mathbb{R}^n

$$H(h) = -\frac{h^2\Delta}{2} + V(x), \qquad p(x,\xi) = \frac{|\xi|^2}{2} + V(x),$$

with $V \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$. Denote

$$(z^t,\zeta^t) = \Phi^t_p(z,\zeta), \qquad \begin{pmatrix} A^t & B^t\\ C^t & D^t \end{pmatrix} := D\Phi^t_p(z,\zeta)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

From now on, we use a semiclassical normalization

$$\psi_{z,\zeta}^h(x) = (\pi h)^{-\frac{n}{4}} \exp\left(\frac{\mathrm{i}}{h}\zeta \cdot (x-z) - \frac{|x-z|^2}{2h}\right)$$

 \implies Localization around z on a scale $h^{1/2}$ Consider a semiclassical Schrödinger operator on \mathbb{R}^n

$$H(h) = -\frac{h^2\Delta}{2} + V(x), \qquad p(x,\xi) = \frac{|\xi|^2}{2} + V(x),$$

with $V \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$. Denote

$$(z^t,\zeta^t) = \Phi^t_p(z,\zeta), \qquad \begin{pmatrix} A^t & B^t \\ C^t & D^t \end{pmatrix} := D\Phi^t_p(z,\zeta)$$

and

$$S^t = \int_0^t \dot{z}^s \cdot \zeta^s - p(z^s, \zeta^s) ds$$

From now on, we use a semiclassical normalization

$$\psi_{z,\zeta}^h(x) = (\pi h)^{-\frac{n}{4}} \exp\left(\frac{\mathrm{i}}{h}\zeta \cdot (x-z) - \frac{|x-z|^2}{2h}\right)$$

 \implies Localization around z on a scale $h^{1/2}$ Consider a semiclassical Schrödinger operator on \mathbb{R}^n

$$H(h) = -\frac{h^2\Delta}{2} + V(x), \qquad p(x,\xi) = \frac{|\xi|^2}{2} + V(x),$$

with $V \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$. Denote

$$(z^t,\zeta^t) = \Phi^t_p(z,\zeta), \qquad \begin{pmatrix} A^t & B^t\\ C^t & D^t \end{pmatrix} := D\Phi^t_p(z,\zeta)$$

and

$$S^t = \int_0^t \dot{z}^s \cdot \zeta^s - p(z^s, \zeta^s) ds$$

Proposition [action of the symplectic group on the Siegel half space] $A^t + iB^t$ is invertible and

$$\Gamma^t := (C^t + \mathrm{i}D^t)(A^t + \mathrm{i}B^t)^{-1}$$

is symmetric complex, with positive definite imaginary part

Theorem (Hagedorn-Joye, Combescure-Robert) In the limit $h \rightarrow 0$, and under general conditions on V,

 $e^{-\mathrm{i}\frac{t}{h}H(h)}\psi^h_{z,\zeta}(x)$

is well approximated by

$$(\pi h)^{-\frac{n}{4}}\gamma^{t}\mathcal{A}_{t}^{h}(x)\exp\frac{\mathrm{i}}{h}\left(S^{t}+\zeta^{t}\cdot(x-z^{t})+\frac{\Gamma^{t}}{2}(x-z^{t})\cdot(x-z^{t})\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (Hagedorn-Joye, Combescure-Robert) In the limit $h \rightarrow 0$, and under general conditions on V,

 $e^{-\mathrm{i}\frac{t}{h}H(h)}\psi^h_{z,\zeta}(x)$

is well approximated by

$$(\pi h)^{-\frac{n}{4}}\gamma^t \mathcal{A}_t^h(x) \exp \frac{\mathrm{i}}{h} \left(S^t + \zeta^t \cdot (x - z^t) + \frac{\Gamma^t}{2} (x - z^t) \cdot (x - z^t) \right)$$

for times $|t| \leq C_0 |\ln h|$ (C₀ dynamical constant). Here $\gamma^t = det(A_t + iB_t)^{-1/2}$.

Theorem (Hagedorn-Joye, Combescure-Robert) In the limit $h \rightarrow 0$, and under general conditions on V,

 $e^{-\mathrm{i}\frac{t}{h}H(h)}\psi^h_{z,\zeta}(x)$

is well approximated by

$$(\pi h)^{-\frac{n}{4}}\gamma^{t}\mathcal{A}_{t}^{h}(x)\exp\frac{\mathrm{i}}{h}\left(S^{t}+\zeta^{t}\cdot(x-z^{t})+\frac{\Gamma^{t}}{2}(x-z^{t})\cdot(x-z^{t})\right)$$

for times $|t| \leq C_0 |\ln h|$ (C_0 dynamical constant). Here $\gamma^t = det(A_t + iB_t)^{-1/2}$. The amplitude is of the form

$$\mathcal{A}_t^h(x) \sim 1 + \sum_{j \geq 1} h^{rac{j}{2}} \mathcal{A}_j\left(z,\zeta,t,rac{x-z^t}{h^{rac{1}{2}}}
ight)$$

with $A_j(z, \zeta, t, X)$ polynomial of degree $\leq 3j$ in X, with coeff. depending on the classical trajectory $t \mapsto (z^t, \zeta^t)$ and the Taylor expansion of V at z^t

Theorem (Hagedorn-Joye, Combescure-Robert) In the limit $h \rightarrow 0$, and under general conditions on V,

 $e^{-\mathrm{i}\frac{t}{h}H(h)}\psi^h_{z,\zeta}(x)$

is well approximated by

$$(\pi h)^{-\frac{n}{4}}\gamma^{t}\mathcal{A}_{t}^{h}(x)\exp\frac{\mathrm{i}}{h}\left(S^{t}+\zeta^{t}\cdot(x-z^{t})+\frac{\Gamma^{t}}{2}(x-z^{t})\cdot(x-z^{t})\right)$$

for times $|t| \leq C_0 |\ln h|$ (C_0 dynamical constant). Here $\gamma^t = det(A_t + iB_t)^{-1/2}$. The amplitude is of the form

$$\mathcal{A}_t^h(x) \sim 1 + \sum_{j \geq 1} h^{rac{j}{2}} \mathcal{A}_j\left(z,\zeta,t,rac{x-z^t}{h^{rac{1}{2}}}
ight)$$

with $A_j(z, \zeta, t, X)$ polynomial of degree $\leq 3j$ in X, with coeff. depending on the classical trajectory $t \mapsto (z^t, \zeta^t)$ and the Taylor expansion of V at z^t

Rem. The polynomial growth of the amplitude in $(x - z^t)/h^{\frac{1}{2}}$ is beaten by the exponential decay of the exponential since $\text{Im}(\Gamma^t)$ is positive definite

Theorem (Hagedorn-Joye, Combescure-Robert) In the limit $h \rightarrow 0$, and under general conditions on V,

 $e^{-i\frac{t}{h}H(h)}\psi^h_{z,\zeta}(x)$

is well approximated by

$$(\pi h)^{-\frac{n}{4}}\gamma^{t}\mathcal{A}_{t}^{h}(x)\exp\frac{\mathrm{i}}{h}\left(S^{t}+\zeta^{t}\cdot(x-z^{t})+\frac{\Gamma^{t}}{2}(x-z^{t})\cdot(x-z^{t})\right)$$

for times $|t| \leq C_0 |\ln h|$ (C_0 dynamical constant). Here $\gamma^t = det(A_t + iB_t)^{-1/2}$. The amplitude is of the form

$$\mathcal{A}_t^h(x) \sim 1 + \sum_{j \geq 1} h^{rac{j}{2}} \mathcal{A}_j\left(z,\zeta,t,rac{x-z^t}{h^{rac{1}{2}}}
ight)$$

with $A_j(z, \zeta, t, X)$ polynomial of degree $\leq 3j$ in X, with coeff. depending on the classical trajectory $t \mapsto (z^t, \zeta^t)$ and the Taylor expansion of V at z^t

Rem. The polynomial growth of the amplitude in $(x - z^t)/h^{\frac{1}{2}}$ is beaten by the exponential decay of the exponential since $\text{Im}(\Gamma^t)$ is positive definite \implies Concentration near the classical trajectory,

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

Theorem (Hagedorn-Joye, Combescure-Robert) In the limit $h \rightarrow 0$, and under general conditions on V,

 $e^{-\mathrm{i}\frac{t}{h}H(h)}\psi^h_{z,\zeta}(x)$

is well approximated by

$$(\pi h)^{-\frac{n}{4}}\gamma^{t}\mathcal{A}_{t}^{h}(x)\exp\frac{\mathrm{i}}{h}\left(S^{t}+\zeta^{t}\cdot(x-z^{t})+\frac{\Gamma^{t}}{2}(x-z^{t})\cdot(x-z^{t})\right)$$

for times $|t| \leq C_0 |\ln h|$ (C_0 dynamical constant). Here $\gamma^t = det(A_t + iB_t)^{-1/2}$. The amplitude is of the form

$$\mathcal{A}_t^h(x) \sim 1 + \sum_{j \geq 1} h^{rac{j}{2}} \mathcal{A}_j\left(z,\zeta,t,rac{x-z^t}{h^{rac{1}{2}}}
ight)$$

with $A_j(z, \zeta, t, X)$ polynomial of degree $\leq 3j$ in X, with coeff. depending on the classical trajectory $t \mapsto (z^t, \zeta^t)$ and the Taylor expansion of V at z^t

Rem. The polynomial growth of the amplitude in $(x - z^t)/h^{\frac{1}{2}}$ is beaten by the exponential decay of the exponential since $\operatorname{Im}(\Gamma^t)$ is positive definite \implies Concentration near the classical trajectory, at least as long as $\operatorname{Im}(\Gamma^t) \gg h$

Lemma The matrix Γ^t satisfies the Ricatti equation

$$\dot{\Gamma}^t = -V^{(2)}(z^t) - (\Gamma^t)^2, \qquad \Gamma^0 = \mathrm{i}I_n,$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Lemma The matrix Γ^t satisfies the Ricatti equation

$$\dot{\Gamma}^t = -V^{(2)}(z^t) - (\Gamma^t)^2, \qquad \Gamma^0 = \mathrm{i} I_n,$$

and the function γ^t satisfies

$$\dot{\gamma}^t = -\frac{\operatorname{tr}(\Gamma^t)}{2}\gamma^t.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lemma The matrix Γ^t satisfies the Ricatti equation

$$\dot{\Gamma}^t = -V^{(2)}(z^t) - (\Gamma^t)^2, \qquad \Gamma^0 = \mathrm{i} I_n,$$

and the function γ^t satisfies

$$\dot{\gamma}^t = -\frac{\operatorname{tr}(\Gamma^t)}{2}\gamma^t.$$

Set

$$\varphi := S^t + \zeta^t \cdot (x - z^t) + \frac{\Gamma^t}{2} (x - z^t) \cdot (x - z^t).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lemma The matrix Γ^t satisfies the Ricatti equation

$$\dot{\Gamma}^t = -V^{(2)}(z^t) - (\Gamma^t)^2, \qquad \Gamma^0 = \mathrm{i}I_n,$$

and the function γ^t satisfies

$$\dot{\gamma}^t = -\frac{\operatorname{tr}(\Gamma^t)}{2}\gamma^t.$$

Set

$$\varphi := S^t + \zeta^t \cdot (x - z^t) + \frac{\Gamma^t}{2} (x - z^t) \cdot (x - z^t).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Then

 $H(h)\gamma^t e^{\frac{\mathrm{i}}{h}\varphi}$

Lemma The matrix Γ^t satisfies the Ricatti equation

$$\dot{\Gamma}^t = -V^{(2)}(z^t) - (\Gamma^t)^2, \qquad \Gamma^0 = \mathrm{i} I_n,$$

and the function γ^t satisfies

$$\dot{\gamma}^t = -\frac{\operatorname{tr}(\Gamma^t)}{2}\gamma^t.$$

Set

$$\varphi := S^t + \zeta^t \cdot (x - z^t) + \frac{\Gamma^t}{2} (x - z^t) \cdot (x - z^t).$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Then

$$H(h)\gamma^{t}e^{\frac{i}{h}\varphi} = \left[\left(\dot{\varphi} + \frac{\nabla_{x}\varphi \cdot \nabla_{x}\varphi}{2} + V(x)\right) - ih\left(\frac{\dot{\gamma^{t}}}{\gamma^{t}} + \frac{\Delta\varphi}{2}\right)\right]\gamma^{t}e^{\frac{i}{h}\varphi}$$

Lemma The matrix Γ^t satisfies the Ricatti equation

$$\dot{\Gamma}^t = -V^{(2)}(z^t) - (\Gamma^t)^2, \qquad \Gamma^0 = \mathrm{i} I_n,$$

and the function γ^t satisfies

$$\dot{\gamma}^t = -rac{\operatorname{tr}(\Gamma^t)}{2}\gamma^t.$$

Set

$$\varphi := S^t + \zeta^t \cdot (x - z^t) + \frac{\Gamma^t}{2} (x - z^t) \cdot (x - z^t).$$

Then

$$\begin{aligned} H(h)\gamma^{t}e^{\frac{\mathrm{i}}{h}\varphi} &= \left[\left(\dot{\varphi} + \frac{\nabla_{x}\varphi \cdot \nabla_{x}\varphi}{2} + V(x) \right) - \mathrm{i}h\left(\frac{\dot{\gamma^{t}}}{\gamma^{t}} + \frac{\Delta\varphi}{2} \right) \right]\gamma^{t}e^{\frac{\mathrm{i}}{h}\varphi} \\ &= \left[V(x) - V(z^{t}) - V^{(1)}(z^{t}) \cdot (x - z^{t}) - \frac{V^{(2)}(z^{t})}{2}(x - z^{t}) \cdot (x - z^{t}) \right]\gamma^{t}e^{\frac{\mathrm{i}}{h}\varphi} \end{aligned}$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Lemma The matrix Γ^t satisfies the Ricatti equation

$$\dot{\Gamma}^t = -V^{(2)}(z^t) - (\Gamma^t)^2, \qquad \Gamma^0 = \mathrm{i} I_n,$$

and the function γ^t satisfies

$$\dot{\gamma}^t = -rac{\operatorname{tr}(\Gamma^t)}{2}\gamma^t.$$

Set

$$\varphi := S^t + \zeta^t \cdot (x - z^t) + \frac{\Gamma^t}{2} (x - z^t) \cdot (x - z^t).$$

Then

$$\begin{split} H(h)\gamma^{t}e^{\frac{i}{h}\varphi} &= \left[\left(\dot{\varphi} + \frac{\nabla_{x}\varphi \cdot \nabla_{x}\varphi}{2} + V(x) \right) - ih\left(\frac{\dot{\gamma^{t}}}{\gamma^{t}} + \frac{\Delta\varphi}{2} \right) \right] \gamma^{t}e^{\frac{i}{h}\varphi} \\ &= \left[V(x) - V(z^{t}) - V^{(1)}(z^{t}) \cdot (x - z^{t}) - \frac{V^{(2)}(z^{t})}{2}(x - z^{t}) \cdot (x - z^{t}) \right] \gamma^{t}e^{\frac{i}{h}\varphi} \\ &= O\left(|x - z^{t}|^{3} \right) \gamma^{t}e^{\frac{i}{h}\varphi} \end{split}$$

Lemma The matrix Γ^t satisfies the Ricatti equation

$$\dot{\Gamma}^t = -V^{(2)}(z^t) - (\Gamma^t)^2, \qquad \Gamma^0 = \mathrm{i} I_n,$$

and the function γ^t satisfies

$$\dot{\gamma}^t = -\frac{\operatorname{tr}(\Gamma^t)}{2}\gamma^t.$$

Set

$$\varphi := S^t + \zeta^t \cdot (x - z^t) + \frac{\Gamma^t}{2} (x - z^t) \cdot (x - z^t).$$

Then

$$\begin{split} H(h)\gamma^{t}e^{\frac{i}{h}\varphi} &= \left[\left(\dot{\varphi} + \frac{\nabla_{x}\varphi \cdot \nabla_{x}\varphi}{2} + V(x) \right) - ih\left(\frac{\dot{\gamma^{t}}}{\gamma^{t}} + \frac{\Delta\varphi}{2} \right) \right] \gamma^{t}e^{\frac{i}{h}\varphi} \\ &= \left[V(x) - V(z^{t}) - V^{(1)}(z^{t}) \cdot (x - z^{t}) - \frac{V^{(2)}(z^{t})}{2}(x - z^{t}) \cdot (x - z^{t}) \right] \gamma^{t}e^{\frac{i}{h}\varphi} \\ &= O\left(|x - z^{t}|^{3} \right) \gamma^{t}e^{\frac{i}{h}\varphi} \\ &= h^{3/2}O\left(\frac{|x - z^{t}|^{3}}{h^{3/2}} \right) \gamma^{t}e^{\frac{i}{h}\varphi} \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

<□▶ < @▶ < @▶ < @▶ < @▶ < @ > @ < の < @</p>

Goal: to emulate the construction on \mathbb{R}^n

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Goal: to emulate the construction on \mathbb{R}^n Previous related works:

 Construction of quasimodes: by propagating a single wave packet along a closed geodesic (Babich-Lazutkin, Ralston, Paul-Uribe, Nonnenmacher-Eswarathasan...).

Goal: to emulate the construction on \mathbb{R}^n Previous related works:

 Construction of quasimodes: by propagating a single wave packet along a closed geodesic (Babich-Lazutkin, Ralston, Paul-Uribe, Nonnenmacher-Eswarathasan...). Allows to use Fermi coordinates.

Goal: to emulate the construction on \mathbb{R}^n Previous related works:

 Construction of quasimodes: by propagating a single wave packet along a closed geodesic (Babich-Lazutkin, Ralston, Paul-Uribe, Nonnenmacher-Eswarathasan...). Allows to use Fermi coordinates.

More general propagation results: Paul-Uribe, Guillemin-Uribe-Wang: qualitative description of wave packets and their evolutions (for Hamiltonians with non homogeneous symbols).

Goal: to emulate the construction on \mathbb{R}^n Previous related works:

 Construction of quasimodes: by propagating a single wave packet along a closed geodesic (Babich-Lazutkin, Ralston, Paul-Uribe, Nonnenmacher-Eswarathasan...). Allows to use Fermi coordinates.

More general propagation results: Paul-Uribe, Guillemin-Uribe-Wang: qualitative description of wave packets and their evolutions (for Hamiltonians with non homogeneous symbols). General but not so explicit,

Goal: to emulate the construction on \mathbb{R}^n Previous related works:

- Construction of quasimodes: by propagating a single wave packet along a closed geodesic (Babich-Lazutkin, Ralston, Paul-Uribe, Nonnenmacher-Eswarathasan...). Allows to use Fermi coordinates.
- More general propagation results: Paul-Uribe, Guillemin-Uribe-Wang: qualitative description of wave packets and their evolutions (for Hamiltonians with non homogeneous symbols). General but not so explicit, using local coordinates

Goal: to emulate the construction on \mathbb{R}^n Previous related works:

- Construction of quasimodes: by propagating a single wave packet along a closed geodesic (Babich-Lazutkin, Ralston, Paul-Uribe, Nonnenmacher-Eswarathasan...). Allows to use Fermi coordinates.
- More general propagation results: Paul-Uribe, Guillemin-Uribe-Wang: qualitative description of wave packets and their evolutions (for Hamiltonians with non homogeneous symbols). General but not so explicit, using local coordinates and given for finite times

Goal: to emulate the construction on \mathbb{R}^n Previous related works:

- Construction of quasimodes: by propagating a single wave packet along a closed geodesic (Babich-Lazutkin, Ralston, Paul-Uribe, Nonnenmacher-Eswarathasan...). Allows to use Fermi coordinates.
- More general propagation results: Paul-Uribe, Guillemin-Uribe-Wang: qualitative description of wave packets and their evolutions (for Hamiltonians with non homogeneous symbols). General but not so explicit, using local coordinates and given for finite times

Motivations and interests:

1. Consider more than the propagation along a single trajectory \Rightarrow vary (z, ζ)

Goal: to emulate the construction on \mathbb{R}^n Previous related works:

- Construction of quasimodes: by propagating a single wave packet along a closed geodesic (Babich-Lazutkin, Ralston, Paul-Uribe, Nonnenmacher-Eswarathasan...). Allows to use Fermi coordinates.
- More general propagation results: Paul-Uribe, Guillemin-Uribe-Wang: qualitative description of wave packets and their evolutions (for Hamiltonians with non homogeneous symbols). General but not so explicit, using local coordinates and given for finite times

Motivations and interests:

- 1. Consider more than the propagation along a *single* trajectory \Rightarrow vary (z, ζ)
- 2. Get an (at most as possible) intrinsinc description of wave packets propagation

Goal: to emulate the construction on \mathbb{R}^n Previous related works:

- Construction of quasimodes: by propagating a single wave packet along a closed geodesic (Babich-Lazutkin, Ralston, Paul-Uribe, Nonnenmacher-Eswarathasan...). Allows to use Fermi coordinates.
- More general propagation results: Paul-Uribe, Guillemin-Uribe-Wang: qualitative description of wave packets and their evolutions (for Hamiltonians with non homogeneous symbols). General but not so explicit, using local coordinates and given for finite times

Motivations and interests:

- 1. Consider more than the propagation along a *single* trajectory \Rightarrow vary (z, ζ)
- 2. Get an (at most as possible) intrinsinc description of wave packets propagation

3. Get (relatively) explicit approximation of $e^{itH(h)/h}$ as a single integral

Goal: to emulate the construction on \mathbb{R}^n Previous related works:

- Construction of quasimodes: by propagating a single wave packet along a closed geodesic (Babich-Lazutkin, Ralston, Paul-Uribe, Nonnenmacher-Eswarathasan...). Allows to use Fermi coordinates.
- More general propagation results: Paul-Uribe, Guillemin-Uribe-Wang: qualitative description of wave packets and their evolutions (for Hamiltonians with non homogeneous symbols). General but not so explicit, using local coordinates and given for finite times

Motivations and interests:

- 1. Consider more than the propagation along a *single* trajectory \Rightarrow vary (z, ζ)
- 2. Get an (at most as possible) intrinsinc description of wave packets propagation
- 3. Get (relatively) explicit approximation of $e^{itH(h)/h}$ as a single integral, without need to go to the universal cover

Goal: to emulate the construction on \mathbb{R}^n Previous related works:

- Construction of quasimodes: by propagating a single wave packet along a closed geodesic (Babich-Lazutkin, Ralston, Paul-Uribe, Nonnenmacher-Eswarathasan...). Allows to use Fermi coordinates.
- More general propagation results: Paul-Uribe, Guillemin-Uribe-Wang: qualitative description of wave packets and their evolutions (for Hamiltonians with non homogeneous symbols). General but not so explicit, using local coordinates and given for finite times

Motivations and interests:

- 1. Consider more than the propagation along a *single* trajectory \Rightarrow vary (z, ζ)
- 2. Get an (at most as possible) intrinsinc description of wave packets propagation
- 3. Get (relatively) explicit approximation of $e^{itH(h)/h}$ as a single integral, without need to go to the universal cover, up to $|t| \le C_0 |\log h|$

Goal: to emulate the construction on \mathbb{R}^n Previous related works:

- Construction of quasimodes: by propagating a single wave packet along a closed geodesic (Babich-Lazutkin, Ralston, Paul-Uribe, Nonnenmacher-Eswarathasan...). Allows to use Fermi coordinates.
- More general propagation results: Paul-Uribe, Guillemin-Uribe-Wang: qualitative description of wave packets and their evolutions (for Hamiltonians with non homogeneous symbols). General but not so explicit, using local coordinates and given for finite times

Motivations and interests:

- 1. Consider more than the propagation along a *single* trajectory \Rightarrow vary (z, ζ)
- 2. Get an (at most as possible) intrinsinc description of wave packets propagation
- 3. Get (relatively) explicit approximation of $e^{itH(h)/h}$ as a single integral, without need to go to the universal cover, up to $|t| \le C_0 |\log h|$

4. See e.g. quite explicitly the effect of (negative) curvature

Goal: to emulate the construction on \mathbb{R}^n Previous related works:

- Construction of quasimodes: by propagating a single wave packet along a closed geodesic (Babich-Lazutkin, Ralston, Paul-Uribe, Nonnenmacher-Eswarathasan...). Allows to use Fermi coordinates.
- More general propagation results: Paul-Uribe, Guillemin-Uribe-Wang: qualitative description of wave packets and their evolutions (for Hamiltonians with non homogeneous symbols). General but not so explicit, using local coordinates and given for finite times

Motivations and interests:

- 1. Consider more than the propagation along a *single* trajectory \Rightarrow vary (z, ζ)
- 2. Get an (at most as possible) intrinsinc description of wave packets propagation
- 3. Get (relatively) explicit approximation of $e^{itH(h)/h}$ as a single integral, without need to go to the universal cover, up to $|t| \le C_0 |\log h|$
- 4. See e.g. quite explicitly the effect of (negative) curvature

5. ...

Let (M^n, g) be a Riemannian manifold with **bounded geometry**

Let (M^n, g) be a Riemannian manifold with **bounded geometry** i.e.

1. injectivity radius bounded from below by $r_0 > 0$

Let (M^n, g) be a Riemannian manifold with **bounded geometry** i.e.

- 1. injectivity radius bounded from below by $r_0 > 0$
- 2. all covariant derivatives of the Riemann curvature tensor bounded on M

(ロ)、(型)、(E)、(E)、 E) の(の)

Let (M^n, g) be a Riemannian manifold with **bounded geometry** i.e.

- 1. injectivity radius bounded from below by $r_0 > 0$
- 2. all covariant derivatives of the Riemann curvature tensor bounded on M

3. complete (for simplicity)

Let (M^n, g) be a Riemannian manifold with **bounded geometry** i.e.

- 1. injectivity radius bounded from below by $r_0 > 0$
- 2. all covariant derivatives of the Riemann curvature tensor bounded on M

3. complete (for simplicity)

Example. Any closed Riemannian manifold

Let (M^n, g) be a Riemannian manifold with **bounded geometry** i.e.

- 1. injectivity radius bounded from below by $r_0 > 0$
- 2. all covariant derivatives of the Riemann curvature tensor bounded on M
- 3. complete (for simplicity)

Example. Any closed Riemannian manifold

Lemma [Inverse exponential map close to the diagonal of $M \times M$] If $d_g(z, m) < r_0$, there is a unique $W_z^m \in T_z M$ such that

$$m = \exp_z (W_z^m).$$

Let (M^n, g) be a Riemannian manifold with **bounded geometry** i.e.

- 1. injectivity radius bounded from below by $r_0 > 0$
- 2. all covariant derivatives of the Riemann curvature tensor bounded on M
- 3. complete (for simplicity)

Example. Any closed Riemannian manifold

Lemma [Inverse exponential map close to the diagonal of $M \times M$] If $d_g(z, m) < r_0$, there is a unique $W_z^m \in T_z M$ such that

$$m = \exp_z (W_z^m).$$

For fixed m, $z \mapsto W_z^m$ is a vector field

Let (M^n, g) be a Riemannian manifold with **bounded geometry** i.e.

- 1. injectivity radius bounded from below by $r_0 > 0$
- 2. all covariant derivatives of the Riemann curvature tensor bounded on M
- 3. complete (for simplicity)

Example. Any closed Riemannian manifold

Lemma [Inverse exponential map close to the diagonal of $M \times M$] If $d_g(z, m) < r_0$, there is a unique $W_z^m \in T_z M$ such that

$$m = \exp_z \left(W_z^m \right).$$

For fixed m, $z \mapsto W_z^m$ is a vector field and one can expand its covariant derivative

$$\nabla W_{z}^{m} \sim -I + \frac{1}{3} R_{z} (., W_{z}^{m}) W_{z}^{m} + \frac{1}{12} (\nabla R)_{z} (W_{z}^{m}; ., W_{z}^{m}) W_{z}^{m} + \cdots$$

Let (M^n, g) be a Riemannian manifold with **bounded geometry** i.e.

- 1. injectivity radius bounded from below by $r_0 > 0$
- 2. all covariant derivatives of the Riemann curvature tensor bounded on M
- 3. complete (for simplicity)

Example. Any closed Riemannian manifold

Lemma [Inverse exponential map close to the diagonal of $M \times M$] If $d_g(z, m) < r_0$, there is a unique $W_z^m \in T_z M$ such that

$$m = \exp_z \left(W_z^m \right).$$

For fixed m, $z \mapsto W_z^m$ is a vector field and one can expand its covariant derivative

$$\nabla W_z^m \sim -I + \frac{1}{3} R_z (., W_z^m) W_z^m + \frac{1}{12} (\nabla R)_z (W_z^m; ., W_z^m) W_z^m + \cdots$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

All tensors in this expansion are bounded

Let (M^n, g) be a Riemannian manifold with **bounded geometry** i.e.

- 1. injectivity radius bounded from below by $r_0 > 0$
- 2. all covariant derivatives of the Riemann curvature tensor bounded on M
- 3. complete (for simplicity)

Example. Any closed Riemannian manifold

Lemma [Inverse exponential map close to the diagonal of $M \times M$] If $d_g(z, m) < r_0$, there is a unique $W_z^m \in T_z M$ such that

$$m = \exp_z \left(W_z^m \right).$$

For fixed m, $z \mapsto W_z^m$ is a vector field and one can expand its covariant derivative

$$\nabla W_z^m \sim -I + \frac{1}{3} R_z (., W_z^m) W_z^m + \frac{1}{12} (\nabla R)_z (W_z^m; ., W_z^m) W_z^m + \cdots$$

All tensors in this expansion are bounded (similar result for higher covariant derivatives)

Let (M^n, g) be a Riemannian manifold with **bounded geometry** i.e.

- 1. injectivity radius bounded from below by $r_0 > 0$
- 2. all covariant derivatives of the Riemann curvature tensor bounded on M
- 3. complete (for simplicity)

Example. Any closed Riemannian manifold

Lemma [Inverse exponential map close to the diagonal of $M \times M$] If $d_g(z, m) < r_0$, there is a unique $W_z^m \in T_z M$ such that

$$m = \exp_z \left(W_z^m \right).$$

For fixed m, $z \mapsto W_z^m$ is a vector field and one can expand its covariant derivative

$$\nabla W_z^m \sim -I + \frac{1}{3} R_z (., W_z^m) W_z^m + \frac{1}{12} (\nabla R)_z (W_z^m; ., W_z^m) W_z^m + \cdots$$

All tensors in this expansion are bounded (similar result for higher covariant derivatives)

Rem: on \mathbb{R}^n , $W_z^m = m - z$.

Consider $V \in C^{\infty}(M,\mathbb{R})$ and

$$H(h):=-h^2\frac{\Delta_g}{2}+V$$

<□ > < @ > < E > < E > E のQ @

Consider $V \in C^{\infty}(M, \mathbb{R})$ and

$$H(h):=-h^2\frac{\Delta_g}{2}+V$$

 $(z^t,\zeta^t)=\Phi^t(z,\zeta),$ Hamiltonian flow of $rac{|\xi|_m^2}{2}+V(m)$

Consider $V \in C^{\infty}(M, \mathbb{R})$ and

$$H(h):=-h^2\frac{\Delta_g}{2}+V$$

$$(z^t, \zeta^t) = \Phi^t(z, \zeta),$$
 Hamiltonian flow of $\frac{|\xi|_m^2}{2} + V(m)$

Proposition. Let U be a coordinate patch, with coordinates y_1, \ldots, y_n .

Consider $V \in C^{\infty}(M, \mathbb{R})$ and

$$H(h):=-h^2\frac{\Delta_g}{2}+V$$

$$(z^t, \zeta^t) = \Phi^t(z, \zeta),$$
 Hamiltonian flow of $\frac{|\xi|_m^2}{2} + V(m)$

Proposition. Let U be a coordinate patch, with coordinates y_1, \ldots, y_n . Along each trajectory starting at $(z, \zeta) \in T^*U$, one can define intrinsincally

$$\Gamma^t: T_{z^t}M^{\mathbb{C}} \to T_{z^t}M^{\mathbb{C}}, \qquad \text{where} \ \ T_{z^t}M^{\mathbb{C}} = T_{z^t}M \otimes \mathbb{C}$$

Consider $V \in C^{\infty}(M, \mathbb{R})$ and

$$H(h):=-h^2\frac{\Delta_g}{2}+V$$

$$(z^t, \zeta^t) = \Phi^t(z, \zeta),$$
 Hamiltonian flow of $\frac{|\xi|_m^2}{2} + V(m)$

Proposition. Let U be a coordinate patch, with coordinates y_1, \ldots, y_n . Along each trajectory starting at $(z, \zeta) \in T^*U$, one can define intrinsincally

$$\Gamma^{t}: T_{z^{t}}M^{\mathbb{C}} \to T_{z^{t}}M^{\mathbb{C}}, \qquad \text{where} \ \ T_{z^{t}}M^{\mathbb{C}} = T_{z^{t}}M \otimes \mathbb{C}$$

(i.e. Γ^t is a complex tensor along the curve $t \mapsto z^t$)

Consider $V \in C^{\infty}(M, \mathbb{R})$ and

$$H(h):=-h^2\frac{\Delta_g}{2}+V$$

$$(z^t, \zeta^t) = \Phi^t(z, \zeta),$$
 Hamiltonian flow of $\frac{|\xi|_m^2}{2} + V(m)$

Proposition. Let U be a coordinate patch, with coordinates y_1, \ldots, y_n . Along each trajectory starting at $(z, \zeta) \in T^*U$, one can define intrinsincally

$$\Gamma^{t}: T_{z^{t}}M^{\mathbb{C}} \to T_{z^{t}}M^{\mathbb{C}}, \qquad \text{where} \ \ T_{z^{t}}M^{\mathbb{C}} = T_{z^{t}}M \otimes \mathbb{C}$$

(i.e. Γ^t is a complex tensor along the curve $t \mapsto z^t$) which is

Consider $V \in C^{\infty}(M, \mathbb{R})$ and

$$H(h):=-h^2\frac{\Delta_g}{2}+V$$

$$(z^t, \zeta^t) = \Phi^t(z, \zeta),$$
 Hamiltonian flow of $\frac{|\xi|_m^2}{2} + V(m)$

Proposition. Let U be a coordinate patch, with coordinates y_1, \ldots, y_n . Along each trajectory starting at $(z, \zeta) \in T^*U$, one can define intrinsincally

$$\Gamma^t: T_{z^t}M^{\mathbb{C}} \to T_{z^t}M^{\mathbb{C}}, \qquad \text{where} \ \ T_{z^t}M^{\mathbb{C}} = T_{z^t}M \otimes \mathbb{C}$$

(i.e. Γ^t is a complex tensor along the curve $t \mapsto z^t$) which is symmetric

$$\langle \Gamma^t X, Y \rangle_{z^t} = \langle X, \Gamma^t Y \rangle_{z^t}, \qquad X, Y \in T_{z^t} M$$

Consider $V \in C^{\infty}(M, \mathbb{R})$ and

$$H(h):=-h^2\frac{\Delta_g}{2}+V$$

$$(z^t, \zeta^t) = \Phi^t(z, \zeta),$$
 Hamiltonian flow of $\frac{|\xi|_m^2}{2} + V(m)$

Proposition. Let U be a coordinate patch, with coordinates y_1, \ldots, y_n . Along each trajectory starting at $(z, \zeta) \in T^*U$, one can define intrinsincally

$$\Gamma^t: T_{z^t}M^{\mathbb{C}} \to T_{z^t}M^{\mathbb{C}}, \qquad \text{where} \ \ T_{z^t}M^{\mathbb{C}} = T_{z^t}M \otimes \mathbb{C}$$

(i.e. Γ^t is a complex tensor along the curve $t \mapsto z^t$) which is symmetric

$$\left\langle \Gamma^{t}X,Y\right\rangle _{z^{t}}=\left\langle X,\Gamma^{t}Y
ight
angle _{z^{t}},\qquad X,Y\in T_{z^{t}}M$$

has positive definite imaginary part

$$\operatorname{Im} \left\langle \Gamma^{t} X, X \right\rangle_{z^{t}} > 0, \qquad X \neq 0, \ X \in T_{z^{t}} M$$

Consider $V \in C^{\infty}(M, \mathbb{R})$ and

$$H(h):=-h^2\frac{\Delta_g}{2}+V$$

$$(z^t, \zeta^t) = \Phi^t(z, \zeta),$$
 Hamiltonian flow of $\frac{|\xi|_m^2}{2} + V(m)$

Proposition. Let U be a coordinate patch, with coordinates y_1, \ldots, y_n . Along each trajectory starting at $(z, \zeta) \in T^*U$, one can define intrinsincally

$$\Gamma^{t}: T_{z^{t}}M^{\mathbb{C}} \to T_{z^{t}}M^{\mathbb{C}}, \qquad \text{where} \ \ T_{z^{t}}M^{\mathbb{C}} = T_{z^{t}}M \otimes \mathbb{C}$$

(i.e. Γ^t is a complex tensor along the curve $t \mapsto z^t$) which is symmetric

$$\left\langle \Gamma^{t}X,Y\right\rangle _{z^{t}}=\left\langle X,\Gamma^{t}Y
ight
angle _{z^{t}},\qquad X,Y\in T_{z^{t}}M$$

has positive definite imaginary part

$$\operatorname{Im}\left\langle \Gamma^{t}X,X\right\rangle _{z^{t}}>0,\qquad X\neq0,\ X\in T_{z^{t}}M$$

and satisfies the Ricatti equation

$$\nabla_{\dot{z}^{t}}\Gamma^{t} = -\mathrm{Hess}(V)_{z^{t}} - R_{z^{t}}(., \dot{z}^{t})\dot{z}^{t} - (\Gamma^{t})^{2}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where R_{z^t} is the Riemann tensor at z^t

Proof.

To construct Γ^t on \mathbb{R}^n , we have used the natural identifications

 $T_{(z,\zeta)}(T^*\mathbb{R}^n) = \mathbb{R}^n \oplus \mathbb{R}^n, \qquad T_{(z^t,\zeta^t)}(T^*\mathbb{R}^n) = \mathbb{R}^n \oplus \mathbb{R}^n$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof.

To construct Γ^t on \mathbb{R}^n , we have used the natural identifications

 $T_{(z,\zeta)}(T^*\mathbb{R}^n) = \mathbb{R}^n \oplus \mathbb{R}^n, \qquad T_{(z^t,\zeta^t)}(T^*\mathbb{R}^n) = \mathbb{R}^n \oplus \mathbb{R}^n$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

How to proceed on a manifold ?

Proof.

To construct Γ^t on \mathbb{R}^n , we have used the natural identifications

$$T_{(z,\zeta)}(T^*\mathbb{R}^n) = \mathbb{R}^n \oplus \mathbb{R}^n, \qquad T_{(z^t,\zeta^t)}(T^*\mathbb{R}^n) = \mathbb{R}^n \oplus \mathbb{R}^n$$

How to proceed on a manifold ?

1. At starting points (z, ζ) with $z \in U$, we split

$$T_{(z,\zeta)}(T^*M) \approx \mathbb{R}_y^n \oplus \mathbb{R}_\eta^n$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

using the (symplectic) coordinates $(y_1, \ldots, y_n, \eta_1, \ldots, \eta_n)$ on T^*U

Proof.

To construct Γ^t on \mathbb{R}^n , we have used the natural identifications

$$T_{(z,\zeta)}(T^*\mathbb{R}^n) = \mathbb{R}^n \oplus \mathbb{R}^n, \qquad T_{(z^t,\zeta^t)}(T^*\mathbb{R}^n) = \mathbb{R}^n \oplus \mathbb{R}^n$$

How to proceed on a manifold ?

1. At starting points (z, ζ) with $z \in U$, we split

$$T_{(z,\zeta)}(T^*M) \approx \mathbb{R}_y^n \oplus \mathbb{R}_\eta^n$$

using the (symplectic) coordinates $(y_1, \ldots, y_n, \eta_1, \ldots, \eta_n)$ on T^*U

2. At points (z^t, ζ^t) , we use the (global) identification $\mathcal{I}_g: T^*M \to TM$

Proof.

To construct Γ^t on \mathbb{R}^n , we have used the natural identifications

$$T_{(z,\zeta)}(T^*\mathbb{R}^n) = \mathbb{R}^n \oplus \mathbb{R}^n, \qquad T_{(z^t,\zeta^t)}(T^*\mathbb{R}^n) = \mathbb{R}^n \oplus \mathbb{R}^n$$

How to proceed on a manifold ?

1. At starting points (z, ζ) with $z \in U$, we split

$$T_{(z,\zeta)}(T^*M) \approx \mathbb{R}^n_y \oplus \mathbb{R}^n_\eta$$

using the (symplectic) coordinates $(y_1, \ldots, y_n, \eta_1, \ldots, \eta_n)$ on T^*U

2. At points (z^t, ζ^t) , we use the (global) identification $\mathcal{I}_g: T^*M \to TM$

$$\mathcal{I}_g(z^t,\zeta^t) = (z^t,\dot{z}^t)$$

Proof.

To construct Γ^t on \mathbb{R}^n , we have used the natural identifications

$$T_{(z,\zeta)}(T^*\mathbb{R}^n) = \mathbb{R}^n \oplus \mathbb{R}^n, \qquad T_{(z^t,\zeta^t)}(T^*\mathbb{R}^n) = \mathbb{R}^n \oplus \mathbb{R}^n$$

How to proceed on a manifold ?

1. At starting points (z, ζ) with $z \in U$, we split

$$T_{(z,\zeta)}(T^*M) \approx \mathbb{R}^n_y \oplus \mathbb{R}^n_\eta$$

using the (symplectic) coordinates $(y_1, \ldots, y_n, \eta_1, \ldots, \eta_n)$ on T^*U

2. At points (z^t, ζ^t) , we use the (global) identification $\mathcal{I}_g: T^*M \to TM$

$$\mathcal{I}_g(z^t,\zeta^t) = (z^t,\dot{z}^t)$$

and split along horizontal and vertical spaces

$$T_{(z^t,\dot{z}^t)}(\mathcal{I}_g T^*M) = \mathcal{H}_{(z^t,\dot{z}^t)} \oplus \mathcal{V}_{(z^t,\dot{z}^t)}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof.

To construct Γ^t on \mathbb{R}^n , we have used the natural identifications

$$T_{(z,\zeta)}(T^*\mathbb{R}^n) = \mathbb{R}^n \oplus \mathbb{R}^n, \qquad T_{(z^t,\zeta^t)}(T^*\mathbb{R}^n) = \mathbb{R}^n \oplus \mathbb{R}^n$$

How to proceed on a manifold ?

1. At starting points (z, ζ) with $z \in U$, we split

$$T_{(z,\zeta)}(T^*M) \approx \mathbb{R}^n_y \oplus \mathbb{R}^n_\eta$$

using the (symplectic) coordinates $(y_1, \ldots, y_n, \eta_1, \ldots, \eta_n)$ on T^*U

2. At points (z^t, ζ^t) , we use the (global) identification $\mathcal{I}_g : T^*M \to TM$

$$\mathcal{I}_g(z^t,\zeta^t) = (z^t,\dot{z}^t)$$

and split along horizontal and vertical spaces

$$T_{(z^t,\dot{z}^t)}(\mathcal{I}_g T^*M) = \mathcal{H}_{(z^t,\dot{z}^t)} \oplus \mathcal{V}_{(z^t,\dot{z}^t)}$$

This gives a natural block decomposition

$$d(\mathcal{I}_{g} \circ \Phi^{t}) = \begin{pmatrix} \mathcal{L}_{A} & \mathcal{L}_{B} \\ \mathcal{L}_{C} & \mathcal{L}_{D} \end{pmatrix} : \mathbb{R}_{y}^{n} \oplus \mathbb{R}_{\eta}^{n} \to \mathcal{H}_{(z^{t}, \dot{z}^{t})} \oplus \mathcal{V}_{(z^{t}, \dot{z}^{t})}$$

Proof (continued). One can then define

$$\left(\mathcal{L}_{C}+\mathrm{i}\mathcal{L}_{D}\right)\left(\mathcal{L}_{A}+\mathrm{i}\mathcal{L}_{B}\right)^{-1}:\mathcal{H}_{\left(z^{t},\dot{z}^{t}\right)}^{\mathbb{C}}\rightarrow\mathcal{V}_{\left(z^{t},\dot{z}^{t}\right)}^{\mathbb{C}}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Proof (continued). One can then define

$$\left(\mathcal{L}_{C}+\mathrm{i}\mathcal{L}_{D}\right)\left(\mathcal{L}_{A}+\mathrm{i}\mathcal{L}_{B}\right)^{-1}:\mathcal{H}_{\left(z^{t},\dot{z}^{t}\right)}^{\mathbb{C}}\rightarrow\mathcal{V}_{\left(z^{t},\dot{z}^{t}\right)}^{\mathbb{C}}$$

and then define Γ^t by composition with the natural isomorphisms

$$T_{z^t} M^{\mathbb{C}} \to \mathcal{H}^{\mathbb{C}}_{(z^t, \dot{z}^t)}, \qquad \mathcal{V}^{\mathbb{C}}_{(z^t, \dot{z}^t)} \to T_{z^t} M^{\mathbb{C}}$$

Proof (continued). One can then define

$$\left(\mathcal{L}_{C}+\mathrm{i}\mathcal{L}_{D}\right)\left(\mathcal{L}_{A}+\mathrm{i}\mathcal{L}_{B}\right)^{-1}:\mathcal{H}_{\left(z^{t},\dot{z}^{t}\right)}^{\mathbb{C}}\rightarrow\mathcal{V}_{\left(z^{t},\dot{z}^{t}\right)}^{\mathbb{C}}$$

and then define Γ^t by composition with the natural isomorphisms

$$T_{z^t}M^{\mathbb{C}} \to \mathcal{H}^{\mathbb{C}}_{(z^t,\dot{z}^t)}, \qquad \mathcal{V}^{\mathbb{C}}_{(z^t,\dot{z}^t)} \to T_{z^t}M^{\mathbb{C}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

More concretely, using local coordinates (x_1, \ldots, x_n) near z^t , the matrix of Γ^t reads

Proof (continued). One can then define

$$\left(\mathcal{L}_{C}+\mathrm{i}\mathcal{L}_{D}\right)\left(\mathcal{L}_{A}+\mathrm{i}\mathcal{L}_{B}\right)^{-1}:\mathcal{H}_{\left(z^{t},\dot{z}^{t}\right)}^{\mathbb{C}}\rightarrow\mathcal{V}_{\left(z^{t},\dot{z}^{t}\right)}^{\mathbb{C}}$$

and then define Γ^t by composition with the natural isomorphisms

$$T_{z^t}M^{\mathbb{C}} \to \mathcal{H}^{\mathbb{C}}_{(z^t,\dot{z}^t)}, \qquad \mathcal{V}^{\mathbb{C}}_{(z^t,\dot{z}^t)} \to T_{z^t}M^{\mathbb{C}}$$

More concretely, using local coordinates (x_1, \ldots, x_n) near z^t , the matrix of Γ^t reads

$$G^{-1}(C^t + \mathrm{i}D^t)(A^t + \mathrm{i}B^t)^{-1} - G^{-1}\Sigma^t$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Proof (continued). One can then define

$$\left(\mathcal{L}_{C}+\mathrm{i}\mathcal{L}_{D}\right)\left(\mathcal{L}_{A}+\mathrm{i}\mathcal{L}_{B}\right)^{-1}:\mathcal{H}_{\left(z^{t},\dot{z}^{t}\right)}^{\mathbb{C}}\rightarrow\mathcal{V}_{\left(z^{t},\dot{z}^{t}
ight)}^{\mathbb{C}}$$

and then define Γ^t by composition with the natural isomorphisms

$$T_{z^t}M^{\mathbb{C}} \to \mathcal{H}^{\mathbb{C}}_{(z^t,\dot{z}^t)}, \qquad \mathcal{V}^{\mathbb{C}}_{(z^t,\dot{z}^t)} \to T_{z^t}M^{\mathbb{C}}$$

More concretely, using local coordinates (x_1, \ldots, x_n) near z^t , the matrix of Γ^t reads

$$G^{-1}(C^t + \mathrm{i}D^t)(A^t + \mathrm{i}B^t)^{-1} - G^{-1}\Sigma^t$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

with

$$G^{-1}=(g^{ij}(x^t)),$$

Proof (continued). One can then define

$$\left(\mathcal{L}_{C}+\mathrm{i}\mathcal{L}_{D}\right)\left(\mathcal{L}_{A}+\mathrm{i}\mathcal{L}_{B}\right)^{-1}:\mathcal{H}_{\left(z^{t},\dot{z}^{t}\right)}^{\mathbb{C}}\rightarrow\mathcal{V}_{\left(z^{t},\dot{z}^{t}
ight)}^{\mathbb{C}}$$

and then define Γ^t by composition with the natural isomorphisms

$$T_{z^t}M^{\mathbb{C}} \to \mathcal{H}^{\mathbb{C}}_{(z^t,\dot{z}^t)}, \qquad \mathcal{V}^{\mathbb{C}}_{(z^t,\dot{z}^t)} \to T_{z^t}M^{\mathbb{C}}$$

More concretely, using local coordinates (x_1, \ldots, x_n) near z^t , the matrix of Γ^t reads

$$G^{-1}(C^t + \mathrm{i}D^t)(A^t + \mathrm{i}B^t)^{-1} - G^{-1}\Sigma^t$$

with

$$G^{-1} = (g^{ij}(x^t)), \qquad \Sigma_{ij}^t = \sum_{k,l} g_{kl}(x^t) \Gamma_{ij}^l(x^t) \dot{x}_k^t, \qquad x^t = x(z^t)$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Proof (continued). One can then define

$$\left(\mathcal{L}_{C}+\mathrm{i}\mathcal{L}_{D}\right)\left(\mathcal{L}_{A}+\mathrm{i}\mathcal{L}_{B}\right)^{-1}:\mathcal{H}_{\left(z^{t},\dot{z}^{t}\right)}^{\mathbb{C}}\rightarrow\mathcal{V}_{\left(z^{t},\dot{z}^{t}
ight)}^{\mathbb{C}}$$

and then define Γ^t by composition with the natural isomorphisms

$$T_{z^t}M^{\mathbb{C}} \to \mathcal{H}^{\mathbb{C}}_{(z^t,\dot{z}^t)}, \qquad \mathcal{V}^{\mathbb{C}}_{(z^t,\dot{z}^t)} \to T_{z^t}M^{\mathbb{C}}$$

More concretely, using local coordinates (x_1, \ldots, x_n) near z^t , the matrix of Γ^t reads

$$G^{-1}(C^t + iD^t)(A^t + iB^t)^{-1} - G^{-1}\Sigma^t$$

with

$$G^{-1} = (g^{ij}(x^t)), \qquad \Sigma_{ij}^t = \sum_{k,l} g_{kl}(x^t) \Gamma_{ij}^l(x^t) \dot{x}_k^t, \qquad x^t = x(z^t)$$

and

$$\begin{pmatrix} A^t & B^t \\ C^t & D^t \end{pmatrix} = \begin{pmatrix} \partial x^t / \partial y & \partial x^t / \partial \eta \\ \partial \xi^t / \partial y & \partial \xi^t / \partial \eta \end{pmatrix}$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Proof (continued). One can then define

$$\left(\mathcal{L}_{C}+\mathrm{i}\mathcal{L}_{D}\right)\left(\mathcal{L}_{A}+\mathrm{i}\mathcal{L}_{B}\right)^{-1}:\mathcal{H}_{\left(z^{t},\dot{z}^{t}\right)}^{\mathbb{C}}\rightarrow\mathcal{V}_{\left(z^{t},\dot{z}^{t}
ight)}^{\mathbb{C}}$$

and then define Γ^t by composition with the natural isomorphisms

$$T_{z^t}M^{\mathbb{C}} \to \mathcal{H}^{\mathbb{C}}_{(z^t,\dot{z}^t)}, \qquad \mathcal{V}^{\mathbb{C}}_{(z^t,\dot{z}^t)} \to T_{z^t}M^{\mathbb{C}}$$

More concretely, using local coordinates (x_1, \ldots, x_n) near z^t , the matrix of Γ^t reads

$$G^{-1}(C^t + iD^t)(A^t + iB^t)^{-1} - G^{-1}\Sigma^t$$

with

$$G^{-1} = (g^{ij}(x^t)), \qquad \Sigma_{ij}^t = \sum_{k,l} g_{kl}(x^t) \Gamma_{ij}^l(x^t) \dot{x}_k^t, \qquad x^t = x(z^t)$$

and

$$\begin{pmatrix} A^t & B^t \\ C^t & D^t \end{pmatrix} = \begin{pmatrix} \partial x^t / \partial y & \partial x^t / \partial \eta \\ \partial \xi^t / \partial y & \partial \xi^t / \partial \eta \end{pmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

 \implies Symmetry of Γ^t ,

Proof (continued). One can then define

$$\left(\mathcal{L}_{C}+\mathrm{i}\mathcal{L}_{D}\right)\left(\mathcal{L}_{A}+\mathrm{i}\mathcal{L}_{B}\right)^{-1}:\mathcal{H}_{\left(z^{t},\dot{z}^{t}\right)}^{\mathbb{C}}\rightarrow\mathcal{V}_{\left(z^{t},\dot{z}^{t}\right)}^{\mathbb{C}}$$

and then define Γ^t by composition with the natural isomorphisms

$$T_{z^t}M^{\mathbb{C}} \to \mathcal{H}^{\mathbb{C}}_{(z^t,\dot{z}^t)}, \qquad \mathcal{V}^{\mathbb{C}}_{(z^t,\dot{z}^t)} \to T_{z^t}M^{\mathbb{C}}$$

More concretely, using local coordinates (x_1, \ldots, x_n) near z^t , the matrix of Γ^t reads

$$G^{-1}(C^t + \mathrm{i}D^t)(A^t + \mathrm{i}B^t)^{-1} - G^{-1}\Sigma^t$$

with

$$G^{-1} = (g^{ij}(x^t)), \qquad \Sigma_{ij}^t = \sum_{k,l} g_{kl}(x^t) \Gamma_{ij}^l(x^t) \dot{x}_k^t, \qquad x^t = x(z^t)$$

and

$$\begin{pmatrix} A^t & B^t \\ C^t & D^t \end{pmatrix} = \begin{pmatrix} \partial x^t / \partial y & \partial x^t / \partial \eta \\ \partial \xi^t / \partial y & \partial \xi^t / \partial \eta \end{pmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

 \implies Symmetry of Γ^t , positivity of $\text{Im}(\Gamma^t)$

Proof (continued). One can then define

$$\left(\mathcal{L}_{C}+\mathrm{i}\mathcal{L}_{D}\right)\left(\mathcal{L}_{A}+\mathrm{i}\mathcal{L}_{B}\right)^{-1}:\mathcal{H}_{\left(z^{t},\dot{z}^{t}\right)}^{\mathbb{C}}\rightarrow\mathcal{V}_{\left(z^{t},\dot{z}^{t}
ight)}^{\mathbb{C}}$$

and then define Γ^t by composition with the natural isomorphisms

$$T_{z^t}M^{\mathbb{C}} \to \mathcal{H}^{\mathbb{C}}_{(z^t,\dot{z}^t)}, \qquad \mathcal{V}^{\mathbb{C}}_{(z^t,\dot{z}^t)} \to T_{z^t}M^{\mathbb{C}}$$

More concretely, using local coordinates (x_1, \ldots, x_n) near z^t , the matrix of Γ^t reads

$$G^{-1}(C^t + \mathrm{i}D^t)(A^t + \mathrm{i}B^t)^{-1} - G^{-1}\Sigma^t$$

with

$$G^{-1} = (g^{ij}(x^t)), \qquad \Sigma_{ij}^t = \sum_{k,l} g_{kl}(x^t) \Gamma_{ij}^l(x^t) \dot{x}_k^t, \qquad x^t = x(z^t)$$

and

$$\begin{pmatrix} A^t & B^t \\ C^t & D^t \end{pmatrix} = \begin{pmatrix} \partial x^t / \partial y & \partial x^t / \partial \eta \\ \partial \xi^t / \partial y & \partial \xi^t / \partial \eta \end{pmatrix}$$

 \implies Symmetry of Γ^t , positivity of $\text{Im}(\Gamma^t)$ + Ricatti equation by direct computation #

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

Proof (continued). One can then define

$$\left(\mathcal{L}_{C}+\mathrm{i}\mathcal{L}_{D}\right)\left(\mathcal{L}_{A}+\mathrm{i}\mathcal{L}_{B}\right)^{-1}:\mathcal{H}_{\left(z^{t},\dot{z}^{t}\right)}^{\mathbb{C}}\rightarrow\mathcal{V}_{\left(z^{t},\dot{z}^{t}
ight)}^{\mathbb{C}}$$

and then define Γ^t by composition with the natural isomorphisms

$$T_{z^t}M^{\mathbb{C}} \to \mathcal{H}^{\mathbb{C}}_{(z^t,\dot{z}^t)}, \qquad \mathcal{V}^{\mathbb{C}}_{(z^t,\dot{z}^t)} \to T_{z^t}M^{\mathbb{C}}$$

More concretely, using local coordinates (x_1, \ldots, x_n) near z^t , the matrix of Γ^t reads

$$G^{-1}(C^t + \mathrm{i}D^t)(A^t + \mathrm{i}B^t)^{-1} - G^{-1}\Sigma^t$$

with

$$G^{-1} = (g^{ij}(x^t)), \qquad \Sigma_{ij}^t = \sum_{k,l} g_{kl}(x^t) \Gamma_{ij}^l(x^t) \dot{x}_k^t, \qquad x^t = x(z^t)$$

and

$$\begin{pmatrix} A^t & B^t \\ C^t & D^t \end{pmatrix} = \begin{pmatrix} \partial x^t / \partial y & \partial x^t / \partial \eta \\ \partial \xi^t / \partial y & \partial \xi^t / \partial \eta \end{pmatrix}$$

 \implies Symmetry of Γ^t , positivity of $\text{Im}(\Gamma^t)$ + Ricatti equation by direct computation # **Rem.** If $(\tilde{y}_1, \dots, \tilde{y}_n)$ are other coordinates on U, the matrix of Γ^t is changed into

$$G^{-1}\big(\tilde{C}^t+\tilde{D}^tZ\big)\big(\tilde{A}^t+\tilde{B}^tZ\big)^{-1}-G^{-1}\Sigma^t$$

Proof (continued). One can then define

$$\left(\mathcal{L}_{C}+\mathrm{i}\mathcal{L}_{D}\right)\left(\mathcal{L}_{A}+\mathrm{i}\mathcal{L}_{B}\right)^{-1}:\mathcal{H}_{\left(z^{t},\dot{z}^{t}\right)}^{\mathbb{C}}\rightarrow\mathcal{V}_{\left(z^{t},\dot{z}^{t}
ight)}^{\mathbb{C}}$$

and then define Γ^t by composition with the natural isomorphisms

$$T_{z^t}M^{\mathbb{C}} \to \mathcal{H}^{\mathbb{C}}_{(z^t,\dot{z}^t)}, \qquad \mathcal{V}^{\mathbb{C}}_{(z^t,\dot{z}^t)} \to T_{z^t}M^{\mathbb{C}}$$

More concretely, using local coordinates (x_1, \ldots, x_n) near z^t , the matrix of Γ^t reads

$$G^{-1}(C^t + iD^t)(A^t + iB^t)^{-1} - G^{-1}\Sigma^t$$

with

$$G^{-1} = (g^{ij}(x^t)), \qquad \Sigma_{ij}^t = \sum_{k,l} g_{kl}(x^t) \Gamma_{ij}^l(x^t) \dot{x}_k^t, \qquad x^t = x(z^t)$$

and

$$\begin{pmatrix} A^t & B^t \\ C^t & D^t \end{pmatrix} = \begin{pmatrix} \partial x^t / \partial y & \partial x^t / \partial \eta \\ \partial \xi^t / \partial y & \partial \xi^t / \partial \eta \end{pmatrix}$$

 \implies Symmetry of Γ^t , positivity of $\text{Im}(\Gamma^t)$ + Ricatti equation by direct computation # **Rem.** If $(\tilde{y}_1, \dots, \tilde{y}_n)$ are other coordinates on U, the matrix of Γ^t is changed into

$$G^{-1}(\tilde{C}^t + \tilde{D}^t Z)(\tilde{A}^t + \tilde{B}^t Z)^{-1} - G^{-1}\Sigma^t, \qquad Z = \left(\frac{\partial \tilde{\eta}}{\partial y} + i\frac{\partial \tilde{\eta}}{\partial \eta}\right) \left(\frac{\partial \tilde{y}}{\partial y} + i\frac{\partial \tilde{y}}{\partial \eta}\right)^{-1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

<□ > < @ > < E > < E > E のQ @

Definition of gaussian wave packets

Definition of gaussian wave packets Let $\rho \in C_0^{\infty}(-r_0, r_0)$, equal to 1 near 0.

(ロ)、(型)、(E)、(E)、 E) の(の)

Definition of gaussian wave packets Let $\rho \in C_0^{\infty}(-r_0, r_0)$, equal to 1 near 0.

$$\Psi_{z,\zeta}^{h}(m) := (\pi h)^{-\frac{n}{4}} \gamma^{0} \exp \frac{\mathrm{i}}{h} \left(\zeta \cdot W_{z}^{m} + \frac{1}{2} \langle \Gamma^{0} W_{z}^{m}, W_{z}^{m} \rangle_{z} \right) \rho\left(d_{g}(z,m) \right),$$

for $m \in M$ and $(z, \zeta) \in T^*U$ (i.e. $\zeta \in T^*_z U$)

$$\gamma^0 = det(g_{jk}(y(z)))^{-rac{1}{4}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

Definition of gaussian wave packets Let $\rho \in C_0^{\infty}(-r_0, r_0)$, equal to 1 near 0.

$$\Psi_{z,\zeta}^{h}(m) := (\pi h)^{-\frac{n}{4}} \gamma^{0} \exp \frac{\mathrm{i}}{h} \left(\zeta \cdot W_{z}^{m} + \frac{1}{2} \langle \Gamma^{0} W_{z}^{m}, W_{z}^{m} \rangle_{z} \right) \rho\left(d_{g}(z,m) \right),$$

for $m \in M$ and $(z, \zeta) \in T^*U$ (i.e. $\zeta \in T^*_zU$)

$$\gamma^0 = det(g_{jk}(y(z)))^{-\frac{1}{4}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

Rem. $\Psi^h_{z,\zeta}(m) = 0$ if $d_g(z,m) \ge r_0$.

Definition of gaussian wave packets Let $\rho \in C_0^{\infty}(-r_0, r_0)$, equal to 1 near 0.

$$\Psi_{z,\zeta}^{h}(m) := (\pi h)^{-\frac{n}{4}} \gamma^{0} \exp \frac{\mathrm{i}}{h} \left(\zeta \cdot W_{z}^{m} + \frac{1}{2} \langle \Gamma^{0} W_{z}^{m}, W_{z}^{m} \rangle_{z} \right) \rho \left(d_{g}(z,m) \right),$$

for $m \in M$ and $(z, \zeta) \in T^*U$ (i.e. $\zeta \in T^*_z U$)

$$\gamma^0 = det(g_{jk}(y(z)))^{-\frac{1}{4}}$$

Rem. $\Psi_{z,\zeta}^{h}(m) = 0$ if $d_{g}(z,m) \ge r_{0}$.

Proposition [Wave packet decomposition - Approximate Bargmann transform]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

Definition of gaussian wave packets Let $\rho \in C_0^{\infty}(-r_0, r_0)$, equal to 1 near 0.

$$\Psi_{z,\zeta}^{h}(m) := (\pi h)^{-\frac{n}{4}} \gamma^{0} \exp \frac{\mathrm{i}}{h} \left(\zeta \cdot W_{z}^{m} + \frac{1}{2} \langle \Gamma^{0} W_{z}^{m}, W_{z}^{m} \rangle_{z} \right) \rho \left(d_{g}(z,m) \right),$$

for $m \in M$ and $(z, \zeta) \in T^*U$ (i.e. $\zeta \in T^*_z U$)

$$\gamma^0 = det\bigl(g_{jk}(y(z))\bigr)^{-\frac{1}{4}}$$

Rem. $\Psi_{z,\zeta}^{h}(m) = 0$ if $d_{g}(z,m) \geq r_{0}$.

Proposition [Wave packet decomposition - Approximate Bargmann transform] Set

$$B_h u(z,\zeta) := \left\langle \Psi^h_{z,\zeta}, u \right\rangle_{L^2(M)}, \qquad u \in C_0^\infty(U)$$

Definition of gaussian wave packets Let $\rho \in C_0^{\infty}(-r_0, r_0)$, equal to 1 near 0.

$$\Psi_{z,\zeta}^{h}(m) := (\pi h)^{-\frac{n}{4}} \gamma^{0} \exp \frac{\mathrm{i}}{h} \left(\zeta \cdot W_{z}^{m} + \frac{1}{2} \langle \Gamma^{0} W_{z}^{m}, W_{z}^{m} \rangle_{z} \right) \rho \left(d_{g}(z,m) \right),$$

for $m \in M$ and $(z, \zeta) \in T^*U$ (i.e. $\zeta \in T^*_z U$)

$$\gamma^0 = det(g_{jk}(y(z)))^{-\frac{1}{4}}$$

Rem. $\Psi_{z,\zeta}^{h}(m) = 0$ if $d_{g}(z,m) \geq r_{0}$.

Proposition [Wave packet decomposition - Approximate Bargmann transform] Set

$$B_h u(z,\zeta) := \left\langle \Psi^h_{z,\zeta}, u \right\rangle_{L^2(M)}, \qquad u \in C_0^\infty(U)$$

Then

$$(2\pi h)^{-n}B_h^*B_hu=a(h)u$$

Definition of gaussian wave packets Let $\rho \in C_0^{\infty}(-r_0, r_0)$, equal to 1 near 0.

$$\Psi_{z,\zeta}^{h}(m) := (\pi h)^{-\frac{n}{4}} \gamma^{0} \exp \frac{\mathrm{i}}{h} \left(\zeta \cdot W_{z}^{m} + \frac{1}{2} \langle \Gamma^{0} W_{z}^{m}, W_{z}^{m} \rangle_{z} \right) \rho \left(d_{g}(z,m) \right),$$

for $m \in M$ and $(z, \zeta) \in T^*U$ (i.e. $\zeta \in T^*_z U$)

$$\gamma^0 = det(g_{jk}(y(z)))^{-\frac{1}{4}}$$

Rem. $\Psi_{z,\zeta}^{h}(m) = 0$ if $d_{g}(z,m) \ge r_{0}$.

Proposition [Wave packet decomposition - Approximate Bargmann transform] Set

$$B_h u(z,\zeta) := \left\langle \Psi^h_{z,\zeta}, u \right\rangle_{L^2(M)}, \qquad u \in C_0^\infty(U)$$

Then

$$(2\pi h)^{-n}B_h^*B_hu = a(h)u = \left(1 + h^{\frac{1}{2}}a_1 + h^1a_2 + \cdots\right)u$$

with a(h), $a_1, a_2, \ldots \in C^{\infty}$

Definition of gaussian wave packets Let $\rho \in C_0^{\infty}(-r_0, r_0)$, equal to 1 near 0.

$$\Psi_{z,\zeta}^{h}(m) := (\pi h)^{-\frac{n}{4}} \gamma^{0} \exp \frac{\mathrm{i}}{h} \left(\zeta \cdot W_{z}^{m} + \frac{1}{2} \langle \Gamma^{0} W_{z}^{m}, W_{z}^{m} \rangle_{z} \right) \rho \left(d_{g}(z,m) \right),$$

for $m \in M$ and $(z, \zeta) \in T^*U$ (i.e. $\zeta \in T^*_z U$)

$$\gamma^0 = det(g_{jk}(y(z)))^{-\frac{1}{4}}$$

Rem. $\Psi_{z,\zeta}^{h}(m) = 0$ if $d_{g}(z,m) \ge r_{0}$.

Proposition [Wave packet decomposition - Approximate Bargmann transform] Set

$$B_h u(z,\zeta) := \left\langle \Psi^h_{z,\zeta}, u \right\rangle_{L^2(M)}, \qquad u \in C_0^\infty(U)$$

Then

$$(2\pi h)^{-n}B_h^*B_hu = a(h)u = \left(1 + h^{\frac{1}{2}}a_1 + h^1a_2 + \cdots\right)u$$

with a(h), $a_1, a_2, \ldots \in C^{\infty}$, i.e.

$$(2\pi h)^{-n} \int \int_{T^*U} B_h u(z,\zeta) \Psi^h_{z,\zeta} dz d\zeta = a(h) u$$

Theorem [Propagation of gaussian wave packets]

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Theorem [Propagation of gaussian wave packets] In the limit $h \rightarrow 0$, and under general conditions on V (e.g. all covariant derivatives bounded),

Theorem [Propagation of gaussian wave packets] In the limit $h \rightarrow 0$, and under general conditions on V (e.g. all covariant derivatives bounded),

 $e^{-i\frac{t}{h}H(h)}\psi^{h}_{z,\zeta}(m)$

Theorem [Propagation of gaussian wave packets] In the limit $h \rightarrow 0$, and under general conditions on V (e.g. all covariant derivatives bounded),

$$e^{-i\frac{t}{h}H(h)}\psi^h_{z,\zeta}(m)$$

is well approximated by

$$(\pi h)^{-\frac{n}{4}}\gamma^{t}\mathcal{A}_{t}^{h}(x)\exp\frac{\mathrm{i}}{h}\left(S^{t}+\zeta^{t}\cdot W_{z^{t}}^{m}+\frac{1}{2}\left\langle\Gamma^{t}W_{z^{t}}^{m},W_{z^{t}}^{m}\right\rangle_{z^{t}}\right)\rho\left(d_{g}(z_{t},m)\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem [Propagation of gaussian wave packets] In the limit $h \rightarrow 0$, and under general conditions on V (e.g. all covariant derivatives bounded),

$$e^{-i\frac{t}{h}H(h)}\psi^h_{z,\zeta}(m)$$

is well approximated by

$$(\pi h)^{-\frac{n}{4}}\gamma^{t}\mathcal{A}_{t}^{h}(\mathbf{x})\exp\frac{\mathrm{i}}{h}\left(S^{t}+\zeta^{t}\cdot W_{z^{t}}^{m}+\frac{1}{2}\left\langle\Gamma^{t}W_{z^{t}}^{m},W_{z^{t}}^{m}\right\rangle_{z^{t}}\right)\rho\left(d_{g}(z_{t},m)\right)$$

with

$$\gamma^t = det(g_{jk}(x^t))^{-1/4} det(A^t + \mathbf{i}B^t)^{-1/2}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem [Propagation of gaussian wave packets] In the limit $h \rightarrow 0$, and under general conditions on V (e.g. all covariant derivatives bounded),

$$e^{-i\frac{t}{h}H(h)}\psi^h_{z,\zeta}(m)$$

is well approximated by

$$(\pi h)^{-\frac{n}{4}}\gamma^{t}\mathcal{A}_{t}^{h}(x)\exp\frac{\mathrm{i}}{h}\left(S^{t}+\zeta^{t}\cdot W_{z^{t}}^{m}+\frac{1}{2}\left\langle\Gamma^{t}W_{z^{t}}^{m},W_{z^{t}}^{m}\right\rangle_{z^{t}}\right)\rho\left(d_{g}(z_{t},m)\right)$$

with

$$\gamma^t = det(g_{jk}(x^t))^{-1/4} det(A^t + \mathbf{i}B^t)^{-1/2}$$

and an amplitude of the form

$$\mathcal{A}_t^h(x) \sim 1 + \sum_{j \ge 1} h^{\frac{j}{2}} T_j\left(t, z^t, \zeta^t, \frac{W_{z^t}^m}{h^{\frac{1}{2}}}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Theorem [Propagation of gaussian wave packets] In the limit $h \rightarrow 0$, and under general conditions on V (e.g. all covariant derivatives bounded),

$$e^{-i\frac{t}{h}H(h)}\psi^h_{z,\zeta}(m)$$

is well approximated by

$$(\pi h)^{-\frac{n}{4}}\gamma^{t}\mathcal{A}_{t}^{h}(x)\exp\frac{\mathrm{i}}{h}\left(S^{t}+\zeta^{t}\cdot W_{z^{t}}^{m}+\frac{1}{2}\left\langle\Gamma^{t}W_{z^{t}}^{m},W_{z^{t}}^{m}\right\rangle_{z^{t}}\right)\rho\left(d_{g}(z_{t},m)\right)$$

with

$$\gamma^t = det(g_{jk}(x^t))^{-1/4} det(A^t + iB^t)^{-1/2}$$

and an amplitude of the form

$$\mathcal{A}_t^h(x) \sim 1 + \sum_{j \ge 1} h^{\frac{j}{2}} T_j\left(t, z^t, \zeta^t, \frac{W_{z^t}^m}{h^{\frac{1}{2}}}\right)$$

for times $|t| \leq C_0 |\ln h|$

Theorem [Propagation of gaussian wave packets] In the limit $h \rightarrow 0$, and under general conditions on V (e.g. all covariant derivatives bounded),

$$e^{-i\frac{t}{h}H(h)}\psi^h_{z,\zeta}(m)$$

is well approximated by

$$(\pi h)^{-\frac{n}{4}}\gamma^{t}\mathcal{A}_{t}^{h}(x)\exp\frac{\mathrm{i}}{h}\left(S^{t}+\zeta^{t}\cdot W_{z^{t}}^{m}+\frac{1}{2}\left\langle\Gamma^{t}W_{z^{t}}^{m},W_{z^{t}}^{m}\right\rangle_{z^{t}}\right)\rho\left(d_{g}(z_{t},m)\right)$$

with

$$\gamma^t = det(g_{jk}(x^t))^{-1/4} det(A^t + \mathbf{i}B^t)^{-1/2}$$

and an amplitude of the form

$$\mathcal{A}_t^h(x) \sim 1 + \sum_{j \ge 1} h^{\frac{j}{2}} T_j\left(t, z^t, \zeta^t, \frac{W_{z^t}^m}{h^{\frac{1}{2}}}\right)$$

for times $|t| \le C_0 |\ln h|$ with $T_j(t, z^t, \zeta^t, .)$ polynomial (i.e. sum of tensors) of degree at most 3j,

Theorem [Propagation of gaussian wave packets] In the limit $h \rightarrow 0$, and under general conditions on V (e.g. all covariant derivatives bounded),

$$e^{-i\frac{t}{h}H(h)}\psi^h_{z,\zeta}(m)$$

is well approximated by

$$(\pi h)^{-\frac{n}{4}}\gamma^{t}\mathcal{A}_{t}^{h}(x)\exp\frac{\mathrm{i}}{h}\left(S^{t}+\zeta^{t}\cdot W_{z^{t}}^{m}+\frac{1}{2}\left\langle\Gamma^{t}W_{z^{t}}^{m},W_{z^{t}}^{m}\right\rangle_{z^{t}}\right)\rho\left(d_{g}(z_{t},m)\right)$$

with

$$\gamma^t = det(g_{jk}(x^t))^{-1/4} det(A^t + \mathbf{i}B^t)^{-1/2}$$

and an amplitude of the form

$$\mathcal{A}_t^h(x) \sim 1 + \sum_{j \ge 1} h^{\frac{j}{2}} T_j\left(t, z^t, \zeta^t, \frac{W_{z^t}^m}{h^{\frac{1}{2}}}\right)$$

for times $|t| \leq C_0 |\ln h|$ with $T_j(t, z^t, \zeta^t, .)$ polynomial (i.e. sum of tensors) of degree at most 3*j*, depending on the classical trajectory and the Taylor expansions of V and W^m at z^t .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Theorem [Propagation of gaussian wave packets] In the limit $h \rightarrow 0$, and under general conditions on V (e.g. all covariant derivatives bounded),

$$e^{-i\frac{t}{h}H(h)}\psi^h_{z,\zeta}(m)$$

is well approximated by

$$(\pi h)^{-\frac{n}{4}}\gamma^{t}\mathcal{A}_{t}^{h}(x)\exp\frac{\mathrm{i}}{h}\left(S^{t}+\zeta^{t}\cdot W_{z^{t}}^{m}+\frac{1}{2}\left\langle\Gamma^{t}W_{z^{t}}^{m},W_{z^{t}}^{m}\right\rangle_{z^{t}}\right)\rho\left(d_{g}(z_{t},m)\right)$$

with

$$\gamma^t = det(g_{jk}(x^t))^{-1/4} det(A^t + \mathbf{i}B^t)^{-1/2}$$

and an amplitude of the form

$$\mathcal{A}_t^h(x) \sim 1 + \sum_{j \ge 1} h^{\frac{j}{2}} T_j\left(t, z^t, \zeta^t, \frac{W_{z^t}^m}{h^{\frac{1}{2}}}\right)$$

for times $|t| \leq C_0 |\ln h|$ with $T_j(t, z^t, \zeta^t, .)$ polynomial (i.e. sum of tensors) of degree at most 3*j*, depending on the classical trajectory and the Taylor expansions of V and W^m at z^t .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Remark on the proof: The transport equations

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Remark on the proof: The transport equations are of the form

$$(\nabla_{\dot{z}^{t}}T)(\underbrace{\dots,\dots}_{k \text{ factors}}) + \underbrace{T[\Gamma^{t}\dots] + \dots + T[\dots,\Gamma^{t}]}_{k \text{ terms}} = F[\dots,\dots]$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Remark on the proof: The transport equations are of the form

$$(\nabla_{\dot{z}^{t}}T)(\underbrace{.,\ldots,.}_{k \text{ factors}}) + \underbrace{T[\Gamma^{t}\cdot,\ldots] + \cdots + T[\ldots,\Gamma^{t}\cdot]}_{k \text{ terms}} = F[.,\ldots,.]$$

which turns out to be equivalent to

$$\frac{d}{dt}\left(T[E_t\cdot,\ldots,E_t\cdot]\right)=F[E_t\cdot,\ldots,E_t\cdot]$$

(日) (日) (日) (日) (日) (日) (日) (日)

with $E_t := d\pi(\mathcal{L}_A + i\mathcal{L}_B) : \mathbb{C}^n \to T_{z^t} M \otimes \mathbb{C}$ $(d\pi = \text{projection from the horizontal space at } (z^t, \dot{z}^t)$ to the tangent space at z^t)

 \implies Control on the exponential growth in time of $T_i(t, z^t, \zeta^t, .)$.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Theorem [Propagator approximation]

Theorem [Propagator approximation] If A_h is a pseudodifferential operator supported in U,

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Theorem [Propagator approximation] If A_h is a pseudodifferential operator supported in U, with principal symbol χ ,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem [Propagator approximation] If A_h is a pseudodifferential operator supported in U, with principal symbol χ , then (the kernel of) $e^{-i\frac{t}{h}H(h)}A_h$

Theorem [Propagator approximation] If A_h is a pseudodifferential operator supported in U, with principal symbol χ , then (the kernel of) $e^{-i\frac{t}{h}H(h)}A_h$ is well approximated by

$$\mathcal{K}_t^h(m,m') = h^{-\frac{3n}{2}} \int \int_{\mathcal{T}^* U} b_h(t,z,\zeta,m,m') \exp \frac{\mathrm{i}}{h} F(t,z,\zeta,m,m') dz d\zeta$$

for times $|t| \leq C_0 |\log h|$.

Theorem [Propagator approximation] If A_h is a pseudodifferential operator supported in U, with principal symbol χ , then (the kernel of) $e^{-i\frac{L}{h}H(h)}A_h$ is well approximated by

$$\mathcal{K}_t^h(m,m') = h^{-\frac{3n}{2}} \int \int_{T^*U} b_h(t,z,\zeta,m,m') \exp \frac{\mathrm{i}}{h} F(t,z,\zeta,m,m') dz d\zeta$$

for times $|t| \leq C_0 |\log h|$. The phase reads

$$F = S_{(z,\zeta)}^{t} + \zeta^{t} \cdot W_{z^{t}}^{m} + \frac{1}{2} \left\langle \Gamma_{(z,\zeta)}^{t} W_{z^{t}}^{m}, W_{z^{t}}^{m} \right\rangle_{z^{t}} - \zeta \cdot W_{z}^{m'} + \frac{1}{2} \left\langle \widetilde{\Gamma_{(z,\zeta)}^{0}} W_{z}^{m'}, W_{z}^{m'} \right\rangle_{z}$$

Theorem [Propagator approximation] If A_h is a pseudodifferential operator supported in U, with principal symbol χ , then (the kernel of) $e^{-i\frac{t}{h}H(h)}A_h$ is well approximated by

$$\mathcal{K}_t^h(m,m') = h^{-\frac{3n}{2}} \int \int_{T^*U} b_h(t,z,\zeta,m,m') \exp \frac{\mathrm{i}}{h} \mathcal{F}(t,z,\zeta,m,m') dz d\zeta$$

for times $|t| \leq C_0 |\log h|$. The phase reads

$$F = S_{(z,\zeta)}^{t} + \zeta^{t} \cdot W_{z^{t}}^{m} + \frac{1}{2} \left\langle \Gamma_{(z,\zeta)}^{t} W_{z^{t}}^{m}, W_{z^{t}}^{m} \right\rangle_{z^{t}} - \zeta \cdot W_{z}^{m'} + \frac{1}{2} \left\langle \widetilde{\Gamma_{(z,\zeta)}^{0}} W_{z}^{m'}, W_{z}^{m'} \right\rangle_{z}$$

where

$$\left\langle \widetilde{\Gamma_{(z,\zeta)}^{0}} W_{z}^{m'}, W_{z}^{m'} \right\rangle_{z} = -\operatorname{Re}\left\langle \Gamma_{(z,\zeta)}^{0} W_{z}^{m'}, W_{z}^{m'} \right\rangle_{z} + \operatorname{i} \operatorname{Im} \left\langle \Gamma_{(z,\zeta)}^{0} W_{z}^{m'}, W_{z}^{m'} \right\rangle_{z}$$

Theorem [Propagator approximation] If A_h is a pseudodifferential operator supported in U, with principal symbol χ , then (the kernel of) $e^{-i\frac{t}{h}H(h)}A_h$ is well approximated by

$$\mathcal{K}_t^h(m,m') = h^{-\frac{3n}{2}} \int \int_{T^*U} b_h(t,z,\zeta,m,m') \exp \frac{\mathrm{i}}{h} \mathcal{F}(t,z,\zeta,m,m') dz d\zeta$$

for times $|t| \leq C_0 |\log h|$. The phase reads

$$F = S_{(z,\zeta)}^{t} + \zeta^{t} \cdot W_{z^{t}}^{m} + \frac{1}{2} \left\langle \Gamma_{(z,\zeta)}^{t} W_{z^{t}}^{m}, W_{z^{t}}^{m} \right\rangle_{z^{t}} - \zeta \cdot W_{z}^{m'} + \frac{1}{2} \left\langle \widetilde{\Gamma_{(z,\zeta)}^{0}} W_{z}^{m'}, W_{z}^{m'} \right\rangle_{z}$$

where

$$\left\langle \widetilde{\Gamma_{(z,\zeta)}^{0}} W_{z}^{m'}, W_{z}^{m'} \right\rangle_{z} = -\operatorname{Re}\left\langle \Gamma_{(z,\zeta)}^{0} W_{z}^{m'}, W_{z}^{m'} \right\rangle_{z} + \operatorname{i} \operatorname{Im} \left\langle \Gamma_{(z,\zeta)}^{0} W_{z}^{m'}, W_{z}^{m'} \right\rangle_{z}$$

The amplitude $b_h(t, z, \zeta, m, m')$ reads $b_0(t, z, \zeta, m, m') + O_t(h^{1/2})$,

$$b_0 = \det((g_{jk}(x^t))^{1/2}(A^t + iB^t))^{-\frac{1}{2}}\det(g_{jk}(y)))^{-\frac{1}{4}}\chi(z,\zeta)\rho(d_g(z,m'))\rho(d_g(z^t,m))$$

(日) (日) (日) (日) (日) (日) (日) (日)

Theorem [Propagator approximation] If A_h is a pseudodifferential operator supported in U, with principal symbol χ , then (the kernel of) $e^{-i\frac{t}{h}H(h)}A_h$ is well approximated by

$$\mathcal{K}_t^h(m,m') = h^{-\frac{3n}{2}} \int \int_{T^*U} b_h(t,z,\zeta,m,m') \exp \frac{\mathrm{i}}{h} \mathcal{F}(t,z,\zeta,m,m') dz d\zeta$$

for times $|t| \leq C_0 |\log h|$. The phase reads

$$F = S_{(z,\zeta)}^{t} + \zeta^{t} \cdot W_{z^{t}}^{m} + \frac{1}{2} \left\langle \Gamma_{(z,\zeta)}^{t} W_{z^{t}}^{m}, W_{z^{t}}^{m} \right\rangle_{z^{t}} - \zeta \cdot W_{z}^{m'} + \frac{1}{2} \left\langle \widetilde{\Gamma_{(z,\zeta)}^{0}} W_{z}^{m'}, W_{z}^{m'} \right\rangle_{z}$$

where

$$\left\langle \widetilde{\Gamma_{(z,\zeta)}^{0}} W_{z}^{m'}, W_{z}^{m'} \right\rangle_{z} = -\operatorname{Re}\left\langle \Gamma_{(z,\zeta)}^{0} W_{z}^{m'}, W_{z}^{m'} \right\rangle_{z} + \operatorname{i} \operatorname{Im} \left\langle \Gamma_{(z,\zeta)}^{0} W_{z}^{m'}, W_{z}^{m'} \right\rangle_{z}$$

The amplitude $b_h(t, z, \zeta, m, m')$ reads $b_0(t, z, \zeta, m, m') + O_t(h^{1/2})$,

$$b_0 = \det((g_{jk}(x^t))^{1/2}(A^t + iB^t))^{-\frac{1}{2}}\det(g_{jk}(y)))^{-\frac{1}{4}}\chi(z,\zeta)\rho(d_g(z,m'))\rho(d_g(z^t,m))$$

Proof:

$$e^{-i\frac{t}{h}H(h)}A_{h}u = (2\pi h)^{-n} \int \int_{T^{*}U} e^{-i\frac{t}{h}H(h)}\Psi_{z,\zeta}^{h} \left\langle A_{h}^{*}a_{h}^{-1}\Psi_{z,\zeta}^{h}, u \right\rangle_{L^{2}(M)} dz d\zeta$$

(日) (日) (日) (日) (日) (日) (日) (日)

Thank you for your attention