Geometry of univariate stability: continuity argument, symmetric products and stability theories

Grey Violet

Zukunftskolleg and Department of Mathematics and Statistics

University of Konstanz

Konstanz, 2015

Stability of polynomials: Hurwitz stability

Polynomial p(x) is Hurwitz stable if all of its roots are located in the left half-plane.

 $\forall x \in \mathbb{C}(p(x) = 0) \Rightarrow Re(x) < 0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Stability of matrices: Hurwitz stability

Matrix A is Hurwitz stable iff all of its eigenvalues(roots of characteristic polynomial) are located in the left half-plane. This is equivalent to the statement that all solutions of system of differential equations $\frac{dx}{dt} = Ax(t) \text{ tends to 0 as } t \to \infty.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Stability of polynomials: Schur stability

Polynomial p(x) is Schur stable if all of its roots are located at the unit circle.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Stability of matrices: Schur stability

Matrix A is stable if all of its eigenvalues are located at the unit circle.

This is equivalent to the statement that all solutions of system of difference equations

$$x(t+1) = Ax(t)$$

tends to 0 as $t
ightarrow \infty$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Hyperbolicity as stability.

Real coefficients

Polynomial with real coefficients is called hyperbolic if it has only real roots.

Complex coefficients

Let us call a polynomial with complex coefficients quasihyperbolic if all of its roots are located in open down half-plane. Then hyperbolicity becomes *border of* quasihyperbolicity.

Pole placement problems

Polynomials

Set of stable points on a complex plane is a fixed finite set S..

Control-theoretic source

Let (A, B, C) be linear control system defined by a triple of matrices of sizes $n \times n$, $m \times n$, $n \times p$ respectively. Then the problem of finding matrix K such that all eigenvalues of

A + BKC lies in S is an output feedback pole placement problem.

Superstabilisability

Superstability (modification of Polyak B.T,, Shcherbakov P.S. 2002.)

Superstability is a condition when ∞ -norm of all solutions of system of linear differential (difference) equations *monotonically* tends to 0 as $t \to \infty$.

Hurwitz superstabilisability

If all eigenvalues of matrix A are located in $\{z || Im z| - Re z > 0\}$ then system $\frac{dx}{dt} = Ax(t)$ is superstable.

Schur superstabilisability

Schur superstabilisability

If all eigenvalues of matrix A are located in $\{z || Re z| + |Im z| < 1\}$ then system x(t + 1) = Ax(t) is superstable.

イロト イポト イヨト イヨト

э

Other simplest natural control-theoretic regions

General stability theories: Root clustering. Computational methods.

- R.E. Kalman, 1969: General problem statement
- Boolean combinations of circles and half-planes(since 1977)
- Regions "transformable" to classical (S. Gutman, E. Jury, B. Barmish et al. since 1981)
- Regions defined by LMI(M. Chilali, P. Gahinet, D.Henrion et. al. since 1996)
- (Elementary) semialgebraic sets (J.-B. Lasserre, 2004)
- Cassini ovals(V.G. Melnikov, 2011)
- Instability regions with many connected components (V.G. Melnikov, N.A. Dudarenko, 2014)

Geometry of classical stabilities: continuity argument and beyond

- Root-coefficient correspondence. F. Viete, A. Girard, XVI-XVII centuries.
- ► Hurwitz stability for polynomials: I. Vyshnegradski(1876).
- Geometry of robust stability problems. *D*-decomposition.
 A.A. Andronov, Yu.I. Neimark et al. (since 1940s).
- Singularities of stability borders and topology of "complements to discriminants". V.I.Arnold school since 1970s.
- Stability and applied singularity theory (A.A. Maylibayev, A.P. Seyranian 1990-s-2000s).
- Continuity-based proof of Routh-Hurwitz criterium. (G. Meinsma, 1994).
- Algebro-geometric methods for *D*-decomposition (B.T Polyak, E.Gryazina (2004-2008),author(as O.O. Vasilév, since 2012)
- Symmetric products and topology of the space of Hurwitz and Schur polynomials (B. Aguirre-Hernandez, J.L. Cisneros-Molina, M.E. Frias-Armenta, 2012)

(In)stability regions in parameter space: D-decomposition

D-decomposition

Consider a family of polynomial or matrices affinelyparametrised by finite vector of real parameters $k = (k_1, \ldots, k_l)$. *D*-decomposition is a partition of parameter space \mathbb{R}^l into regions with same number of stable roots.

Geometry of PI and PID-controllers

Definition

PID-controller is a 3-parametric affine family of polynomials $IR(s) + s(Q(s) + PR(s)) + Ds^2R(s), \ deg \ Q(s) > deg \ R(s).$ *PI*-controller is a 2-parametric affine family of polynomials, given by *PID*-controller with D = 0.Most of the industrial controllers are of this type.

Most of the industrial controllers are of this type.

Non-connectedness

It is known that stability region could be non-connected and non-convex.

If P is fixed, the stability region is union of finite number of convex polygons(Ho, Datta, Bhattacharya, 1998).

Main idea of an approach/Meta-program

- Stability theory is a stratification of set possible values of a root.
- There exist (infinite-dimensional) universal spaces of stability problems. That spaces are symmetric products of stability theories.
- Individual stability problem is an affine section of that universal space. Stability regions – are affine sections of universal stability region.
- There exist a moduli space of stability problems of give dimension. It is a quotient of Grassmann variety. It is a filtered stratified space.
- For concrete computations(i.e. optimization) on stability problems and their spaces one should find some good embedding of that space into real space, and make computations on it.

Filtered spaces: definitions

Definition

Filtered real algebraic variety L a infinite sequence of closed embeddings of real algebraic varieties $L_0 \rightarrow^{\lambda_0} L_1 \rightarrow^{\lambda_1} \dots$ Morphism between filtered real algebraic varieties $\varphi L \rightarrow R$, is a sequence of morphisms $\varphi_i \colon L_i \rightarrow R_i$ that commutes with embeddings.

Note

In general one may need to consider an objects like "real closed ind-schemes" whatever it should mean.

Filtered action

Let $G_0 \subseteq G_1 \subseteq \ldots = G$ be a filtered group and L be a filtered real variety.

Define a filtered action of G on L as a sequence of action G_i on L_i that commutes with embeddings.

Notations

- U₀ ⊂ U₁ ⊂ ... ⊂ U_i ⊂ a filtration of spaces of all polynomials with complex coefficients. Here U_i is a (2i + 2)-dimensional space of polynomials degree less than i.
- ► C[∞] filtered space of complex sequences with finite number of non-zero elements;
- ► Mat(C, ∞) filtered space of square matrices with finite number of non-zero entries;
- GI(C,∞) group of invertible transformations of C[∞];
- Σ[∞] infinite symmetric group (permutations with finite number of non-stable points);

Symmetric product

Definition

Infinite symmetric product of real algebraic variety R with marked point e is a filtered real algebraic variety $R^{(\infty)}$ given as sequence of quotients defined by filtered action of filtered group $\Sigma^{\infty} = \Sigma_1 \subset \Sigma_2 \subset \ldots$ on filtered space $R \rightarrow^{\varphi_1} R^2 \rightarrow \ldots$, $\varphi_i : (r_1, \ldots, r_i) \mapsto (r_1, \ldots, r_i, e).$

Note

In general, symmetric products of real algebraic varieties could be not real algebraic varieties, but only semialgebraic spaces(abstract semialgebraic sets).

Infinite symmetric products of $\mathbb C$ and of $\mathbb C\textbf{P}^1$ are filtered real algebraic varieties.

Stability theory: definition

- Stability theory is a triple $S = (\mathbb{C}P^1, \Omega, \infty)$.
- CP¹ here considered as a real algebraic variety and Ω is a semi-algebraic subset of it. Let us fix an affine map of C = CP¹ \ {∞}.
- $\mathbb{C}P^1$ as an underlying space of stability theory admits a canonical stratification Str(S) into sets $\Omega = \Omega_s$, $\overline{\Omega} \setminus \Omega = \Omega_{ss}$, $\mathbb{C}P^1 \setminus \overline{\Omega} = \Omega_{un}$, where closure is euclidean.

Stable, semistable and unstable roots

Roots

Let $p \in \mathbb{R}[i][x]$ be a polynomial. Call root r of p Ω -stable if $p \in \Omega$, call it Ω -semistable if $p \in \overline{\Omega} \setminus \Omega$, where closure is considered to be euclidean. Otherwise call it Ω -unstable.

Each polynomial p has it's own Ω -stability index defined as triple $(r_s, r_{ss}, r_{un}), r_s + r_{ss} + r_{un} = \deg p$.

D-stratification

Define a *D*-stratification D_S^n of U^n as a most rude stratification of U^n into connected regions with the same stability index relative to stability theory $S = (\mathbb{C}\mathbf{P}^1, \Omega, \infty)$.

Denote by $(k, l, m)_{\Omega}$ a union of strata with stability index (k, l, m).

Embeddings of strata

Let $\infty \in \Omega_i$, $i \in \{s, ss, un\}$. Let $k = (k_s, k_{ss}, k_{un})_{\Omega}$ $l = (l_s, l_{ss}, l_{un})_{\Omega}k_i \leq l_i$ be strata of D_s . Then they are either mutually disjoint or $k \subseteq l$. Latter case is true iff for each $j \in \{s, ss, un\} \setminus \{i\} \ k_j = l_j$.

Root-coefficient correspondence and symmetric product morphism

Fix a stability theory S with stability set Ω .

Let $(\mathbb{C}\mathbf{P}^1)^{\infty}$ be a filtered space of finite sequences of points from $\mathbb{C}\mathbf{P}^1$ with a natural embeddings $(\mathbb{C}\mathbf{P}^1)^n \to (\mathbb{C}\mathbf{P}^1)^{n+1}, s \mapsto (s, \infty)$, and stratification induced by stability theory *S*.

All morphisms in the following diagram below are morphisms of filtrations of stratified real algebraic varieties

 $(\mathbb{C}\mathsf{P}^1)^{\infty}\twoheadrightarrow^{\eta_{\Sigma^{\infty}}}(\mathbb{C}\mathsf{P}^1)^{(\infty)}\xrightarrow{\sim}\mathbb{C}\mathsf{P}^{\infty}=\mathsf{P}(U_{\Omega})\twoheadleftarrow U_{\Omega}\setminus\{0\}\hookrightarrow U_{\Omega}$

Matrix-polynomial duality

Let us denote by $U_{\frac{1}{\Omega}}$ space of polynomials stratified by a stability theory $(\mathbb{C}\mathbf{P}^1, \{\frac{1}{\lambda}, \lambda \in \Omega\}, \infty)$. Consider $Mat(\mathbb{C}, \infty)$ as a space stratified by the same stability theory. Then following diagram is commutative in category of filtrations of stratified real varieties:

Deformation equivalence

Matrix-polynomial duality is equivalent to duality between polynomial deformations:

Polynomials: $a_n z^n + \ldots + a_0 \mapsto \epsilon z^{n+1} + a_n z^n + \ldots + a_0$ Matrices: $a_n z^n + \ldots + a_0 \mapsto z(a_n z^n + \ldots + a_0) + \epsilon.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Structure of strata: connected components

Let $(k, l, m) \in \mathbb{N}^3$. Then there are $C_{|\pi_0(\Omega_s)|+k-1}^k C_{|\pi_0(\Omega_{ss})|+l-1}^l C_{|\pi_0(\Omega_{un})|+m-1}^m$

stratas of U_{Ω} with stability index (k, l, m).

Let G be a graph with marked vertice e.

n-th symmetric product of $G G^{(n)}$ is a quotient G^n by natural action of symmetric group Σ_n .

An infinite symmetric product of G is a sequence of embeddings of $G^{(n)}$, produced by adding $\{e\}$ to each multisubset of V(G) forming vertice of $G^{(n)}$.

We denote it as denoted as $G^{(\infty)}$.

Adjacency on topological spaces

Assume that

- L = {L₁,...,L_k} is a decomposition of topological space T with marked point e ∈ F ∈ L into finite number of mutually disjoint subsets.
- $T^{(\infty)}$ is an infinite symmetric product of (T, e).
- $L^{(\infty)}$ is a decomposition of $T^{(\infty)}$ induced by L.

Then infinite symmetric product of adjacency graphs with marked point G_L^T is an adjacency graphs of infinite symmetric product of decomposition $(G_L^T, F)^{(\infty)} \cong G_{L^{\infty}}^{(T,e)^{\infty}}$.

Adjacency for stability theories: general case

Assume that Ω is either closed or $\overline{\Omega} \setminus \Omega \not\subset int(\overline{\Omega})$. Take

$$k = (k_s, k_{ss}, k_{un}), l = (l_s, l_{ss}, l_{un}) \in \mathbb{N}^3, \sum_i k_i = n, \sum_i l_i = m; m \leq n.$$

Then $\overline{P(k_{\Omega})} \cap \overline{P(l_{\Omega})} \neq \emptyset$ iff either m = n or for each *i* such that $l_i < k_i$ corresponding strata of stability theory Ω_i is an unbounded region of \mathbb{C} .

In particular, Hurwitz and Schur stability theories give rise to non-isomorphic stratifications.

Adjacency for stability theories: degenerate case

Let $k = (k_s, k_{ss}, \underline{k_{un}}), l = (l_s, l_{ss}, l_{un}) \in \mathbb{N}^3, \sum_i k_i = n, \sum_i l_i = m; m \leq n$. Then $\overline{P(k_{\Omega})} \cap \overline{P(l_{\Omega})} \neq \emptyset$ iff one of the following assumptions holds

- 1. $m = n, k_{ss} = l_{ss},$
- 2. m = n. $k_{un} = l_{un}$,
- 3. $m < n, \Omega_s$ is unbounded, Ω_{ss} is bounded, Ω_{un} is unbounded, $k_{ss} = l_{ss}$,
- 4. $m < n, \Omega_s$ is unbounded, Ω_{ss} is unbounded, Ω_{un} is bounded, $k_{un} = l_{un}$,
- 5. $m < n, \Omega_s$ is unbounded, Ω_{ss} is bounded, Ω_{un} is bounded, $k_s < l_s$,
- 6. $m < n, \Omega_s$ is bounded, Ω_{ss} is bounded, Ω_{un} is unbounded, $k_{un} < l_{un}$.

Topology of strata. Fundamental group.

Fundamental group

Let Ω_{ss} be a irreducible smooth real algebraic curve. Then for each $(k, l, m)_{\Omega}$ and $x \in (k, l, m)_{\Omega} \pi_1((k, l, m)_{\Omega}, x)$ is product of free free groups.

Scheme of the proof

- Note that all strata are homeomorphic to products of symmetric products of Ω_i
- Note that Ω_i are homotopically equivalent to bouquets of circles.
- Apply B.W.Ong(2003) theorem on homotopical type of symmetric product of bouquets of circles (Ong's proof is based on pole placement example!)
- Compute fundamental group using results of A. Hattori(1975).

Topology of strata: demixing components

- Let $(k, l, m)_{\Omega}$ be a strata.
- It is homeomorphic to $\Omega_s^{(k)} \times \Omega_{ss}^{(l)} \times \Omega_{un}^{(m)}$.
- In particular, in case of Hurwitz and Schur stability theories stratas (k, 0, m) are contractible and strata (k, l, m), l > 0 are homotopically equivalent to S¹ (H.R. Morton, 1967).
- ► For the pole placement problem strata of type (0,0, m) are complements to configurations of hyperplanes.

Topology of strata. "Bones" of torus

Let $T^n = (S^1)^n$ be an *n*-dimensional torus. Denote by T_q^n a union of all *q*-dimensional coordinate subtorii

$$\cup_{I\subseteq\{1,\ldots,n\},|I|=q}\{(s_1,\ldots,s_n)\in T^n|\forall i\in I\ s_i=1\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Homotopical type of strata: notations

- Ω_{ss} is a real algebraic curve without self-intersections.
- $Q = \{Q_1, \ldots, Q_r\}$ is a set of connected components.
- Ω_s = ⊔_{u∈U}u be a decomposition of Ω_s into connected components. Ω_{un} = ⊔_{v∈V}v decomposition of Ω_{un}.
- q(u), u ∈ U ∪ V is a number of connected components of Ω_s, Ω_{un} having a common border with u.

- $\lambda = (\lambda_1, \ldots, \lambda_h)$ is a partition of *n*.
- $(k, l, m)_{\Omega}, k + l + m = n$ is a strata.
- F_k is a free group with k generators.

Topology of strata: homotopy type

 (k, l, m)_Ω decomposes into union of connected components homeomorphic to

$$R = \prod_{i \in h_R \subseteq Q} i^{(\lambda_i)} \prod_{i \in t_R \subseteq U} i^{(\lambda_i)} \prod_{i \in w_R \subseteq V} i^{(\lambda_i)}.$$

• Here
$$\sum_{i \in h_R} \lambda_i = I$$
, $\sum_{i \in t_R} \lambda_i = k$, $\sum_{i \in w_R} \lambda_i = m$.

- ► *R* varies over all possible triples of partitions.
- R is homotopically equivalent to

$$(S^{1})^{|h_{R}|+\sum_{i \in t_{R} \cup w_{R}, 1 < q(i) \le \lambda_{i}+1}(q(i)-1)} \times \prod_{i \in t_{R} \cup w_{R}, q(i) > \lambda_{i}+1} T_{\lambda_{i}}^{q(i)-1} \times \prod_{i \in t_{R} \cup w_{R}, \lambda_{i}=1, q(i) > 2} \bigvee_{j=1}^{q(i)-1} S^{1}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Fundamental group of R is

$$\mathbb{Z}^{|h_{R}|+\sum_{i\in t_{R}\cup w_{R},\lambda_{i}>1}(q(i)-1)}\times\prod_{i\in t_{R}\cup w_{R},\lambda_{i}=1,q(i)>2}F_{q(i)-1}$$

Standart theories

Lemma on standart theories

Let S be a stability theory. Let, moreover, following conditions holds

- 1. $\Omega_{\textit{ss}}$ is an irreducible connected real algebraic curve.
- 2. Inversion $\lambda \mapsto \frac{1}{\lambda}$ is an automorphism of stratified space S.
- 3. Complex conjugation $\lambda \mapsto \overline{\lambda}$ is an automorphism of stratified space *S*.
- 4. 0 and ∞ cannot be both stable or both unstable.

Then S is either Hurwitz stability theory, Schur stability theory or (quasi)hyperbolicity theory(with Ω_{ss} as a real line).

Main ideas of the proof

- 1. Note that we can use an invariance under conjugation and conjugate of inversion.
- 2. Go to polar coordinates
- 3. Defining polynomial is either palindromic or antipalindromic.
- 4. Apply I.Markovsky-S.Rao(2008) results on structure of (anti)palindromic polynomials.
- 5. Use irreducibility and Artin-Hilbert theorem on representation as sum of squares of rational functions.

Let us drop connectedness and $0 - \infty$ division. What kind of regions we will have? General equation of non-standart Ω_{ss} is an even degree polynomial:

$$\sum_{i=0}^{\frac{n}{2}} (\sum_{j=0}^{\lfloor \frac{i}{2} \rfloor} a_{ij} x^{i-2j} (x^2 + y^2)^j) (1 + (x^2 + y^2)^{\frac{n}{2}-i})$$

・ロト・日本・モト・モート ヨー うへで

Examples of families

<ロ> <@> < E> < E> E のQの