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Motivation

Algorithmic approach to sum of squares decompositions of polynomials (-> semidefinite pro-
gramming and polynomial optimization)

Example. The polynomial f = x? + 2x + 3 is positive semi-definite.

(1) A quadratic polynomial has a unique Gram matrix

A= (i 1) ie. f=(1 x)A(i).

This matrix is positive semidefinite because tr(A) = 4 and det(A) = 2.

(2) Alternatively,

f= (e (V22

Miracle?

(1)) (2ol



Gram Map

Consider the map

) A = (I,X,...,xd)A(laxa-”)xd)t

Theorem. Apolynomial f € R|x],,is asum of squares if and only if there is a positive semidefinite
matrix Awith J(A) = f.
Proof.If f = f2+ f#+...+ f2 then

t t t
A=cicr+ 00+ + ey

where f; = ¢;(1, x, ..., x%)t, will do.

Conversely, use Cholesky (type) factorization (or Principal Axis Theorem):
Let A be a positive semidefinite symmetric (d +1) x (d + 1) matrix. Then thereisan r x (d +1)
matrix B, where r is the rank of A, with

A = B!B. -

In more variables, the same argument is valid, just use a vector of all monomials of degree at
most d instead of (1, x, ..., x%).



Gram Spectrahedra

Definition. The Gram spectrahedron G of a polynomial f € R[x1,...,%xp]4 is the set of posi-
tive semidefinite matrices in J71( f).

Properties. (1) G 1 Is a convex set (a slice of the cone of positive semidefinite matrices with an
affine linear space - a spectrahedron)

(2) G 1 is non-empty if and only if f is a sum of squares of polynomials.

3) G r parametrizes all representations of f as a sum of squares up to orthogonal equivalence.

(4) The rank of a Gram matrix is the minimal length of the corresponding representation of f as a
sum of squares (over R).

Consider
f=0+x+4x%)%+ (x +2x%)% + (1+2x%)? = 24x* + 127 + 14x% + 2x + 2

This representation as a sum of squares is equivalent to a representation of length 2, namely

Y 5 e

Question: How "special" are Gram spectrahdra?



Minimal Ranks

What is the minimal rank of a positive semidefinite Gram matrix of a given polynomial?
Generic Answer: Pataki range (dimension count) — The rank r of an extreme point of a generic
m-dimensional slice of the cone of positive semidefinite k x k matrices satisfies the inequalities

(k—r+1) (r+1) (k+1)

< m and < — m.
2 2 2

Gram spectrahedra:

(1) Univariate Polynomials: The ranks of extreme points of a polynomial f satisfy the Pataki
inequalities if and only if f is not a square.

(2) Bivariate quartics: By a theorem of Hilbert, every nonnegative quartic polynomial in two

variables is a sum of three squares, which is the lower bound of the Pataki range in this
case.

Gram spectrahedra are Pataki general in all cases in which every positive polynomial is a sum of
squares.



Generalization of Hilbert’s Theorem on Ternary Quartics

Let X c P” be a nondegenerate irreducible variety and assume that X (IR) is Zariski dense in X.

Theorem (Blekherman, Smith, Velasco). Every quadratic that is nonnegative on X is a sum of
squares of linear forms in R| X | if and only if X is of minimal degree.

We say that X is of minimal degree if deg(X) = codim(X) + 1.

Example. Let C3 = {(s3 : st : st? : £7) € P3: (s : t) € P!} the twisted cubicin P2 = {(xg : x7 :
x3  x3)}. Then x§ + xZ restricted to Cs is the binary sextic (s®)2 + (¢3)2, which is a sum of two
squares.

Case of binary forms: The rational normal curve C; of degree d is a variety of minimal degree
in P4,

Case of ternary quartics: The quadratic Veronese surface in P> is a variety of minimal degree.

By the classification of varieties of minimal degree, there is one more type of varieties of minimal
degree, namely rational normal scrolls. They correspond to biforms of bidegree (m, 2) studied
by Choi, Lam, and Reznick.

P(¥, 2, X1, Xp) = Z a;i(y,z)xix;.
i ]

Choi, Lam, Reznick: Every nonnegative biform of bidegree (m,2) in n + 2 variables is a sum of
2n squares.



Sums of Squares on Varieties of Minimal Degree

Theorem. Let X c IP" be a nondegenerate irreducible variety of minimal degree with dense real

points. Then every quadratic nonnegative on X is a sum of (dim(X) + 1) squares of linear forms in
R[X].

Consider the map
¢: R[XJi xR[X]i x--- x R[X]; = R[X]5

(61,82, - -+ Eims1) —~ > 0.
=1

Want to show: The image of ¢ is the cone of nonnegative quadratics on X.
The differential of ¢ is

do: R[X]i x R[X]; x---xR[X]; = R[X]»
m+1

(hy, hy, ...  hii) —~ Y hit;.
i=1
The image of d¢ has dimension
1
(n+1)(m +1) - relations = (1+1)(m + 1) — (””2* )

forgenericty,..., €, 1, becausety,..., £, 1isaregularsequence and X is arithmetically Cohen-
Macaulay.

Fact: dimp(R[X];) = (n+1)(m+1) - (m2+1)



Sums of Squares on Varieties of Minimal Degree

Theorem. Let X c IP" be a nondegenerate irreducible variety of minimal degree with dense real

points. Then every quadratic nonnegative on X is a sum of (dim(X) + 1) squares of linear forms in
R[X].

Sothe map ¢: R[X]; x R[X ]y x -« x R[X]; = R[X]p, (€1, €2, .. .» €me1) = X117 €5, is surjective
onto a neighbourhood of a positive nonsingular quadratic, which is the sum of m + 1 squares.

We can now finish the proof by the same topological argument as in Hilbert’s original proof: The
map ¢ is closed and every smooth quadratic in the image of ¢ is an interior point of its image.
Since the set of all smooth nonnegative quadratics on X is connected, it must be equal to the
image of ¢.

It follows that every nonnegative quadratic on X is a sum of (dim(X) + 1) squares. u

Corollary. Every nonnegative biform of bidegree (m, 2) in n + 2 variables is a sum of n + 1 squares.

Gram spectrahedra are Pataki general in all cases in which every positive polynomial is a sum of
squares.



Algebraic Boundary

Generic Case: For a generic spectrahedron, the Zariski closure of the boundary is defined by
the restriction of the determinant to the affine span of the spectrahedron, which is irreducible
by Bertini’s Theorem.

Gram spectrahedra: They form a special family. The affine span of G ¢ is the kernel ker(J) of the
Gram map shifted by a chosen Gram matrix A ¢ of f.

In terms of algebraic geometry, homogenizing with respect to Ag, this means that the hyper-
plane at infinity with respect to these coordinates is ker(J). So the projective closure of the
determinant restricted to ker(J) + A ¢ intersected with ker(J) is the same, independent of f.

Theorem. The restriction of the determinant to ker(J) is irreducible forn =1and d > 5and n > 2
(and d > 5).

Corollary. The algebraic boundary of every Gram spectrahedron G s irreducible and the restric-
tion of the determinant to the affine span of G if G ¢ has non-empty interior and f is a polynomial
of degree at least 10.



Binary Sextics and Kummer Surfaces

In this case, the Gram map is

( Symy(R) — R[x]e

A |—>(1xx2 x3)A

\

The determinant restricted to the kernel is a perfect square

(Y2 -XZ)2

The set of all Gram matrices of a binary form

Its kernel is

(0 0 X -Y)
0 2X Y Z
X Y -2Z 0

\—Y Z 0 O}

f = agx® - 6a5x5y + 15a4x4y2 — 20a3x3y3 + 15a2x2y4 = 6a1xy5 + aoy6

of degree 6 is

(

\

aeg —3as 3a4+ X —a3 — Y \
—3as 9a4-2X -Y9a3+Y 3a,+~2

3a4+X —-9a3+Y 9a,-27
—a3 — Y 3a,+ y4 —3ay

—3a1
ag

)



Binary Sextics and Kummer Surfaces

Fact: The determinant of this matrix defines a Kummer surface in P> for a generic choice of
coefficients ay, .. ., ag of f (after homogenizing).
This Kummer surface has 16 singular points, 10 of rank 2. Of these 10 points, 4 are positive semi-

definite matrices, corresponding to the four inequivalent ways of writing a binary sextic as the
sum of two squares.

The dual variety of a Kummer surface is again a Kummer surface, in particular it has degree 4.
Arithmetic consequence: Let f be a positive binary sextic with rational coefficients. The entries
of a generic matrix A ¢ Qf of rank 3 are algebraic numbers of degree at most 4.

In fact, this degree is only 2 because the determinant restricted to ker(J) is a perfect square,
i.e. the hyperplane at infinity is tangent to the Kummer surface along a conic.



Binary Sextics and Kummer Surfaces




