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Motivation

Algorithmic approach to sum of squares decompositions of polynomials (-> semidefinite pro-
gramming and polynomial optimization)

Example. The polynomial f = x� + �x + � is positive semi-definite.

(�) A quadratic polynomial has a unique Grammatrix

A = �� �
� �� , i.e. f = �� x�A� �x� .

This matrix is positive semidefinite because tr(A) = � and det(A) = �.
(�) Alternatively,

f = (x + �)� + (√�)�.
Miracle?

�� �
� �� = ��

√
�

� � �� � �√
� ��

GramMap

Consider the map

J∶ � Symd+�(R) → R[x]�d
A � (�, x , . . . , xd)A(�, x , . . . , xd)t

Theorem. Apolynomial f ∈ R[x]�d is a sumof squares if and only if there is a positive semidefinite
matrix Awith J(A) = f .

Proof. If f = f �� + f �� + . . . + f �r , then

A = ct�c� + ct�c� + . . . + ctrcr ,
where fi = ci(�, x , . . . , xd)t, will do.
Conversely, use Cholesky (type) factorization (or Principal Axis Theorem):
Let A be a positive semidefinite symmetric (d + �) × (d + �)matrix. Then there is an r × (d + �)
matrix B, where r is the rank of A, with

A = BtB.
�

In more variables, the same argument is valid, just use a vector of all monomials of degree at
most d instead of (�, x , . . . , xd).

�

Motivation

Algorithmic approach to sum of squares decompositions of polynomials (-> semidefinite pro-
gramming and polynomial optimization)

Example. The polynomial f = x� + �x + � is positive semi-definite.

(�) A quadratic polynomial has a unique Grammatrix

A = �� �
� �� , i.e. f = �� x�A� �x� .

This matrix is positive semidefinite because tr(A) = � and det(A) = �.
(�) Alternatively,

f = (x + �)� + (√�)�.
Miracle?

�� �
� �� = ��

√
�

� � �� � �√
� ��

GramMap

Consider the map

J∶ � Symd+�(R) → R[x]�d
A � (�, x , . . . , xd)A(�, x , . . . , xd)t

Theorem. Apolynomial f ∈ R[x]�d is a sumof squares if and only if there is a positive semidefinite
matrix Awith J(A) = f .

Proof. If f = f �� + f �� + . . . + f �r , then

A = ct�c� + ct�c� + . . . + ctrcr ,
where fi = ci(�, x , . . . , xd)t, will do.
Conversely, use Cholesky (type) factorization (or Principal Axis Theorem):
Let A be a positive semidefinite symmetric (d + �) × (d + �)matrix. Then there is an r × (d + �)
matrix B, where r is the rank of A, with

A = BtB.
�

In more variables, the same argument is valid, just use a vector of all monomials of degree at
most d instead of (�, x , . . . , xd).

�

Motivation

Algorithmic approach to sum of squares decompositions of polynomials (-> semidefinite pro-
gramming and polynomial optimization)

Example. The polynomial f = x� + �x + � is positive semi-definite.

(�) A quadratic polynomial has a unique Grammatrix

A = �� �
� �� , i.e. f = �� x�A� �x� .

This matrix is positive semidefinite because tr(A) = � and det(A) = �.
(�) Alternatively,

f = (x + �)� + (√�)�.
Miracle?

�� �
� �� = ��

√
�

� � �� � �√
� ��

GramMap

Consider the map

J∶ � Symd+�(R) → R[x]�d
A � (�, x , . . . , xd)A(�, x , . . . , xd)t

Theorem. Apolynomial f ∈ R[x]�d is a sumof squares if and only if there is a positive semidefinite
matrix Awith J(A) = f .

Proof. If f = f �� + f �� + . . . + f �r , then

A = ct�c� + ct�c� + . . . + ctrcr ,
where fi = ci(�, x , . . . , xd)t, will do.
Conversely, use Cholesky (type) factorization (or Principal Axis Theorem):
Let A be a positive semidefinite symmetric (d + �) × (d + �)matrix. Then there is an r × (d + �)
matrix B, where r is the rank of A, with

A = BtB.
�

In more variables, the same argument is valid, just use a vector of all monomials of degree at
most d instead of (�, x , . . . , xd).

�

Motivation

Algorithmic approach to sum of squares decompositions of polynomials (-> semidefinite pro-
gramming and polynomial optimization)

Example. The polynomial f = x� + �x + � is positive semi-definite.

(�) A quadratic polynomial has a unique Grammatrix

A = �� �
� �� , i.e. f = �� x�A� �x� .

This matrix is positive semidefinite because tr(A) = � and det(A) = �.
(�) Alternatively,

f = (x + �)� + (√�)�.
Miracle?

�� �
� �� = ��

√
�

� � �� � �√
� ��

GramMap

Consider the map

J∶ � Symd+�(R) → R[x]�d
A � (�, x , . . . , xd)A(�, x , . . . , xd)t

Theorem. Apolynomial f ∈ R[x]�d is a sumof squares if and only if there is a positive semidefinite
matrix Awith J(A) = f .

Proof. If f = f �� + f �� + . . . + f �r , then

A = ct�c� + ct�c� + . . . + ctrcr ,
where fi = ci(�, x , . . . , xd)t, will do.
Conversely, use Cholesky (type) factorization (or Principal Axis Theorem):
Let A be a positive semidefinite symmetric (d + �) × (d + �)matrix. Then there is an r × (d + �)
matrix B, where r is the rank of A, with

A = BtB.
�

In more variables, the same argument is valid, just use a vector of all monomials of degree at
most d instead of (�, x , . . . , xd).

�

Motivation

Algorithmic approach to sum of squares decompositions of polynomials (-> semidefinite pro-
gramming and polynomial optimization)

Example. The polynomial f = x� + �x + � is positive semi-definite.

(�) A quadratic polynomial has a unique Grammatrix

A = �� �
� �� , i.e. f = �� x�A� �x� .

This matrix is positive semidefinite because tr(A) = � and det(A) = �.
(�) Alternatively,

f = (x + �)� + (√�)�.
Miracle?

�� �
� �� = ��

√
�

� � �� � �√
� ��

GramMap

Consider the map

J∶ � Symd+�(R) → R[x]�d
A � (�, x , . . . , xd)A(�, x , . . . , xd)t

Theorem. Apolynomial f ∈ R[x]�d is a sumof squares if and only if there is a positive semidefinite
matrix Awith J(A) = f .

Proof. If f = f �� + f �� + . . . + f �r , then

A = ct�c� + ct�c� + . . . + ctrcr ,
where fi = ci(�, x , . . . , xd)t, will do.
Conversely, use Cholesky (type) factorization (or Principal Axis Theorem):
Let A be a positive semidefinite symmetric (d + �) × (d + �)matrix. Then there is an r × (d + �)
matrix B, where r is the rank of A, with

A = BtB.
�

In more variables, the same argument is valid, just use a vector of all monomials of degree at
most d instead of (�, x , . . . , xd).

�



Motivation

Algorithmic approach to sum of squares decompositions of polynomials (-> semidefinite pro-
gramming and polynomial optimization)

Example. The polynomial f = x� + �x + � is positive semi-definite.

(�) A quadratic polynomial has a unique Grammatrix

A = �� �
� �� , i.e. f = �� x�A� �x� .

This matrix is positive semidefinite because tr(A) = � and det(A) = �.
(�) Alternatively,

f = (x + �)� + (√�)�.
Miracle?

�� �
� �� = ��

√
�

� � �� � �√
� ��

GramMap

Consider the map

J∶ � Symd+�(R) → R[x]�d
A � (�, x , . . . , xd)A(�, x , . . . , xd)t

Theorem. Apolynomial f ∈ R[x]�d is a sumof squares if and only if there is a positive semidefinite
matrix Awith J(A) = f .

Proof. If f = f �� + f �� + . . . + f �r , then

A = ct�c� + ct�c� + . . . + ctrcr ,
where fi = ci(�, x , . . . , xd)t, will do.
Conversely, use Cholesky (type) factorization (or Principal Axis Theorem):
Let A be a positive semidefinite symmetric (d + �) × (d + �)matrix. Then there is an r × (d + �)
matrix B, where r is the rank of A, with

A = BtB.
�

In more variables, the same argument is valid, just use a vector of all monomials of degree at
most d instead of (�, x , . . . , xd).

�

Motivation

Algorithmic approach to sum of squares decompositions of polynomials (-> semidefinite pro-
gramming and polynomial optimization)

Example. The polynomial f = x� + �x + � is positive semi-definite.

(�) A quadratic polynomial has a unique Grammatrix

A = �� �
� �� , i.e. f = �� x�A� �x� .

This matrix is positive semidefinite because tr(A) = � and det(A) = �.
(�) Alternatively,

f = (x + �)� + (√�)�.
Miracle?

�� �
� �� = ��

√
�

� � �� � �√
� ��

GramMap

Consider the map

J∶ � Symd+�(R) → R[x]�d
A � (�, x , . . . , xd)A(�, x , . . . , xd)t

Theorem. Apolynomial f ∈ R[x]�d is a sumof squares if and only if there is a positive semidefinite
matrix Awith J(A) = f .

Proof. If f = f �� + f �� + . . . + f �r , then

A = ct�c� + ct�c� + . . . + ctrcr ,
where fi = ci(�, x , . . . , xd)t, will do.
Conversely, use Cholesky (type) factorization (or Principal Axis Theorem):
Let A be a positive semidefinite symmetric (d + �) × (d + �)matrix. Then there is an r × (d + �)
matrix B, where r is the rank of A, with

A = BtB.
�

In more variables, the same argument is valid, just use a vector of all monomials of degree at
most d instead of (�, x , . . . , xd).

�

Motivation

Algorithmic approach to sum of squares decompositions of polynomials (-> semidefinite pro-
gramming and polynomial optimization)

Example. The polynomial f = x� + �x + � is positive semi-definite.

(�) A quadratic polynomial has a unique Grammatrix

A = �� �
� �� , i.e. f = �� x�A� �x� .

This matrix is positive semidefinite because tr(A) = � and det(A) = �.
(�) Alternatively,

f = (x + �)� + (√�)�.
Miracle?

�� �
� �� = ��

√
�

� � �� � �√
� ��

GramMap

Consider the map

J∶ � Symd+�(R) → R[x]�d
A � (�, x , . . . , xd)A(�, x , . . . , xd)t

Theorem. Apolynomial f ∈ R[x]�d is a sumof squares if and only if there is a positive semidefinite
matrix Awith J(A) = f .

Proof. If f = f �� + f �� + . . . + f �r , then

A = ct�c� + ct�c� + . . . + ctrcr ,
where fi = ci(�, x , . . . , xd)t, will do.
Conversely, use Cholesky (type) factorization (or Principal Axis Theorem):
Let A be a positive semidefinite symmetric (d + �) × (d + �)matrix. Then there is an r × (d + �)
matrix B, where r is the rank of A, with

A = BtB.
�

In more variables, the same argument is valid, just use a vector of all monomials of degree at
most d instead of (�, x , . . . , xd).

�

Motivation

Algorithmic approach to sum of squares decompositions of polynomials (-> semidefinite pro-
gramming and polynomial optimization)

Example. The polynomial f = x� + �x + � is positive semi-definite.

(�) A quadratic polynomial has a unique Grammatrix

A = �� �
� �� , i.e. f = �� x�A� �x� .

This matrix is positive semidefinite because tr(A) = � and det(A) = �.
(�) Alternatively,

f = (x + �)� + (√�)�.
Miracle?

�� �
� �� = ��

√
�

� � �� � �√
� ��

GramMap

Consider the map

J∶ � Symd+�(R) → R[x]�d
A � (�, x , . . . , xd)A(�, x , . . . , xd)t

Theorem. Apolynomial f ∈ R[x]�d is a sumof squares if and only if there is a positive semidefinite
matrix Awith J(A) = f .

Proof. If f = f �� + f �� + . . . + f �r , then

A = ct�c� + ct�c� + . . . + ctrcr ,
where fi = ci(�, x , . . . , xd)t, will do.
Conversely, use Cholesky (type) factorization (or Principal Axis Theorem):
Let A be a positive semidefinite symmetric (d + �) × (d + �)matrix. Then there is an r × (d + �)
matrix B, where r is the rank of A, with

A = BtB. �
In more variables, the same argument is valid, just use a vector of all monomials of degree at
most d instead of (�, x , . . . , xd).

�

Motivation

Algorithmic approach to sum of squares decompositions of polynomials (-> semidefinite pro-
gramming and polynomial optimization)

Example. The polynomial f = x� + �x + � is positive semi-definite.

(�) A quadratic polynomial has a unique Grammatrix

A = �� �
� �� , i.e. f = �� x�A� �x� .

This matrix is positive semidefinite because tr(A) = � and det(A) = �.
(�) Alternatively,

f = (x + �)� + (√�)�.
Miracle?

�� �
� �� = ��

√
�

� � �� � �√
� ��

GramMap

Consider the map

J∶ � Symd+�(R) → R[x]�d
A � (�, x , . . . , xd)A(�, x , . . . , xd)t

Theorem. Apolynomial f ∈ R[x]�d is a sumof squares if and only if there is a positive semidefinite
matrix Awith J(A) = f .

Proof. If f = f �� + f �� + . . . + f �r , then

A = ct�c� + ct�c� + . . . + ctrcr ,
where fi = ci(�, x , . . . , xd)t, will do.
Conversely, use Cholesky (type) factorization (or Principal Axis Theorem):
Let A be a positive semidefinite symmetric (d + �) × (d + �)matrix. Then there is an r × (d + �)
matrix B, where r is the rank of A, with

A = BtB. �
In more variables, the same argument is valid, just use a vector of all monomials of degree at
most d instead of (�, x , . . . , xd).

�



Gram Spectrahedra

Definition. The Gram spectrahedron G f of a polynomial f ∈ R[x�, . . . , xn]�d is the set of posi-
tive semidefinite matrices in J−�( f ).
Properties. (�) G f is a convex set (a slice of the cone of positive semidefinite matrices with an

affine linear space - a spectrahedron)

(�) G f is non-empty if and only if f is a sum of squares of polynomials.

(�) G f parametrizes all representations of f as a sum of squares up to orthogonal equivalence.

(�) The rank of a Grammatrix is theminimal length of the corresponding representation of f as a
sum of squares (overR).

Consider

f = (� + x + �x�)� + (x + �x�)� + (� + �x�)� = ��x� + ��x� + ��x� + �x + �
This representation as a sum of squares is equivalent to a representation of length �, namely

f = �
�
(x − �)� + �

�
(√� +√�x + �√��x�)�.

Question: How "special" are Gram spectrahdra?

Minimal Ranks

What is the minimal rank of a positive semidefinite Grammatrix of a given polynomial?
Generic Answer: Pataki range (dimension count) – The rank r of an extreme point of a generic
m-dimensional slice of the cone of positive semidefinite k × kmatrices satisfies the inequalities

�k − r + �
�
� ≤ m and �r + �

�
� ≤ �k + �

�
� −m.

Gram spectrahedra:

(�) Univariate Polynomials: The ranks of extreme points of a polynomial f satisfy the Pataki
inequalities if and only if f is not a square.

(�) Bivariate quartics: By a theorem of Hilbert, every nonnegative quartic polynomial in two
variables is a sum of three squares, which is the lower bound of the Pataki range in this
case.

Gram spectrahedra are Pataki general in all cases in which every postive polynomial is a sum of
squares.
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Generalization of Hilbert’s Theorem on Ternary Quartics

Let X ⊂ Pn be a nondegenerate irreducible variety and assume that X(R) is Zariski dense in X.

Theorem (Blekherman, Smith, Velasco). Every quadratic that is nonnegative on X is a sum of
squares of linear forms inR[X] if and only if X is of minimal degree.

We say that X is of minimal degree if deg(X) = codim(X) + �.
Example. Let C� = {(s� ∶ s�t ∶ st� ∶ t�) ∈ P�∶ (s ∶ t) ∈ P�} the twisted cubic in P� = {(x� ∶ x� ∶
x� ∶ x�)}. Then x�� + x�� restricted to C� is the binary sextic (s�)� + (t�)�, which is a sum of two
squares.

Case of binary forms: The rational normal curve Cd of degree d is a variety of minimal degree
in Pd .
Case of ternary quartics: The quadratic Veronese surface in P� is a variety of minimal degree.
By the classification of varieties ofminimal degree, there is onemore type of varieties ofminimal
degree, namely rational normal scrolls. They correspond to biforms of bidegree (m, �) studied
by Choi, Lam, and Reznick.

p(y, z, x�, . . . , xn) =�
i , j

ai j(y, z)xix j.
Choi, Lam, Reznick: Every nonnegative biform of bidegree (m, �) in n + � variables is a sum of
�n squares.

Sums of Squares on Varieties of Minimal Degree

Theorem. Let X ⊂ Pn be a nondegenerate irreducible variety of minimal degree with dense real
points. Then every quadratic nonnegative on X is a sum of (dim(X) + �) squares of linear forms in
R[X].
Consider the map

�∶ R[X]� ×R[X]� × ⋅ ⋅ ⋅ ×R[X]� → R[X]�
(ℓ�, ℓ�, . . . , ℓm+�) � m+��

i=� ℓ
�
i .

Want to show: The image of � is the cone of nonnegative quadratics on X.
The differential of � is

d�∶ R[X]� ×R[X]� × ⋅ ⋅ ⋅ ×R[X]� → R[X]�
(h�, h�, . . . , hm+�) � m+��

i=� hiℓi .
Fact: dimR(R[X]�) = (n + �)(m + �) − �m+�� �
The image of d� has dimension

(n + �)(m + �) − relations = (n + �)(m + �) − �m + �
�
�

for generic ℓ�, . . . , ℓm+�, because ℓ�, . . . , ℓm+� is a regular sequenceandX is arithmeticallyCohen-
Macaulay.
We can now finish the proof by the same topological argument as in Hilbert’s original proof: It
follows that every nonnegative quadratic on X is a sum of (dim(X) + �) squares.
Improvement: Every nonnegative biform of bidegree (m, �) in n + � variables is a sum of n + �
squares.
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which has rank �.
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Question: How "special" are Gram spectrahdra?

Minimal Ranks

What is the minimal rank of a positive semidefinite Grammatrix of a given polynomial?
Generic Answer: Pataki range (dimension count) – The rank r of an extreme point of a generic
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Gram spectrahedra:

(�) Univariate Polynomials: The ranks of extreme points of a polynomial f satisfy the Pataki
inequalities if and only if f is not a square.

(�) Bivariate quartics: By a theorem of Hilbert, every quartic polynomial in two variables is a
sum of three squares, which is the lower bound of the Pataki range in this case.
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the restriction of the determinant to the affine span of the spectrahedron, which is irreducible
by Bertini’s Theorem.
Gramspectrahedra: They form a special family. The affine span ofG f is the kernel ker(J) of the
Grammap shifted by a chosen Grammatrix Af of f .
In terms of algebraic geometry, homogenizing with respect to Af , this means that the hyper-
plane at infinity with respect to these coordinates is ker(J). So the projective closure of the
determinant restricted to ker(J) + Af intersected with ker(J) is the same, independent of f .

Theorem. The restriction of the determinant to ker(J) is irreducible for n = � and d ≥ � and n ≥ �
(and d ≥ �).
Corollary. The algebraic boundary of every Gram spectrahedron G f is irreducible and the restric-
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Fact: The determinant of this matrix defines a Kummer surface in P� for a generic choice of
coefficients a�, . . . , a� of f (after homogenizing).
This Kummer surface has �� singular points, �� of rank �. Of these �� points, � are positive semi-
definite matrices, corresponding to the four inequivalent ways of writing a binary sextic as the
sum of two squares.
The dual variety of a Kummer surface is again a Kummer surface. So we expect the algebraic
degree of semidefinite programming over a Gram spectrahedron to be � (over rank � points).
The fact that the determinant restricted to ker(J) is a square, reduces this degree to �.
The algebraic boundary of the dual convex set has degree � and � irreducible components (over
R), namely the dual surface to the Kummer surface and � hyperplanes dual to the � nodes of
the Kummer surface on the boundary of the Gram spectrahedron.
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Fact: The determinant of this matrix defines a Kummer surface in P� for a generic choice of
coefficients a�, . . . , a� of f (after homogenizing).
This Kummer surface has �� singular points, �� of rank �. Of these �� points, � are positive semi-
definite matrices, corresponding to the four inequivalent ways of writing a binary sextic as the
sum of two squares.
The dual variety of a Kummer surface is again a Kummer surface. So we expect the algebraic
degree of semidefinite programming over a Gram spectrahedron to be � (over rank � points).
The fact that the determinant restricted to ker(J) is a square, reduces this degree to �.
The algebraic boundary of the dual convex set has degree � and � irreducible components (over
R), namely the dual surface to the Kummer surface and � hyperplanes dual to the � nodes of
the Kummer surface on the boundary of the Gram spectrahedron.



which has rank �.
This representation as a sum of squares is equivalent to a representation of length �, namely

f = �
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(√� +√�x + �√��x�)�.

Question: How "special" are Gram spectrahdra?

Minimal Ranks

What is the minimal rank of a positive semidefinite Grammatrix of a given polynomial?
Generic Answer: Pataki range (dimension count) – The rank r of an extreme point of a generic
m-dimensional slice of the cone of positive semidefinite k × kmatrices satisfies the inequalities
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� ≤ �k + �

�
� −m.
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sum of two squares.
The dual variety of a Kummer surface is again a Kummer surface, in particular it has degree �.
Arithmetic consequence: Let f be apositive binary sexticwith rational coefficients. The entries
of a generic matrix A ∈ G f of rank � are algebraic numbers of degree at most �.
In fact, this degree is only � because the determinant restricted to ker(J) is a perfect square,
i.e. the hyperplane at infinity is tangent to the Kummer surface along a conic.
The algebraic boundary of the dual convex set has degree � and � irreducible components (over
R), namely the dual surface to the Kummer surface and � hyperplanes dual to the � nodes of
the Kummer surface on the boundary of the Gram spectrahedron.
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