Lebesgue integration of oscillating and subanalytic functions

Tamara Servi (University of Paris 7)

(joint work with R. Cluckers, G. Comte, D. Miller, J.-P. Rolin)

19th October 2015

An application of o-minimality to an oscillating context

o-minimal context: globally subanalytic sets and functions (i.e. def. in \mathbb{R}_{an}) Proviso. For the rest of the talk, *subanalytic* means "globally subanalytic". Def. For $X \subseteq \mathbb{R}^m$ subanalytic, let $S(X) := \{f : X \to \mathbb{R} \text{ subanalytic}\}$

Puiseux-Lojasiewicz. Let
$$f(y) \in \mathcal{S}(\mathbb{R})$$
. Then $\exists c > 0$ s.t. $\forall y > c$
 $f(y) = ay^r H\left(y^{-\frac{1}{d}}\right)$, where $d \in \mathbb{N}, r \in \mathbb{Q}, a \in \mathbb{R}$ and $H(Y) \in \mathbb{R}\{Y\}^*$.

Subanalytic Preparation Theorem (Lion - Rolin). Let $f(\overline{x}, y) \in \mathcal{S}(\mathbb{R}^n \times \mathbb{R})$. Then there is a subanalytic cell decomposition of \mathbb{R}^{n+1} such that on every cell of the form $\{(\overline{x}, y) : x \in X, y > c(\overline{x}) > 1\}$

$$f(\overline{x}, y) = a(\overline{x}) y^{r} U(\overline{x}, y)$$
, where

 $r \in \mathbb{Q}, a \in \mathcal{S}(X) \text{ and } U(\overline{x}, y) = H\left(y^{-\frac{1}{d}}\right), \text{ with } d \in \mathbb{N} \text{ and } H \in \mathcal{S}(X)\left\{Y\right\}^*.$

General philosophy: presentation of f which is as simple as possible wrto a chosen variable y (possibly at the price of complicating the situation in \overline{x}).

• *Monomialization* respecting *y* (resolution of singularities):

setting $y_1 = y U(\overline{x}, y)^{\frac{1}{r}}$, we have $f_1(\overline{x}, y_1) = a(\overline{x}) y_1^r$.

• Useful to handle *logarithms* of subanalytic functions:

 $\log (f) = r \log y + \log (a(\overline{x})) + \log (U(\overline{x}, y)).$

... and van den Dries said: "now go and integrate!" They did, and they saw that it was good. And so our story begins.

Motivation and background

Oscillatory integrals of the 1st kind. $x \in \mathbb{R}, \ \overline{y} = (y_1, \dots, y_n) \in \mathbb{R}^n$

$$\mathcal{I}\left(x
ight)=\int_{\mathbb{R}^{n}}e^{ixarphi\left(\overline{y}
ight)}\psi\left(\overline{y}
ight)\mathsf{d}\overline{y},\,\,\mathsf{where:}$$

- the phase φ is analytic, $0 \in \mathbb{R}^n$ is an isolated singular point of φ ;
- the amplitude ψ is \mathcal{C}^∞ with support a compact nbd of 0.

These objects are studied in optical physics, acoustics and number theory.

AIM. To study the behaviour of $\mathcal{I}(x)$ when $x \to \infty$.

$$\begin{array}{ll} n = 1 & \mathcal{I}\left(x\right) \sim e^{ix\varphi(0)} \sum_{j \in \mathbb{N}} a_{j}\left(\psi\right) x^{-\frac{j}{N(\varphi)}} & a_{j}\left(\psi\right) \in \mathbb{R}, \ N\left(\varphi\right) \in \mathbb{N} \ \text{fixed} \\ n > 1 & \text{reduce to the case } n = 1 \ \text{by monomializing the phase (res. of sing.).} \\ \text{Example.} & n = 2, \quad \mathcal{I}\left(x\right) = \iint e^{ixy_{1}^{a}y_{2}^{b}}\psi\left(y_{1}, y_{2}\right) dy_{1}dy_{2} \\ & \Phi:\left(y_{1}, y_{2}\right) \mapsto \left(Y_{1}, Y_{2}\right) = \left(y_{1}, y_{1}^{a}y_{2}^{b}\right), \quad \tilde{\psi} = \psi \circ \Phi^{-1} \cdot \text{Jac}\Phi^{-1} \\ & \mathcal{I}\left(x\right) = \int \left(\int e^{ixY_{2}}\tilde{\psi}\left(Y_{1}, Y_{2}\right) dY_{2}\right) dY_{1} \quad \text{(Fubini)} \end{array}$$

Monomializing the phase, using Fubini and the case n = 1, one proves:

$$\mathcal{I}(x) \sim e^{\mathrm{i}x\varphi(0)} \sum_{q} \sum_{k=0}^{n-1} a_{q,k}(\psi) x^{q} (\log x)^{k}.$$

Oscillatory integrals in several variables

Oscillatory integrals of the 2^{nd} kind. $\overline{x} = (x_1, \dots, x_m) \in \mathbb{R}^m, \ \overline{y} = (y_1, \dots, y_n) \in \mathbb{R}^n$

$$\mathcal{I}\left(\overline{x}\right) = \int_{\mathbb{R}^{n}} e^{i\varphi(\overline{x},\overline{y})} \psi\left(\overline{x},\overline{y}\right) \mathsf{d}\overline{y}$$

(the parameters \overline{x} and the integration variables \overline{y} are "intertwined" in the expressions for φ and ψ).

Examples. Fourier transforms
$$\hat{\psi}(\overline{x}) = \int_{\mathbb{R}^{n}} e^{-2\pi i \overline{x} \cdot \overline{y}} \psi(\overline{y}) d\overline{y}$$
.
Fourier Integral Operator $T\psi(\overline{x}) = \int_{\mathbb{R}^{n}} e^{2\pi i \Phi(\overline{x}, \overline{y})} a(\overline{x}, \overline{y}) \hat{\psi}(\overline{y}) d\overline{y}$ (sol. of PDEs)

AIM. Understand the nature of $\mathcal{I}(\overline{x})$ (depending on the nature of φ and ψ).

Tool needed.

Monomialize the phase while keeping track of the *different nature* of the variables \overline{x} and \overline{y} .

Natural framework and natural tool:

Framework: φ, ψ subanalytic. Tool: the Subanalytic Preparation Theorem. Our framework: parametric integrals and subanalytic functions

Def. For $X \subseteq \mathbb{R}^m$ and $f: X \times \mathbb{R}^n \to \mathbb{R}$, define, $\forall \overline{x} \in X$ s.t. $f(\overline{x}, \cdot) \in L^1(\mathbb{R}^n)$,

the parametric integral $\mathcal{I}_f(\overline{x}) = \int_{\mathbb{R}^n} f(\overline{x}, \overline{y}) \, \mathrm{d}\overline{y}.$

Question. For $X \subseteq \mathbb{R}^m$ subanalytic and $f \in \mathcal{S}(X \times \mathbb{R}^n)$ s.t. $\forall \overline{x} \in X$ $f(\overline{x}, \cdot) \in L^1(\mathbb{R}^n)$, what is the nature of \mathcal{I}_f ?

(Comte - Lion - Rolin). $f \in \mathcal{S}(X \times \mathbb{R}^n) \Rightarrow \mathcal{I}_f \in \mathcal{C}(X)$, where $\mathcal{C}(X) := \mathbb{R}$ -algebra generated by $\{g, \log h : g, h \in \mathcal{S}(X), h > 0\}$ ("constructible" or "log-subanalytic" functions).

(Cluckers - D. Miller). $f \in \mathcal{C}(X \times \mathbb{R}^n) \Rightarrow \mathcal{I}_f \in \mathcal{C}(X)$.

AIM. Study oscillatory integrals $\mathcal{I}(\overline{x}) = \int_{\mathbb{R}^{n}} e^{i\varphi(\overline{x},\overline{y})} \psi(\overline{x},\overline{y}) d\overline{y}, \text{ with } \varphi, \psi \in \mathcal{S}(\mathbb{R}^{m+n})$

Question. $\mathcal{D}(X) := \mathbb{C}$ -algebra generated by $\mathcal{C}(X)$ and $\left\{ e^{i\varphi(\overline{x})}: \varphi \in \mathcal{S}(X) \right\}$.

$$f \in \mathcal{D}\left(X \times \mathbb{R}^n\right) \stackrel{?}{\Rightarrow} \mathcal{I}_f \in \mathcal{D}\left(X\right)$$

Oscillating and subanalytic functions

The answer is NO: $\exists f \in \mathcal{D}(\mathbb{R} \times \mathbb{R})$ s.t. $\mathcal{I}_f \notin \mathcal{D}(\mathbb{R})$.

Example 1. Consider $f(x) = e^{-|x|}$ and its Fourier transform $\hat{f}(y)$. A computation shows that $\hat{f}(y) = \frac{2}{1+4\pi^2 y^2} \in S(\mathbb{R}) \cap L^1(\mathbb{R})$. We can recover f by inverse Fourier transform of \hat{f} : $f(x) = \int e^{2\pi i x y} \cdot \hat{f}(y) dy$, which is a parametric integral of a function in $\mathcal{D}(\mathbb{R})$.

Claim. $e^{-|x|} \notin \mathcal{D}(\mathbb{R})$. There are no *flat* functions in $\mathcal{D}(\mathbb{R})$.

Example 2. Si
$$(x) = \int_0^x \frac{\sin t}{t} dt = \int_{\mathbb{R}} \frac{\chi_{[0,x]}(t)}{2it} (e^{it} - e^{-it}) dt$$
, which is a parametric integral of a function in $\mathcal{D}(\mathbb{R})$.
Claim. Si $(x) \notin \mathcal{D}(\mathbb{R})$.
Si (x) has a divergent asymptotic expansion in the scale $\begin{cases} \frac{\sin x}{2} & \frac{\cos x}{2} \\ \frac{\sin x}{2} & \frac{\cos x}{2} \end{cases}$, $k \in \mathbb{Z}$.

Si (x) has a *divergent* asymptotic expansion in the scale $\left\{\frac{\sin x}{x^{2k+1}}, \frac{\cos x}{x^{2k}}: k \in \mathbb{Z}\right\}$.

The key argument to prove the claims is the following Remark. Let J be a finite set and $\forall j \in J$, let $c_j \neq 0$, $p_j(x)$ be distinct polynomials with $p_j(0) = 0$. Then $\sum_{j \in J} c_j e^{ip_j(x^{1/d})} \neq 0$ as $x \to +\infty$. The remark can be proved using the theory of *almost periodic functions*.

One-dimensional transcendentals

Def. Consider the family of 1-dimensional integrals of the form: $\gamma_{h,\ell}(\overline{x}) = \int_{\mathbb{R}} h(\overline{x}, t) (\log |t|)^{\ell} e^{it} dt, \quad (\ell \in \mathbb{N}, h \in \mathcal{S} (X \times \mathbb{R}), h(\overline{x}, \cdot) \in L^{1}(\mathbb{R}))$ and $\mathcal{E}(X) :=$ the $\mathcal{D}(X)$ -module generated by $\{\gamma_{h,\ell}\}_{h,\ell}$

 $\begin{array}{ll} \text{MAIN THEOREM.} & f \in \mathcal{E} \left(X \times \mathbb{R}^n \right) \Rightarrow \mathcal{I}_f \in \mathcal{E} \left(X \right). \text{ More precisely,} \\ \text{let Int } \left(f, X \right) := \left\{ \overline{x} \in X : \ f \left(\overline{x}, \cdot \right) \in L^1 \left(\mathbb{R}^n \right) \right\} \text{ (integrability locus).} \\ \text{Then there exists } F \in \mathcal{E} \left(X \right) \text{ s.t. } F \left(\overline{x} \right) = \int_{\mathbb{R}^n} f \left(\overline{x}, \overline{y} \right) \mathrm{d} \overline{y} \quad \forall \overline{x} \in \mathrm{Int} \left(f, X \right) \\ \text{and there exists } g \in \mathcal{E} \left(X \right) \text{ s.t. } \mathrm{Int} \left(f, X \right) = \left\{ \overline{x} \in X : \ g \left(\overline{x} \right) = 0 \right\}. \end{array}$

Corollary. $\mathcal{E}(X)$ is a \mathbb{C} -algebra.

Proof. By Fubini,

 $\begin{array}{l} \gamma_{h,\ell}\left(\overline{x}\right) \cdot \gamma_{h',\ell'}\left(\overline{x}\right) = \iint_{\mathbb{R}^2} h\left(\overline{x},t\right) \cdot h'\left(\overline{x},t'\right) \cdot \left(\log|t|\right)^{\ell} \cdot \left(\log|t'|\right)^{\ell'} e^{i\left(t+t'\right)} dt dt',\\ \text{which is the parametric integral of a function in } \mathcal{D}\left(X \times \mathbb{R}^2\right), \text{ and hence, by the}\\ \text{Main Theorem, belongs to } \mathcal{E}\left(X\right). \quad \Box \end{array}$

Corollary. $\mathcal{E} = \bigcup \mathcal{E}(X)$ is the smallest collection of \mathbb{C} -algebras containing $\mathcal{S} \cup \{e^{i\varphi} : \varphi \in \mathcal{S}\}$ and stable under parametric integration.

Generators of $\mathcal E$ and the proof of the Main Thm

Rem. An element of $\mathcal{E}(X \times \mathbb{R}^n)$ can be written as a finite sum of *generators*:

$$T(\overline{x},\overline{y}) = \psi(\overline{x},\overline{y}) \cdot e^{i\varphi(\overline{x},\overline{y})} \cdot \gamma(\overline{x},\overline{y}), \text{ where}$$
$$\psi \in \mathcal{C}(X \times \mathbb{R}^n), \ \varphi \in \mathcal{S}(X \times \mathbb{R}^n) \text{ and } \gamma(\overline{x},\overline{y}) = \int_{\mathbb{R}} h(\overline{x},\overline{y},t)(\log|t|)^\ell e^{it}dt.$$

Proof of the Main Theorem.

• If $T \in \mathcal{D}(X \times \mathbb{R}^n)$ (i.e. $\gamma \equiv 1$) and T is integrable, then by o-minimality (cell decomposition, piecewise monotonicity, preparation) we can easily reduce to the case $\varphi(\overline{x}, \overline{y}) = y_1$ and show that $\int T d\overline{y} \in \mathcal{E}(X)$.

• If
$$T \in \mathcal{E}(X \times \mathbb{R}^n)$$
 and $y \longmapsto |\psi(\overline{x}, \overline{y})| \int_{\mathbb{R}} \left| h(\overline{x}, \overline{y}, t) (\log |t|)^{\ell} \right| dt \in L^1(\mathbb{R}^n)$,
then by Fubini-Tonelli we can reduce to the previous step.

• Core of the proof: if n = 1 and $f = \sum T_j$ then we may suppose that each T_j is either as in the previous step or non-integrable. In the latter case, the γ_j in T_j does not depend on y ("naive" in y).

This uses the Subanalytic Preparation Theorem and other o-minimal tools.

• If each T_j is non-integrable and naive in y, then $\sum T_j$ is non-integrable. This uses the theory of almost periodic functions.

Finite sums of exponentials of polynomials

Claim. Let J be a finite set and $\forall j \in J$ let $S_j(y) = c_j y^{r_j} (\log y)^{s_j} e^{ip_j(y^{\frac{1}{d}})}$, where $c_j \in \mathbb{R}^*$, $r_j \in \mathbb{Q}$, $d, s_j \in \mathbb{N}$ and p_j are distinct polynomials with $p_j(0) = 0$. Suppose that $\forall j \in J$, $S_j \notin L^1(\mathbb{R}^+)$. Then $\sum_{j \in J} S_j \notin L^1(\mathbb{R}^+)$.

Proof. Let $G(y) = \sum_{j \in J} c_j e^{i\rho_j \left(y^{\frac{1}{d}}\right)}$. Note that $y^{r_j} (\log y)^{s_j} > y^{-1}$ for $y \gg 0$. Then, $\int_{\mathbb{R}^+} \left| \sum_{j \in J} S_j(y) \right| dy \ge \int_{\mathbb{R}^+} \frac{1}{y} |G(y)| dy$.

Since $G \neq 0$, by continuity $\exists \varepsilon, \delta > 0$ s.t. $|G(y)| > \varepsilon$ on some interval I of length $\geq \delta$.

Idea: If *G* were *periodic*, of period ν , then $|G| \ge \varepsilon$ on $V_{\varepsilon} := \bigcup_{k \in \mathbb{N}} (I + k\nu)$. Then, $\int_{\mathbb{R}^+} \frac{1}{y} |G(y)| dy \ge \varepsilon \int_{\mathbb{R}^+ \cap V_{\varepsilon}} \frac{1}{y} dy \sim \sum_{k=1}^{\infty} \frac{\delta}{k\nu} = \infty$.

Now, *G* is not periodic. But, using the theory of *almost periodic functions* (H. Bohr), we show that the set $V_{\varepsilon} := \{y : |G(y)| \ge \varepsilon\}$ is **relatively dense** in \mathbb{R} , i.e. it intersects every interval of size ν (for some $\nu > 0$), and such an intersection has measure $\ge \delta$ (for some $\delta > 0$).

Almost periodic functions

Example. $f(x) = \sin(2\pi x) + \sin(2\sqrt{2}\pi x)$ is not periodic. However, $\forall \varepsilon > 0 \exists \infty \text{ many } \tau \text{ s.t. } x \in \mathbb{R} |f(x + \tau) - f(x)| < \varepsilon.$

Given f, an ε -period is a number τ such that $x \in \mathbb{R}$ $|f(x + \tau) - f(x)| < \varepsilon$. $\mathcal{T}_{f,\varepsilon} := \{\tau : \tau \text{ is an } \varepsilon - \text{period}\}.$

Def. A continuous function f is almost periodic if for every $\varepsilon > 0$, the set $\mathcal{T}_{f,\varepsilon}$ is relatively dense, i.e. it intersects every interval of size ν (for some $\nu > 0$). This definition extends to $F : \mathbb{R}^n \to \mathbb{R}$.

Lemma. If $F : \mathbb{R}^n \to \mathbb{R}$ is almost periodic and $G(y) = F(y, y^2, ..., y^n)$, then $\exists \varepsilon > 0$ s.t. the set $V_{\varepsilon} := \{y : |G(y)| \ge \varepsilon\}$ intersects every interval of size ν (for some $\nu > 0$), and such an intersection has measure $\ge \delta$ (for some $\delta > 0$).

Recall: we have $G(y) = \sum_{j \in J} f_j e^{ip_j(y)}$, which is not almost periodic, and we want to prove that $\int_{V_{\varepsilon}} \frac{1}{y} dy = \infty$.

Apply the above lemma to $F(x) = \sum_{j \in J} f_j e^{iL_j(x)}$, where $L_j(x_1, \ldots, x_n)$ is the linear form such that $p_j(y) = L_j(y, y^2, \ldots, y^n)$. \Box