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An application of o-minimality to an oscillating context
o-minimal context: globally subanalytic sets and functions (i.e. def. in Ran)
Proviso. For the rest of the talk, subanalytic means “globally subanalytic”.
Def. For X C R™ subanalytic, let S (X) := {f : X — R subanalytic}
Puiseux-Lojasiewicz. Let f (y) € S(R). Then 3¢ > 0s.t. Vy > ¢
fly)=ay'H (y—%), where d € N,r € Q,ac R and H(Y) e R{Y}".

Subanalytic Preparation Theorem (Lion - Rolin). Let f (X,y) € S (R" x R).
Then there is a subanalytic cell decomposition of R™? such that on every cell
of the form {(X,y): x € X, y > c(x) > 1}
f(x,y)=a(X)y"U(x,y), where

reQ,ae8(X)and U y)=H (y—i) ,with d € Nand H € S(X){Y}".
General philosophy: presentation of f which is as simple as possible wrto a
chosen variable y (possibly at the price of complicating the situation in X).
e Monomialization respecting y (resolution of singularities):

setting y; = yU (?,y)%, we have fi (X,y1) = a(X) y1.
e Useful to handle logarithms of subanalytic functions:

log (f) = rlogy + log (a (X)) + log (U (X, y)).

. and van den Dries said: “now go and integrate!”
They did, and they saw that it was good. And so our story begins.



Motivation and background
Oscillatory integrals of the 1 kind. x € R, ¥y = (y1,...,yn) € R"

I(x)= / e>¢ 0y (¥)dy, where:
Rn

e the phase ¢ is analytic, 0 € R" is an isolated singular point of ¢;
e the amplitude v is C*° with support a compact nbd of 0.

These objects are studied in optical physics, acoustics and number theory.

AIM. To study the behaviour of Z (x) when x — oo.

n=1  ZI(x)~eOY  a@)x "D 2 (d) €R, N(p) € N fixed.
n>1 reduce to the case n = 1 by monomializing the phase (res. of sing.).

Example. n=2, ZI(x)=[f eixyiaygzp(yl,yz)dyldyz
4’3(}’17}/2)*)(\/175/2):(}’1,Yf}/2b)a P=1od ' Jacd?
I(x)= (f Y2 (4, Yz)de) dY:  (Fubini)

Monomializing the phase, using Fubini and the case n = 1, one proves:

T(x) ~ O3S gk (1) 57 (log )"

q k=0



Oscillatory integrals in several variables

Oscillatory integrals of the 2" kind.
X=(xt,-..,xm) ER™, ¥y =(y1,...,yn) ER"

I(x) = /R ey (x,7) dy

(the parameters X and the integration variables y are “intertwined” in the
expressions for ¢ and ).

Examples. Fourier transforms 1) (X) = / e~ XYy (y) dy.
Rn

Fourier Integral Operator T4 (X) = / e?™1*%Y) 5 (%,5) 4 (¥) dy (sol. of PDEs)
]Rn
AIM. Understand the nature of Z (X) (depending on the nature of ¢ and ).

Tool needed.
Monomialize the phase while keeping track of the different nature of the
variables X and y.

Natural framework and natural tool:
Framework: o, subanalytic.
Tool: the Subanalytic Preparation Theorem.



Our framework: parametric integrals and subanalytic functions
Def. For X CR™ and f : X x R” = R, define, ¥x € X s.t. f(x,-) € L' (R"),

the  parametric integral ~ Ir (X) = [on f (

Question. For X C R™ subanalytic and f € S (X x R") s.t. Vx € X
f(x,-) € L* (R™), what is the nature of Z¢?

(Comte - Lion - Rolin). f € §(X xR") = Zr € C(X),
where C (X) := R-algebra generated by {g,logh: g,hec S(X), h> 0}

(“constructible” or “log-subanalytic” functions).

(Cluckers - D. Miller). f € C(X xR") = Zr € C(X).

AIM. Study oscillatory integrals
Z(R) = [pa €95y (%,y) dy, with p, € S (R™")

Question. D (X) := C-algebra generated by C (X) and {ei*"(y) D pE S(X)}.

feD(X xR") =T € D(X)



Oscillating and subanalytic functions

The answer is NO: 3f € D (R x R) s.t. Zr € D (R).

Example 1. Consider f (x) = e and its Fourier transform f (y).

A computation shows that  (y) = 22,2 € S (R) N L' (R).

We can recover f by inverse Fourier transform of :

f(x)= /ezm‘y - ¥ (y)dy, which is a parametric integral of a function in D (R).
Claim. e ¥l ¢ D(R). There are no flat functions in D (R).

Example 2. Si(x) = / snr; Lot = /Xlolelt( ) (e — e ") dt, which is a
R

parametric integral of a function in D (R).

Claim. Si(x) ¢ D (R).
Si(x) has a divergent asymptotic expansion in the scale {:inx X ke Z}.

2k+17 2k

The key argument to prove the claims is the following

Remark. Let J be a finite set and Vj € J, let ¢; # 0, p; (x) be distinct
ip; xl/d

polynomials with p; (0) = 0. Then 3°,_, cjepf( ) 4 0 as x = +oo.

The remark can be proved using the theory of almost periodic functions.



One-dimensional transcendentals

Def. Consider the family of 1-dimensional integrals of the form:
Yhe(X) = [ h(x, t)(log|t])’e"dt, ((EN, heS(X xR), h(x,-) € L*(R))

and 8( ) := the D (X)-module generated by {yh,c},,

MAIN THEOREM. f € & (X xR") = Zr € £(X). More precisely,

let Int (f, X) :={x € X: f(x,-) € L' (R")} (integrability locus).

Then there exists F € £(X) s.t. F(X) = / f(x,y)dy Vxe€lInt(f,X)
and there exists g € £(X) s.t. Int(f,X)={xe€ X: g(x)=0}.

Corollary. £ (X) is a C-algebra.

Proof. By Fubini,

Ve (%) - w00 (R)= [z h (%, 8) - B (%, ') - (log |t])" - (log |¢'])" /(=¥ )ded?,
which is the parametric integral of a function in D (X X Rz), and hence, by the
Main Theorem, belongs to £ (X). O

Corollary. £ =J& (X) is the smallest collection of C-algebras containing
SU{e¥: ¢ € S} and stable under parametric integration.



Generators of £ and the proof of the Main Thm
Rem. An element of £ (X x R") can be written as a finite sum of generators:
T (Yv y) = 1/) (Y7 Y) : ei(p(?,?) e (Y7 }7)7 where
WEC(X xR, pe8(X xR and v(%,7) = /h(?,y, £)(log |¢]) e dt.
R
Proof of the Main Theorem.
oIf T€D(X xR") (i.e. ¥ =1)and T is integrable, then by o-minimality
(cell decomposition, piecewise monotonicity, preparation) we can easily reduce
to the case ¢ (x,y) = y1 and show that [ Tdy € & (X).
elf TeE(X xR and y —> W)(Y,Yﬂ/ ‘h(?,?, t) (log |t])‘| dt € L* (R),
R
then by Fubini-Tonelli we can reduce to the previous step.

e Core of the proof: if n=1 and f =) T; then we may suppose that each T;
is either as in the previous step or non-integrable. In the latter case, the ~; in
T; does not depend on y (“naive” in y).

This uses the Subanalytic Preparation Theorem and other o-minimal tools.

e If each T; is non-integrable and naive in y, then > T; is non-integrable.
This uses the theory of almost periodic functions.



Finite sums of exponentials of polynomials

1
i (vd
Claim. Let J be a finite set and Vj € J let Sj (y) = ¢jy7 (log y)%¥ e (y ),
where ¢; € R*, rj € Q, d,s; € N and p; are distinct polynomials with p; (0) = 0.

Suppose that Vj € J, S; ¢ L' (R*). Then YiciSi ¢ L* (RT).
1

i (vd
Proof. Let G (y) =3 ;c, cjepJ (y ) Note that yi (logy)% >y~ for y > 0.

Then, [ [S,0,50)[dv = [ 2160l

Since G # 0, by continuity 3¢, > 0 s.t. |G (y)| > £ on some interval [ of
length > 6.

Idea: If G were periodic, of period v, then |G| > ¢ on Ve := |, o (I + kv).

Then,/ l\G(y)|dy25/ 1dy ~ S _ 0.
r+Y rRtAv. Y kz:;ky

Now, G is not periodic. But, using the theory of almost periodic functions (H.
Bohr), we show that the set V. :={y : |G (y)| > ¢} is relatively dense in R,
i.e. it intersects every interval of size v (for some v > 0), and such an
intersection has measure > § (for some § > 0). [



Almost periodic functions

Example. f (x) = sin (2mx) + sin (2v/27x) is not periodic. However,
Ve>03ocomany 7st. xR |[f(x+7)—f(x)] <e.

Given f, an e-period is a number 7 such that x e R |[f (x +7) — f (x)| < e.
Tre :={7: 7is an € — period}.

Def. A continuous function f is almost periodic if for every £ > 0, the set Tr .
is relatively dense, i.e. it intersects every interval of size v (for some v > 0).
This definition extends to F : R” — R.

Lemma. If F: R” — R is almost periodic and G (y) = F (y,y?,...,y"), then
Je > 0 s.t. theset V. :={y: |G (y)| > ¢} intersects every interval of size v
(for some v > 0), and such an intersection has measure > § (for some ¢ > 0).

Recall: we have G (y) =3, f;e'Pi¥) which is not almost periodic, and we

want to prove that %dy = o0.
J Ve

Apply the above lemma to F (x) =3, felti™) where Lj (x1,...,xn) is the
linear form such that p; (y) = L; (y,yz7 e ,y"). O



