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An application of o-minimality to an oscillating context
o-minimal context: globally subanalytic sets and functions (i.e. def. in Ran)
Proviso. For the rest of the talk, subanalytic means “globally subanalytic”.
Def. For X ⊆ Rm subanalytic, let S (X ) := {f : X → R subanalytic}

Puiseux-Lojasiewicz. Let f (y) ∈ S (R). Then ∃c > 0 s.t. ∀y > c
f (y) = ay rH

(
y−

1
d

)
, where d ∈ N, r ∈ Q, a ∈ R and H (Y ) ∈ R {Y }∗.

Subanalytic Preparation Theorem (Lion - Rolin). Let f (x , y) ∈ S (Rn × R).
Then there is a subanalytic cell decomposition of Rn+1 such that on every cell
of the form {(x , y) : x ∈ X , y > c (x) > 1}

f (x , y) = a (x) y rU (x , y) , where

r ∈ Q, a ∈ S (X ) and U (x , y) = H
(
y−

1
d

)
, with d ∈ N and H ∈ S (X ) {Y }∗.

General philosophy: presentation of f which is as simple as possible wrto a
chosen variable y (possibly at the price of complicating the situation in x).

• Monomialization respecting y (resolution of singularities):
setting y1 = yU (x , y)

1
r , we have f1 (x , y1) = a (x) y r

1 .
• Useful to handle logarithms of subanalytic functions:

log (f ) = r log y + log (a (x)) + log (U (x , y)).

... and van den Dries said: “now go and integrate!”
They did, and they saw that it was good. And so our story begins.



Motivation and background
Oscillatory integrals of the 1st kind. x ∈ R, y = (y1, . . . , yn) ∈ Rn

I (x) =

ˆ
Rn

e ixϕ(y)ψ (y) dy , where:

• the phase ϕ is analytic, 0 ∈ Rn is an isolated singular point of ϕ;
• the amplitude ψ is C∞ with support a compact nbd of 0.

These objects are studied in optical physics, acoustics and number theory.

AIM. To study the behaviour of I (x) when x →∞.

n = 1 I (x) ∼ e ixϕ(0)∑
j∈N aj (ψ) x−

j
N(ϕ) aj (ψ) ∈ R, N (ϕ) ∈ N fixed.

n > 1 reduce to the case n = 1 by monomializing the phase (res. of sing.).

Example. n = 2, I (x) =
˜

e ixya
1 yb

2 ψ (y1, y2) dy1dy2

Φ : (y1, y2) 7→ (Y1,Y2) =
(
y1, ya

1 yb
2
)
, ψ̃ = ψ ◦ Φ−1 · JacΦ−1

I (x) =
´ (´

e ixY2 ψ̃ (Y1,Y2) dY2

)
dY1 (Fubini)

Monomializing the phase, using Fubini and the case n = 1, one proves:

I (x) ∼ e ixϕ(0)
∑

q

n−1∑
k=0

aq,k (ψ) xq (log x)k .



Oscillatory integrals in several variables

Oscillatory integrals of the 2nd kind.
x = (x1, . . . , xm) ∈ Rm, y = (y1, . . . , yn) ∈ Rn

I (x) =

ˆ
Rn

e iϕ(x,y)ψ (x , y) dy

(the parameters x and the integration variables y are “intertwined” in the
expressions for ϕ and ψ).

Examples. Fourier transforms ψ̂ (x) =

ˆ
Rn
e−2πix·yψ (y) dy .

Fourier Integral Operator Tψ (x) =

ˆ
Rn
e2πiΦ(x,y)a (x , y) ψ̂ (y) dy (sol. of PDEs)

AIM. Understand the nature of I (x) (depending on the nature of ϕ and ψ).

Tool needed.
Monomialize the phase while keeping track of the different nature of the
variables x and y .

Natural framework and natural tool:
Framework: ϕ,ψ subanalytic.
Tool: the Subanalytic Preparation Theorem.



Our framework: parametric integrals and subanalytic functions

Def. For X ⊆ Rm and f : X × Rn → R, define, ∀x ∈ X s.t. f (x , ·) ∈ L1 (Rn),

the parametric integral If (x) =
´
Rn f (x , y) dy .

Question. For X ⊆ Rm subanalytic and f ∈ S (X × Rn) s.t. ∀x ∈ X
f (x , ·) ∈ L1 (Rn), what is the nature of If ?

(Comte - Lion - Rolin). f ∈ S (X × Rn)⇒ If ∈ C (X ),

where C (X ) := R-algebra generated by {g , log h : g , h ∈ S (X ) , h > 0}
(“constructible” or “log-subanalytic” functions).

(Cluckers - D. Miller). f ∈ C (X × Rn)⇒ If ∈ C (X ) .

AIM. Study oscillatory integrals
I (x) =

´
Rn e iϕ(x,y)ψ (x , y) dy , with ϕ,ψ ∈ S

(
Rm+n)

Question. D (X ) := C-algebra generated by C (X ) and
{
e iϕ(x) : ϕ ∈ S (X )

}
.

f ∈ D (X × Rn)
?⇒ If ∈ D (X )



Oscillating and subanalytic functions

The answer is NO: ∃f ∈ D (R× R) s.t. If 6∈ D (R).

Example 1. Consider f (x) = e−|x| and its Fourier transform f̂ (y).
A computation shows that f̂ (y) = 2

1+4π2y2 ∈ S (R) ∩ L1 (R).

We can recover f by inverse Fourier transform of f̂ :

f (x) =

ˆ
e2πixy · f̂ (y) dy , which is a parametric integral of a function in D (R).

Claim. e−|x| /∈ D (R). There are no flat functions in D (R).

Example 2. Si (x) =

ˆ x

0

sin t
t

dt =

ˆ
R

χ
[0,x]

(t)

2it
(
e it − e−it) dt, which is a

parametric integral of a function in D (R).
Claim. Si (x) /∈ D (R).
Si (x) has a divergent asymptotic expansion in the scale

{
sin x

x2k+1 ,
cos x
x2k : k ∈ Z

}
.

The key argument to prove the claims is the following
Remark. Let J be a finite set and ∀j ∈ J, let cj 6= 0, pj (x) be distinct

polynomials with pj (0) = 0. Then
∑

j∈J cje
ipj

(
x1/d

)
6→ 0 as x → +∞.

The remark can be proved using the theory of almost periodic functions.



One-dimensional transcendentals

Def. Consider the family of 1-dimensional integrals of the form:
γh,`(x) =

´
R h(x , t)(log |t|)`e itdt,

(
` ∈ N, h ∈ S (X × R) , h (x , ·) ∈ L1 (R)

)
and E (X ) := the D (X )-module generated by {γh,`}h,`

MAIN THEOREM. f ∈ E (X × Rn)⇒ If ∈ E (X ) . More precisely,

let Int (f ,X ) :=
{
x ∈ X : f (x , ·) ∈ L1 (Rn)

}
(integrability locus).

Then there exists F ∈ E (X ) s.t. F (x) =

ˆ
Rn
f (x , y) dy ∀x ∈ Int (f ,X )

and there exists g ∈ E (X ) s.t. Int (f ,X ) = {x ∈ X : g (x) = 0}.

Corollary. E (X ) is a C-algebra.
Proof. By Fubini,
γh,` (x) · γh′,`′ (x)=

˜
R2 h (x , t) · h′ (x , t′) · (log |t|)` · (log |t′|)`

′
e i(t+t′)dtdt′,

which is the parametric integral of a function in D
(
X × R2), and hence, by the

Main Theorem, belongs to E (X ).

Corollary. E =
⋃
E (X ) is the smallest collection of C-algebras containing

S ∪
{
e iϕ : ϕ ∈ S

}
and stable under parametric integration.



Generators of E and the proof of the Main Thm

Rem. An element of E (X × Rn) can be written as a finite sum of generators:

T (x , y) = ψ (x , y) · e iϕ(x,y) · γ (x , y) , where

ψ ∈ C (X × Rn) , ϕ ∈ S (X × Rn) and γ (x , y) =

ˆ
R
h(x , y , t)(log |t|)`e itdt.

Proof of the Main Theorem.
• If T ∈ D (X × Rn) (i.e. γ ≡ 1) and T is integrable, then by o-minimality
(cell decomposition, piecewise monotonicity, preparation) we can easily reduce
to the case ϕ (x , y) = y1 and show that

´
Tdy ∈ E (X ).

• If T ∈ E (X × Rn) and y 7−→ |ψ (x , y)|
ˆ
R

∣∣∣h (x , y , t) (log |t|)`
∣∣∣ dt ∈ L1 (Rn),

then by Fubini-Tonelli we can reduce to the previous step.

• Core of the proof: if n = 1 and f =
∑

Tj then we may suppose that each Tj

is either as in the previous step or non-integrable. In the latter case, the γj in
Tj does not depend on y (“naive” in y).
This uses the Subanalytic Preparation Theorem and other o-minimal tools.

• If each Tj is non-integrable and naive in y , then
∑

Tj is non-integrable.
This uses the theory of almost periodic functions.



Finite sums of exponentials of polynomials

Claim. Let J be a finite set and ∀j ∈ J let Sj (y) = cjy rj (log y)sj e
ipj

(
y

1
d
)
,

where cj ∈ R∗, rj ∈ Q, d,sj ∈ N and pj are distinct polynomials with pj (0) = 0.

Suppose that ∀j ∈ J, Sj /∈ L1 (R+
)
. Then

∑
j∈J Sj /∈ L1 (R+

)
.

Proof. Let G (y) =
∑

j∈J cje
ipj

(
y

1
d
)
. Note that y rj (log y)sj > y−1 for y >> 0.

Then,
ˆ
R+

∣∣∣∑j∈J Sj (y)
∣∣∣ dy ≥ ˆ

R+

1
y |G (y)| dy .

Since G 6≡ 0, by continuity ∃ε, δ > 0 s.t. |G (y)| > ε on some interval I of
length ≥ δ.

Idea: If G were periodic, of period ν, then |G | ≥ ε on Vε :=
⋃

k∈N (I + kν).

Then,
ˆ
R+

1
y |G (y)| dy ≥ ε

ˆ
R+∩Vε

1
y dy ∼

∞∑
k=1

δ
kν =∞.

Now, G is not periodic. But, using the theory of almost periodic functions (H.
Bohr), we show that the set Vε := {y : |G (y)| ≥ ε} is relatively dense in R,
i.e. it intersects every interval of size ν (for some ν > 0), and such an
intersection has measure ≥ δ (for some δ > 0).



Almost periodic functions

Example. f (x) = sin (2πx) + sin
(
2
√
2πx

)
is not periodic. However,

∀ε > 0 ∃ ∞ many τ s.t. x ∈ R |f (x + τ)− f (x)| < ε.

Given f , an ε-period is a number τ such that x ∈ R |f (x + τ)− f (x)| < ε.
Tf ,ε := {τ : τ is an ε− period}.

Def. A continuous function f is almost periodic if for every ε > 0, the set Tf ,ε
is relatively dense, i.e. it intersects every interval of size ν (for some ν > 0).
This definition extends to F : Rn → R.

Lemma. If F : Rn → R is almost periodic and G (y) = F
(
y , y2, . . . , yn), then

∃ε > 0 s.t. the set Vε := {y : |G (y)| ≥ ε} intersects every interval of size ν
(for some ν > 0), and such an intersection has measure ≥ δ (for some δ > 0).

Recall: we have G (y) =
∑

j∈J fje
ipj (y), which is not almost periodic, and we

want to prove that
ˆ

Vε

1
y dy =∞.

Apply the above lemma to F (x) =
∑

j∈J fje
iLj (x), where Lj (x1, . . . , xn) is the

linear form such that pj (y) = Lj
(
y , y2, . . . , yn).


