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A (closed convex) polyhedron



A (closed convex) polyhedron

...called rhombicosidodecahedron.



A spectrahedron



Spectrahedra

A pencil (of size d in n variables) is a monic linear symmetric real
matrix polynomial

A

(x)

= Id + A1x1 + . . .Anxn

=

1 + a
(1)
11 x1 + · · ·+ a

(n)
11 xn a

(1)
12 x1 + · · ·+ a

(n)
12 xn . . .

a
(1)
21 x1 + · · ·+ a

(n)
21 xn 1 + a

(1)
22 x1 + · · ·+ a

(n)
22 xn . . .

...
...

. . .


∈ R[x1, . . . , xn]d×d = R[x]d×d

where Ai = (a
(i)
k` )1≤k,`≤d ∈ SRd×d .

SA(1) := {x ∈ Rn | A(x) � 0} is the spectrahedron defined by A.

The SA(1) with A a pencil are exactly the polyhedra
with 0 in their interior.
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∈ R[x1, . . . , xn]d×d = R[x]d×d

where Ai = (a
(i)
k` )1≤k,`≤d ∈ SRd×d .

SA(1) := {x ∈ Rn | A(x) � 0} is the spectrahedron defined by A.

The SA(1) with A a diagonal pencil are exactly the polyhedra
with 0 in their interior.



The cube

Cn :=



1 + x1
1− x1

1 + x2
1− x2

. . .
1 + xn

1− xn


defines the cube SCn(1) = [−1, 1]n.



The disk

A :=

(
1 + x1 x2
x2 1− x1

)
and B :=

 1 x1 x2
x1 1 0
x2 0 1


define both the disk

SA(1) = {x ∈ R2 | ‖x‖ ≤ 1} = SB(1)

since detA = 1− x2
1 − x2

2 = detB .



What is this talk (not) about?

It is about detecting inclusion (containment) of two spectrahedra
whose interiors contain both 0 (or another known point).

Mainly, it is about detecting inclusion of a cube in a spectrahedron.

It is not about testing emptiness or low-dimensionality of
spectrahedra.
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Certifying inclusion of spectrahedra
Observation. Let A ∈ R[x]m×m and B ∈ R[x]d×d be pencils. If
there exist P ∈ Rd×d and Qi ∈ Rm×d such that

(∗) B = P∗P +
∑
i

Q∗i AQi ,

then SA(1) ⊆ SB(1).

The search for certificates (∗) can be done with semidefinite
programming and is therefore tractable.

Example. With A :=

(
1 + x1 x2
x2 1− x1

)
and B :=

 1 x1 x2
x1 1 0
x2 0 1


from above, we have

2B =

0 1
0 −1
1 0

A

(
0 0 1
1 −1 0

)
+

1 0
1 0
0 1

A

(
1 1 0
0 0 1

)
.
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Free spectrahedra
Consider again a pencil

A

(X )

= Id + A1x1 + . . .Anxn

=

1 + a
(1)
11 x1 + · · ·+ a

(n)
11 xn a

(1)
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(n)
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...
...

. . .


∈ R[x]d×d

where Ai = (a
(i)
k` )1≤k,`≤d ∈ SRd×d .

SA(m) := {X ∈ (SRm×m)n | A(X ) � 0}

SA :=
⋃

m∈N SA(m) is the free spectrahedron defined by A.

Condition (∗) certifies not only SA(1) ⊆ SB(1) but even SA ⊆ SB .



Free spectrahedra

For X ∈ (SRm×m)n

A(X ) = Id ⊗ Im + A1 ⊗ X1 + . . .An ⊗ Xn

=
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The free cube

Cn =



1 + x1
1− x1

1 + x2
1− x2

. . .
1 + xn

1− xn


defines the free cube

Cn := SCn =
⋃
m∈N

{
X ∈ (SRm×m)n | ‖Xi‖ ≤ 1

}
.



The free disk

With A :=

(
1 + x1 x2
x2 1− x1

)
and B :=

 1 x1 x2
x1 1 0
x2 0 1

 from

above,

SB =
⋃
m∈N

{
X ∈ (SRm×m)2 | X 2

1 + X 2
2 � Im

}
is the free disk but SA 6= SB since((1

2 0
0 0

)
,

(
0 3

4
3
4 0

))
∈ SB \ SA.

Although we have SA(1) = SB(1), we have SB 6⊆ SA.



Certifying inclusion of free spectrahedra
Theorem (Helton, Klep, McCullough 2012).
Let A ∈ R[x]m×m and B ∈ R[x]d×d be pencils.
Then there exist P ∈ Rd×d and Qi ∈ Rm×d such that

(∗) B = P∗P +
∑
i

Q∗i AQi ,

if and only if SA ⊆ SB .

The proof uses Arveson’s extension theorem and Stinespring’s
dilation theorem.
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Helton, Klep, McCullough: The matricial relaxation of a linear matrix
inequality, Math. Program. 138 (2013), no. 1-2, Ser. A, 401–445
(was first but appeared later)
http://arxiv.org/abs/1003.0908.pdf

Helton, Klep, McCullough: The convex Positivstellensatz in a free
algebra, Adv. Math. 231 (2012), no. 1, 516–534
http://arxiv.org/abs/1102.4859.pdf

http://arxiv.org/abs/1003.0908.pdf
http://arxiv.org/abs/1102.4859.pdf
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Kellner, Theobald, Trabandt: Containment problems for polytopes
and spectrahedra, SIAM J. Optim. 23 (2013), no. 2, 1000–1020
http://arxiv.org/abs/1204.4313

Kellner, Theobald, Trabandt: A Semidefinite Hierarchy for Contain-
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http://arxiv.org/abs/1204.4313
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Inclusion of free spectrahedra

Theorem. Let A ∈ R[x]m×m and B ∈ R[x]d×d be pencils with
SA = −SA and SA(1) ⊆ SB(1). Then SA ⊆ dSB .

Example. With A :=

(
1 + x1 x2
x2 1− x1

)
and B :=

 1 x1 x2
x1 1 0
x2 0 1


from above,

SB ⊆ SA ⊆ 3SB .
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The matrix cube problem
Theorem (Ben Tal, Nemirovski 2002). For d ∈ N, define
ϑ(d) ∈ [1,∞) by

1
ϑ(d)

= min
a∈Rd

|a1|+···+|ad |=d

∫
Sd−1

∣∣∣∣∣
d∑

i=1

aiξ
2
i

∣∣∣∣∣ dξ.
Then ϑ(1) = 1, ϑ(2) = π

2 ,
ϑ(d) ≤ π

2

√
d ≤
√
3d (≤

√
d2 = d for d ≥ 3) and if

A = I + A1x1 + · · ·+ Anxn is a pencil with real matrices
Ai of rank at most d such that [−1, 1]n ⊆ SA(1), then

Cn ⊆ ϑ(d)SA.
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a
a

Ben-Tal, Nemirovski: On tractable approximations of uncertain linear
matrix inequalities affected by interval uncertainty, SIAM J. Optim.
12 (2002), no. 3, 811–833



The matrix cube problem
Theorem (Ben Tal, Nemirovski 2002). For d ∈ N, define
ϑ(d) ∈ [1,∞) by

1
ϑ(d)

= min
a∈Rd

|a1|+···+|ad |=d

∫
Sd−1

∣∣∣∣∣
d∑

i=1

aiξ
2
i

∣∣∣∣∣ dξ.
Then ϑ(1) = 1, ϑ(2) = π

2 ,
ϑ(d) ≤ π

2

√
d ≤
√
3d (≤

√
d2 = d for d ≥ 3) and if

A = I + A1x1 + · · ·+ Anxn is a pencil with real matrices
Ai of rank at most d such that [−1, 1]n ⊆ SA(1), then

Cn ⊆ ϑ(d)SA.

Our contributions to this theorem:
I The theorem follows naturally from a new dilation theorem.
I Analytic expression for ϑ(d) for even d and

implicit characterization of ϑ(d) for odd d .
I The scaling factor ϑ(d) is sharp.



Dilation theorem
We give here only a version of our dilation theorem from which the
preceding theorem can be deduced in the case where each Ai is of
size d (instead of rank at most d):

Theorem. Let d ∈ N. There is a Hilbert space H, an isometry
V : Rd → H and a set T of commuting self-adjoint contractions
on H such that for each X ∈ Cn(d) there exists a T ∈ T with
X = ϑ(d)V ∗TV .
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on H such that for each X ∈ Cn(d) there exists a T ∈ T with
X = ϑ(d)V ∗TV .

In the Ben-Tal & Nemirovski theorem, let A be of size d .

It was
already known that to show Cn ⊆ ϑ(d)SA it suffices to prove
Cn(d) ⊆ ϑ(d)SA(d). With the above theorem, this reduces to
(V ∗T1V , . . . ,V

∗TnV ) ∈ SA(d) for all T1, . . . ,Tn ∈ T . Assume
H is finite-dimensional (which it is not but this can be repaired with
the spectral theorem), then WLOG H = Rm for some m ∈ N and,
since the Ti are commuting self-adjoints, WLOG Ti ∈ Rm×m diago-
nal. Since the Ti are contractions and [−1, 1]n ⊆ SA(1), A(T ) � 0.
Hence A(V ∗TV ) = V ∗A(T )V � 0.
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O(d) f (U) dU, T consists of all operators

TD : H → H, f 7→ (U 7→ UD(U)U∗f (U)) where D : O(d)→ Rd×d

is any measurable function taking diagonal contractive values.

Note
V ∗TDV =

∫
O(d) UD(U)U∗dU. Since T is convex, consider an

extreme point X of the compact convex set Cn(d).
Take D : O(d)→ Rd×d , U 7→

∑d
i=1 sgn(e∗i U

∗(λ+µX )Uei )eie
∗
i for

certain carefully chosen λ, µ ∈ R. Then X = ϑ(d)V ∗TDV .
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Better bounds for ϑ(d)

We considerably improve the upper bound on ϑ(d) given by Ben
Tal and Nemirovski and prove also a lower bound.

Theorem. Let d ∈ N. If d is even, then
√
π

2

√
d + 1 ≤ ϑ(d) ≤

√
π

2 ·
d√
d−1

.

If d 6= 1 is odd, then

4

√(
1− 1

d+1

)d+1 (
1 + 1

d−1

)d−1
·
√
π

2

√
d + 3

2 ≤ ϑ(d) ≤
√
π

2 ·
d+2√
d+ 5

2

.

We have lim
d→∞

ϑ(d)√
d

=

√
π

2
.



Computing ϑ(d)
Reminder. For a > 0: Γ(x) =

∫ x
0 ta−1e−tdt (“gamma function”)

For a, b > 0 and 0 ≤ x ≤ 1:
B(a, b) =

∫ 1
0 ta−1(1− t)b−1dt (“beta function”)

Bx(a, b) =
∫ x
0 ta−1(1− t)b−1dt (“incomplete beta function”)

Ix(a, b) = Bx (a,b)
B(a,b) (“regularized incomplete beta function”)

Theorem. Let d ∈ N. If d is even, then ϑ(d) =
√
π

Γ(1+ d
4 )

Γ( 1
2 + d

4 )
.

Suppose d ≥ 3 is odd. Then there is a unique p ∈ [0, 1] satisfying
Ip
(
d+1

4 , d+3
4

)
= I1−p

(
d−1

4 , d+5
4

)
. For this p, we have p ∈ [1

2 ,
d+1
2d ],

ϑ−(d) ≤ ϑ(d) =
Γ
(
d+3

4

)
Γ
(
d+5

4

)
p

d−1
4 (1− p)

d+1
4 Γ

(
d
2 + 1

) ≤ min{ϑ+(d), ϑ++(d)}

where ϑ−(d), ϑ+(d) and ϑ++(d) are given by

ϑ−(d) = 4
√

d2d

(d+1)d+1(d−1)d−1 ϑ++(d),
1

ϑ+(d) = d−1
d I d+1

2d

(
d+1

4 , d+3
4

)
+ d+1

d I d−1
2d

(
d−1

4 , d+5
4

)
− 1 and

ϑ++(d) =
√

π
2

Γ( d+3
2 )

Γ( d
2 +1)

.
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d ϑ−(d) ϑ(d) ϑ+(d) ϑ++(d)

1 − 1 − −
2 − 1.5708 − −
3 1.73205 1.73482 1.77064 1.88562
4 − 2 − −
5 2.15166 2.1527 2.17266 2.26274
6 − 2.35619 − −
7 2.49496 2.49548 2.50851 2.58599
8 − 2.66667 − −
9 2.79445 2.79475 2.80409 2.87332
10 − 2.94524 − −
11 3.064 3.06419 3.07131 3.13453
12 − 3.2 − −
13 3.31129 3.31142 3.31707 3.37565
14 − 3.43612 − −
15 3.54114 3.54123 3.54585 3.6007
16 − 3.65714 − −
17 3.75681 3.75688 3.76076 3.8125
18 − 3.86563 − −



Computing ϑ(d)
Let d ∈ N with d ≥ 2. We have simplified the formula of Ben Tal
and Nemirovski

1
ϑ(d)

= min
a∈Rd

|a1|+···+|ad |=d

∫
Sd−1

∣∣∣∣∣
d∑

i=1

aiξ
2
i

∣∣∣∣∣ dξ

to
1

ϑ(d)
= min

s,t∈N
s+t=d

min
a,b∈R≥0
as+bt=d

∫
Sd−1

∣∣∣∣∣a
s∑

i=1

ξ2i − b
d∑

i=s+1

ξ2i

∣∣∣∣∣ dξ.
We manage to compute the integral and reparameterize it to get

1
ϑ(d)

= min
s,t∈N
s+t=d

min
p∈[0,1]

(
2(1− p)sI1−p

(
t
2 , 1 + s

2

)
+ 2ptIp

(
s
2 , 1 + t

2

)
(1− p)s + pt

− 1

)

and we prove that the inner minimum is assumed at the unique
ps,t ∈ (0, 1) satisfying

Ips,t

( s
2
, 1 +

t

2

)
= I1−ps,t

( t
2
, 1 +

s

2

)
.
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Quiz
Let s, t ∈ N such that s ≥ t and set d := s + t.

Suppose you toss a biased coin d times with
probability for heads s

d and probability for tails t
d .

What is more likely –
that you observe at least s heads or at least t tails?

The expected number of heads is s but that seems only loosely
related.

The median number of heads could perhaps help. But it can be
shown to be s also. That does not help!

A theorem of Simmons from 1895 says:
s heads or more is as least as probable than t tails or more.

A paper by Perrin and Redside from 2007 says something even
more subtle: The difference grows when s /∈ {0, d} grows.
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Computing ϑ(d)

Let d ∈ N with d ≥ 2. Breaking the symmetry in s and t,

1
ϑ(d)

= min
s,t∈N
s+t=d
s ≥ t

min
p∈[0,1]
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(
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2 , 1 + s
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)
+ 2ptIp
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)
(1− p)s + pt
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where the inner minimum is assumed at ps,t ∈ (0, 1) defined by
Ips,t

(
s
2 , 1 + t

2

)
= I1−ps,t

(
t
2 , 1 + s

2

)
.The outer minimum is assumed

at (s, t) =
(
d
2 ,

d
2

)
for even d and at (s, t) =

(
d+1

2 , d−1
2

)
for odd d

but this seems extremely hard to prove.

For example, one ingredient in the proof is that ps,t ≤ s
d (assuming

s, t ∈ N, s + t = d and s ≥ t) which is equivalent to

I s
d

( s
2
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≥ I t
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Simmons’ theorem for half integers

Let s, t ∈ N such that s ≥ t and set d := s + t.

It turns out that for even s and t, the inequality

I s
d

( s
2
, 1 +

t

2

)
≥ I t

d

( t
2
, 1 +

s

2

)
can be interpreted exactly as the statement of Simmons’ theorem
for
(
d
2 ,

s
2 ,

t
2

)
instead of (d , s, t).

But what if s or t is odd?

The only proof of Simmons’ theorem that somewhat showed
potential for generalization to half integers was the one of Perrin
and Redside. With a lot of effort we could adapt their idea to find
a proof for the half integer case.
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Simmons’ theorem for reals
Conjecture. For all s, t ∈ R such that s ≥ t > 0, setting
d := s + t, we have

I s
d

(s, 1 + t) ≥ I t
d

(t, 1 + s) .

It turns out that the above inequality is equivalent to

2I s
d

(s, t) + (s − t)
ss−1tt−1

ddB(s, t)
≥ 1.

With a completely different method, we show the following
weakening of Simmons for reals:

Theorem. For all s, t ∈ R such that s ≥ t ≥ 1 and s + t ≥ 3,
setting d := s + t, we have

2I s
d

(s, t) + 2(s − t)
ss−1tt−1

ddB(s, t)
≥ 1.
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The median of the Beta distribution
Reminder. For s, t ∈ R>0, the beta distribution Beta(s, t) is the
probability distribution on [0, 1] with density x 7→ xs−1x t−1

B(s,t) and
cumulative density x 7→ Ix(s, t).

From the weakening of Simmons’ for reals, we deduce:

Theorem. For s, t ∈ R with s ≥ t ≥ 1 and s + t ≥ 3, setting
d := s + t, the median of Beta(s, t) lies between s

d and s
d + s−t

d2 .

The previously known upper bound was only s−1
s−t−2 for s ≥ t > 1.

If Simmons for reals holds, then we can improve the upper bound
further to s

d + s−t
2d2 for s ≥ t ≥ 1.

s t s
d median s

d + s−t
2d2

s
d + s−t

d2
s−1

s−t−2
2.5 1 0.714286 0.757858 0.77551 0.836735 1
3 1 0.75 0.793701 0.8125 0.875 1
3 2 0.6 0.614272 0.62 0.64 0.666667
4 2 0.666667 0.68619 0.694444 0.722222 0.75



The median of the Beta distribution
Reminder. For s, t ∈ R>0, the beta distribution Beta(s, t) is the
probability distribution on [0, 1] with density x 7→ xs−1x t−1

B(s,t) and
cumulative density x 7→ Ix(s, t).

From the weakening of Simmons’ for reals, we deduce:

Theorem. For s, t ∈ R with s ≥ t ≥ 1 and s + t ≥ 3, setting
d := s + t, the median of Beta(s, t) lies between s

d and s
d + s−t

d2 .

The previously known upper bound was only s−1
s−t−2 for s ≥ t > 1.

If Simmons for reals holds, then we can improve the upper bound
further to s

d + s−t
2d2 for s ≥ t ≥ 1.

s t s
d median s

d + s−t
2d2

s
d + s−t

d2
s−1

s−t−2
2.5 1 0.714286 0.757858 0.77551 0.836735 1
3 1 0.75 0.793701 0.8125 0.875 1
3 2 0.6 0.614272 0.62 0.64 0.666667
4 2 0.666667 0.68619 0.694444 0.722222 0.75



The median of the Beta distribution
Reminder. For s, t ∈ R>0, the beta distribution Beta(s, t) is the
probability distribution on [0, 1] with density x 7→ xs−1x t−1

B(s,t) and
cumulative density x 7→ Ix(s, t).

From the weakening of Simmons’ for reals, we deduce:

Theorem. For s, t ∈ R with s ≥ t ≥ 1 and s + t ≥ 3, setting
d := s + t, the median of Beta(s, t) lies between s

d and s
d + s−t

d2 .

The previously known upper bound was only s−1
s−t−2 for s ≥ t > 1.

If Simmons for reals holds, then we can improve the upper bound
further to s

d + s−t
2d2 for s ≥ t ≥ 1.

s t s
d median s

d + s−t
2d2

s
d + s−t

d2
s−1

s−t−2
2.5 1 0.714286 0.757858 0.77551 0.836735 1
3 1 0.75 0.793701 0.8125 0.875 1
3 2 0.6 0.614272 0.62 0.64 0.666667
4 2 0.666667 0.68619 0.694444 0.722222 0.75



The median of the Beta distribution
Reminder. For s, t ∈ R>0, the beta distribution Beta(s, t) is the
probability distribution on [0, 1] with density x 7→ xs−1x t−1

B(s,t) and
cumulative density x 7→ Ix(s, t).

From the weakening of Simmons’ for reals, we deduce:

Theorem. For s, t ∈ R with s ≥ t ≥ 1 and s + t ≥ 3, setting
d := s + t, the median of Beta(s, t) lies between s

d and s
d + s−t

d2 .

The previously known upper bound was only s−1
s−t−2 for s ≥ t > 1.

If Simmons for reals holds, then we can improve the upper bound
further to s

d + s−t
2d2 for s ≥ t ≥ 1.

s t s
d median s

d + s−t
2d2

s
d + s−t

d2
s−1

s−t−2
2.5 1 0.714286 0.757858 0.77551 0.836735 1
3 1 0.75 0.793701 0.8125 0.875 1
3 2 0.6 0.614272 0.62 0.64 0.666667
4 2 0.666667 0.68619 0.694444 0.722222 0.75



The median of the Beta distribution
Reminder. For s, t ∈ R>0, the beta distribution Beta(s, t) is the
probability distribution on [0, 1] with density x 7→ xs−1x t−1

B(s,t) and
cumulative density x 7→ Ix(s, t).

From the weakening of Simmons’ for reals, we deduce:

Theorem. For s, t ∈ R with s ≥ t ≥ 1 and s + t ≥ 3, setting
d := s + t, the median of Beta(s, t) lies between s

d and s
d + s−t

d2 .

The previously known upper bound was only s−1
s−t−2 for s ≥ t > 1.

If Simmons for reals holds, then we can improve the upper bound
further to s

d + s−t
2d2 for s ≥ t ≥ 1.

s t s
d median s

d + s−t
2d2

s
d + s−t

d2
s−1

s−t−2
2.5 1 0.714286 0.757858 0.77551 0.836735 1
3 1 0.75 0.793701 0.8125 0.875 1
3 2 0.6 0.614272 0.62 0.64 0.666667
4 2 0.666667 0.68619 0.694444 0.722222 0.75



Quiz

Let d ∈ N be given.

Suppose you can choose s, t ∈ N0 such that d = s + t.
Then you are given a possibly biased coin with probabilities for
head and tail s

d and t
d , respectively.

Now you can toss the coin d times.

If you obtain at least s times head, you pay me t dollars.
If you obtain at least t times tail, you pay me s dollars.
(Consequently, if you obtain exactly s times head, then you pay d
dollars in total.)

Which coin should you choose to minimize the expected loss?
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