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Extremal psd forms

Consider ternary forms q = q(x0, x1, x2) over R. Write Z (q) = set of
zeros of q in P2(R). Let Σ2d ⊆ P2d be the sos resp. psd cone of forms of
degree 2d .

A psd form is called (psd-) extremal if it can be written as a
sum of psd forms in a trivial way only. Every form in P2d is a sum of
finitely many extremal forms in P2d (Krein-Milman).

Examples
1. q = p2 is extremal if |Z (g)| =∞ for every irreducible factor g of q.
But p2 can also be extremal when |Z (p)| <∞. We only discuss extremal
forms that are not sos.

2. The Robinson form R ∈ P6 is extremal with |Z (R)| = 10. The
Motzkin form M ∈ P6 is extremal with |Z (M)| = 6. Many examples of
extremal forms in the 1970s by Choi-Lam-Reznick.

3. Any q ∈ P6 r Σ6 has |Z (q)| ≤ 10. If q ∈ P6 has |Z (q)| = 10 then q is
extremal and not sos. In fact, such q is exposed, i.e. determined by Z (q)
in P6 (up to positive scaling). Conversely, any exposed form in P6 r Σ6

has precisely 10 real zeros.

4. Any extremal form in P2d is a limit of exposed forms in P2d .
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Extremal psd forms

Questions
Let Ext(P2d) = {q ∈ P2d : q extremal}.

What is dim Ext(P2d)? What is
the Zariski closure of Ext(P2d)? How many real zeros does a “generic”
form in Ext(P2d) have? Can we systematically produce large families of
extremal forms, or even parametrize them all?

Results
For 2d = 6 have fairly complete answers. We provide an explicit
construction and parametrization of the extremal sextics with ≥ 9 real
zeros. More precisely:

(a) We determine all sets S ⊆ P2(R) with |S | = 9 for which there is
q ∈ P6 r Σ6 with S ⊆ Z (q). Call such S “admissible”.

(b) If S is admissible, P6(S) := {q ∈ P6 : S ⊆ Z (q)} is a 2-dimensional
cone with extreme rays R+f 2 (with f := unique cubic through S)
and R+qS (with qS ∈ Ext(P6) r Σ6). Have Σ6 ∩ P6(S) = R+f 2.

(c) For generic admissible S have |Z (qS)| = 10. Thus the map S 7→ qS

is generically 10 : 1.
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This also works for some singular
cubics X . More precisely:
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Extremal sextics

Theorem 1
A 9-point set S ⊆ P2(R) is admissible iff

1. ∃ unique cubic X through S, and S ⊆ Xreg(R);

2. the Weil divisor D =
∑

P∈S P on X satisfies D 6∼ 3L, but 2D ∼ 6L;

3. the 2-torsion class [D − 3L] 6= 0 is “definite”.

Theorem 2
A plane cubic X has at most one nonzero definite 2-torsion class. It has
such a class if and only if X has only real nodes as singularities.

Count dimensions: 9 free parameters to choose X , plus 8 parameters to
choose S ⊆ X (R) admissible. Altogether this shows that Ext(P6) r Σ6

has (projective) dimension 17 (agrees with Blekherman-Hauenstein-
Ottem-Ranestad-Sturmfels 2012). The Zariski closure of Ext(P6) (in
P27) has 2 irreducible components (ibid.):

I Variety of squares f 2 (of dimension 9);

I Severi variety of sextics with 10 nodes (of dimension 17).
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Extremal octics

Extension from sextics to higher degrees seems difficult. Here we state
two results for octics:

Theorem 3
The Zariski closure of Ext(P8) (in P44) has three irreducible components,
of dimensions 14, 19 and 29. The last is the Severi variety of octics with
15 nodes. A generic extremal irreducible psd octic has precisely 15 real
zeros.

Recall:
A psd form of degree 2d with finitely many real zeros has at most
3
2 d(d −1) + 1 real zeros (Petrovskii bound). For 2d ≥ 8: Unclear whether
this bound is reached. For 2d = 8 the Petrovskii bound is 19. We show:

Proposition
There exists a psd octic with precisely 18 real zeros.
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A psd octic with 18 real zeros

f = (x2 − 1)2 + (y2 − 1)2 − 2xy − 1
p = 2xy
p is tangent to f in 4 points T1
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No idea how to get 19 zeros!
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Thank you DDG !
Long live DDGS !
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