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the Zariski closure of Ext(Pa4)? How many real zeros does a “generic”
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Results

For 2d = 6 have fairly complete answers. We provide an explicit
construction and parametrization of the extremal sextics with > 9 real
zeros. More precisely:

(a) We determine all sets S C P?(R) with |S| = 9 for which there is
q € Ps ~\ X with S C Z(qg). Call such S “admissible”.

(b) If S is admissible, Ps(S) :={qg € Ps: S C Z(q)} is a 2-dimensional
cone with extreme rays R, f2 (with f := unique cubic through S)
and R, gs (with gs € Ext(Ps) \ X¢). Have ¥ N Pg(S) = R, f2.

(c) For generic admissible S have |Z(gs)| = 10. Thus the map S — gs
is generically 10 : 1.
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® choose 8 (almost) arbitrary
points T = {P1,...,Pg} on X
.

o M = 9th point of intersection
e t = tangentto X at M

N = 2nd point of intersection

o 3 3 other tangents to X that
meet X transversally at N

o t/ = the unique definite tangent
P = point where t’ touches X

= S = T U {P} is admissible
(unless P € T)

This also works for some singular
cubics X. More precisely:
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Extension from sextics to higher degrees seems difficult. Here we state
two results for octics:

Theorem 3

The Zariski closure of Ext(Pg) (in P**) has three irreducible components,
of dimensions 14, 19 and 29. The last is the Severi variety of octics with
15 nodes. A generic extremal irreducible psd octic has precisely 15 real
zeros.

Recall:

A psd form of degree 2d with finitely many real zeros has at most
3d(d —1)+1 real zeros (Petrovskii bound). For 2d > 8: Unclear whether
this bound is reached. For 2d = 8 the Petrovskii bound is 19. We show:

Proposition
There exists a psd octic with precisely 18 real zeros.
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p is tangent to f in 4 points Ty

P’ = (x—y)(2x—2y+1)(2x—2y—1)
p’ intersects f in 12 points T

I=3(y—x)

g is singular in the 16 points T1 U Ty
g+tf2 is psd for t > 0

the minimal such t is

tg = (406 + 27+/226) = 101.487 . ..
q:= g+ tof

is psd with 16 + 2 = 18 real zeros

No idea how to get 19 zeros!
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Thank you DDG'!
Long live DDGS'!
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