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the Zariski closure of Ext(Pa4)? How many real zeros does a “generic”
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Results

For 2d = 6 have fairly complete answers. We provide an explicit
construction and parametrization of the extremal sextics with > 9 real
zeros. More precisely:

(a) We determine all sets S C P?(R) with |S| = 9 for which there is
q € Ps ~\ X with S C Z(qg). Call such S “admissible”.

(b) If S is admissible, Ps(S) :={qg € Ps: S C Z(q)} is a 2-dimensional
cone with extreme rays R, f2 (with f := unique cubic through S)
and R, gs (with gs € Ext(Ps) \ X¢). Have ¥ N Pg(S) = R, f2.

(c) For generic admissible S have |Z(gs)| = 10. Thus the map S — gs
is generically 10 : 1.
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® choose 8 (almost) arbitrary
points T = {P1,...,Pg} on X
.

o M = 9th point of intersection
e t = tangentto X at M

N = 2nd point of intersection

o 3 3 other tangents to X that
meet X transversally at N

o t/ = the unique definite tangent
P = point where t’ touches X

= S = T U {P} is admissible
(unless P € T)

This also works for some singular
cubics X. More precisely:
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4/6



Extremal octics

Extension from sextics to higher degrees seems difficult. Here we state
two results for octics:




Extremal octics

Extension from sextics to higher degrees seems difficult. Here we state
two results for octics:

Theorem 3
The Zariski closure of Ext(Pg) (in P**) has three irreducible components,
of dimensions 14, 19 and 29.




Extremal octics

Extension from sextics to higher degrees seems difficult. Here we state
two results for octics:

Theorem 3

The Zariski closure of Ext(Pg) (in P**) has three irreducible components,
of dimensions 14, 19 and 29. The last is the Severi variety of octics with
15 nodes.




Extremal octics

Extension from sextics to higher degrees seems difficult. Here we state
two results for octics:

Theorem 3

The Zariski closure of Ext(Pg) (in P**) has three irreducible components,
of dimensions 14, 19 and 29. The last is the Severi variety of octics with
15 nodes. A generic extremal irreducible psd octic has precisely 15 real
zeros.




Extremal octics

Extension from sextics to higher degrees seems difficult. Here we state
two results for octics:

Theorem 3

The Zariski closure of Ext(Pg) (in P**) has three irreducible components,
of dimensions 14, 19 and 29. The last is the Severi variety of octics with
15 nodes. A generic extremal irreducible psd octic has precisely 15 real
zeros.

Recall:

A psd form of degree 2d with finitely many real zeros has at most
3d(d —1)+1 real zeros (Petrovskii bound). For 2d > 8: Unclear whether
this bound is reached.




Extremal octics

Extension from sextics to higher degrees seems difficult. Here we state
two results for octics:

Theorem 3

The Zariski closure of Ext(Pg) (in P**) has three irreducible components,
of dimensions 14, 19 and 29. The last is the Severi variety of octics with
15 nodes. A generic extremal irreducible psd octic has precisely 15 real
zeros.

Recall:

A psd form of degree 2d with finitely many real zeros has at most
3d(d —1)+1 real zeros (Petrovskii bound). For 2d > 8: Unclear whether
this bound is reached. For 2d = 8 the Petrovskii bound is 19. We show:




Extremal octics

Extension from sextics to higher degrees seems difficult. Here we state
two results for octics:

Theorem 3

The Zariski closure of Ext(Pg) (in P**) has three irreducible components,
of dimensions 14, 19 and 29. The last is the Severi variety of octics with
15 nodes. A generic extremal irreducible psd octic has precisely 15 real
zeros.

Recall:

A psd form of degree 2d with finitely many real zeros has at most
3d(d —1)+1 real zeros (Petrovskii bound). For 2d > 8: Unclear whether
this bound is reached. For 2d = 8 the Petrovskii bound is 19. We show:

Proposition
There exists a psd octic with precisely 18 real zeros.
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p is tangent to f in 4 points Ty

P’ = (x—y)(2x—2y+1)(2x—2y—1)
p’ intersects f in 12 points T

I=3(y—x)

g is singular in the 16 points T1 U Ty
g+tf2 is psd for t > 0

the minimal such t is

tg = (406 + 27+/226) = 101.487 . ..
q:= g+ tof

is psd with 16 + 2 = 18 real zeros

No idea how to get 19 zeros!
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Thank you DDG'!
Long live DDGS'!
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