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A first slide
Notation

Throughout the talk let
I R be a real closed field (whose algebraic closure is C ).
I For any finite set P ⊂ R[X1, . . . ,Xk ] (respectively,
P ⊂ C[X1, . . . ,Xk ]), we denote by Zer

(
P,Rk

)
(respectively

Zer
(
P,Ck

)
) the set of common zeros of P in Rk(respectively Ck).

I For a finite set P ⊂ R[X1, . . . ,Xk ] a P -semi-algebraic set is a
semi-algebraic subset of Rk defined by a quantifier-free formula with
atoms of the form P{<,>,=}0 (resp. with P ∈ P).
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Complexity of semi-algebraic sets

Uniform bounds on the number of connected components, Betti numbers
etc. in terms of:

I The number of polynomials ( combinatorial complexity)
I the degree (d) (algebraic complexity)
I dimension of the ambient space (k)
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Dramatis personae

For a semi-algebraic set S ⊂ Rk , and any field of coefficients F, we
denote for i ­ 0:

I bi (S ,F) = dimF Hi (S ,F),
I b(S ,F ) =

∑
i­0 bi (S ,F),

where Hi (S ,F) is the i-th homology group of S with coefficients in F.

4 / 29



Betti numbers

I b0(S) = the number of connected components.
I i ­ 1, bi (S) the number of i-cycles that do not bound.

In the case of the torus: b0 = 1, b1 = 2, b2 = 1.
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Bounds for Betti numbers
Theorem (Petrovskĭı, Olĕınik, Thom, Milnor)∑

i bi (Zer(P,Rk),F) ¬ d(2d − 1)k−1 = (O(d))k

By taking real and imaginary parts one gets∑
i

bi (Zer(P,Ck),F) ¬ d(2d − 1)2k−1 = (O(d))2k

Theorem (Basu, Pollack, Roy)
Let s := |P|, d := maxp∈P deg p and S ⊂ Rk be a P-semi-algebraic set.
Then,

∑
i

bi (S ,F) =
k∑

i=0

k−i∑
j=1

(
s

j

)
6jd(2d − 1)k−1 = (O(sd))k .
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Bounds for Betti numbers

I The bounds are exponential in k , for fixed d .
I These bounds are tight.
I We will be interested in the case d fixed, and k →∞.
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A Meta-Belief

Belief
The worst case topological complexity of a class of semi-algebraic sets
(measured by the Betti numbers for example) can serve as a rough lower
bound for the complexity of algorithms for computing topological
invariants or deciding topological properties of this class of sets.

Example

I It is NP-hard to decide to decide if a real algebraic variety defined by
one polynomial of degree 4 is empty or not - and correspondingly
the Betti-numbers of such sets can be exponential.

I For sets defined by a fixed number of quadratic polynomials there
are algorithms with polynomial complexity as well as polynomial
bounds on the Betti numbers.
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Notational setup
The symmetry

I Let Sk denote the symmetric group.
I It acts on Rk by permuting coordinates.
I A polynomial F with F (X ) = F (σ(X ))∀σ ∈ Sk is called symmetric.

More general setup:
I For m ∈ N take Rm·k . Then Sk operates by permuting m-tuples of

coordintes.
I Let k = (k1, . . . , kω) ∈ Zω>0, k =

∑ω
i=1 ki and look at the product

Sk = Sk1 × · · · × Skω and each Ski operates on blocks of variables
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Topological complexity
A counter example

Let F symmetric of degree d and consider VR = Zer
(
{P},Rk

)
.

Then, one can check VR = ∅ in time polynomial in k .

However:
I Look at

P =
k∑

i=1

 d∏
j=1

(Xi − j)

2

.

I We find: b0(VR,Q) = dk .

Question
How to reconcile this example with the ”Meta-belief”?
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Topological complexity
Equivariant Betti numbers

I Let XR ⊂ Rk be a semi algebraic set and XC be an algebraic subset
of Ck , such that Sk operates on XR resp. XC (by permuting
coordinates).

I Denote by XC/Sk / XR/Sk the orbit space of this action.
I If char(F) = 0 then H∗(X/Sk ,F) is isomorphic to the so called

equivariant cohomology H∗Sk
(X ,F) ( Borel construction).

I Hence, it makes sense to call bi (X/Sk ,Q) the equivariant Betti
-numbers.
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Topological complexity
Equivariant Betti numbers

I Let us look again at the example

P =
k∑

i=1

 d∏
j=1

(Xi − j)

2

.

I We find b0 (VR/Sk ,Q) =
∑d
`=1 p(k , `) ¬ O(kd), where p(k, `)

denotes the number of partitions of n with exactly ` parts.

Question
Does this somehow generalize?
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Topological complexity
Bounds on equivariant Betti numbers

Theorem
Let P ⊂ R[X1, . . . ,Xk ]

Sk , deg(P) ¬ d for all P ∈ P, VC := Zer{P,Ck}
and VR := Zer{P,Rk}. Then we have:

1.

b (VC/Sk ,F) ¬ dO(d)

2.

b(VR/Sk ,Q) ¬ O(k2d−1).

3. In addition we have for all i ­ min(2d , k)

bi (VR/Sk ,F) = 0.
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Topological complexity
Bounds on equivariant Betti numbers

Theorem
Further let S ⊂ Rk be a semi algebraic set defined with polynomials in P
and let S/Sk denote the quotient space. Then

b(S/Sk ,Q) ¬ O(s5dk4d−1).

In addition, bi (VR/Sk ,Q) = 0 and bi (S/Sk ,Q) = 0 for all i ­ 5d .

14 / 29



Ideas behind the proof

The proof of the statements relies on two ingredients:

1. Equivariant Morse-Theory

2. Understanding of the stabilizers of critical points of a particular
symmetric Morse function

As a consequence of our methods we obtain new algorithms for
computing the generalized Euler-Poincaré characteristic of semi-algebraic
sets defined in terms of symmetric polynomials.These algorithms have
complexity which is polynomial (for fixed degrees and the number of
blocks) in the number of symmetric variables.
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An application
Let P ∈ R[Y1, . . . ,Ym,X1, . . . ,Xk ] with deg(P) ¬ d and let S be a P
semi algebraic set, which is closed and bound. Denote by
π : Rm+k −→ Rm be the projection map to the first m co-ordinates.

Theorem (Gabrielov, Vorobjov, Zell’08)
With the above notation

b(π(S),Q) ¬
∑

0¬p<m

b(S ×π · · · ×π S︸ ︷︷ ︸
p+1

,Q),

where S ×π · · · ×π S︸ ︷︷ ︸
p+1

denotes the p-fold fibered product of S .

Corollary

b(V ,Q) ¬ O(d)(k+1)m.
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An application

Let X ×f · · · ×f X︸ ︷︷ ︸
p+1

denote the p fold fiber product of X with f . There is

a natural action of Sp+1 which permutes the factors. For each p > 0 we

denote by Sym(p)
f (X ),F) the associated quotient X ×f · · · ×f X︸ ︷︷ ︸

p+1

/Sp+1.

Theorem
For any field of coefficients F, there exists a spectral sequence converging
to H∗(Y ,F) whose E1-term is given by

E p,q
1 ' Hq(Sym(p)

f (X ),F).
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An application

Theorem
Let P ∈ R[Y1, . . . ,Yn,X1, . . . ,Xm] be a non-negative polynomial and
with deg(P) ¬ d . Let V := {x ∈ Rn+m : P(x) = 0} be bounded, and

π : Rm × Rk −→ Rm

be the projection map to the first m coordinates. Then,

b(π(V ),F) ¬ m(2d)k (O(d))m+k(2d)k+1.
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Group-Representation

I Let G be a group. Then a homomorphism φ : G → GL(V ) for some
F vector space V . is called a representation of G . Equivalently, V is
said to be a G -module.

I If V contains only trivial G modules, V is called irreducible.
I We denote the equivalence classes of irreducible modules of G by

Irred(G ,F).
I Every G -module can be decomposed into irreducibles, i.e.,

V '
⊕

Wi∈Irred(G ,F)

miWi ,

where the number mi denoted the multiplicity.
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Action on a space

Let X be a topological space and G be a finite group acting on X .
I The action of G on X induces an action of G on H∗(X ,F), which

turns H(X ,F) into a G -module.
I If char(F) = 0 then

H∗(X/G ,F) ∼−→ H∗G (X ,F)
∼−→ (H∗(X ,F))G .

I So the bound on the Sk -equivariant Betti numbers is in fact a bound
on the multiplicity of the trivial representation of Sk .
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Specht-Modules

I The irreducible representations of Sk are 1 : 1 with the partitions of
k and denoted by Sλ.

I Let (λ1, . . . , λl) ` k then so called Young-module is

Mλ := IndSk

Sλ1×···×Sλl
1.

I For each λ ` k Young’s rule gives

Mλ =
⊕
µ`k

K (λ, µ)Sµ,

where K (λ, µ) are the so called Kostka-numbers.
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Example

I Let Fk :=
∑k

i=1(X
2
i (Xi − 1)2 − ε and consider

Vk := Zer(Fk ,Rk).

I Then
H0(Vk ,F) '

⊕
0¬i¬k

H0(Vk,i ,F),

where for 0 ¬ i ¬ k Vk,i is the Sk -orbit of the connected component
of Vk which is infinitesimally close to the point

x i := (0, . . . , 0︸ ︷︷ ︸
i

, 1, . . . , 1︸ ︷︷ ︸
k−i

),

and H0(Vk,i ,F) is a Sk -submodule of H0(Vk ,F).
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Example

Observing that H0(Vk,i ,F) ' Mλ, where λ = (n − i , i) (or (i , n − i)) we
get

H0(Vk ,F) '
⊕
µ`k

m0,µS
µ,

with m0,µ = 0 for all µ with `(µ) > 2 and m0,µ = µ1 − µ2 + 1 ¬ k for all
µ with `(µ) ¬ 2.
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Example
Equivariant Poincaré duality

Theorem
Let V ⊂ Rk be a bounded smooth compact semi-algebraic oriented hyper
surface which is stable under the action of Sk on Rk . Then, for each
p, 0 ¬ p ¬ k there is a Sk−isomorphism

Hp(V ,F) ∼−→ Hk−p−1(V ,F)⊗ signk .

Let µ′ ` k denote the transpose of µ ` k then this implies in our example
that

Hk−1(Vk ,F) '
⊕
µ`k

m0,µS
µ′ ,

with m0,µ = 0 for all µ with `(µ) > 2 and m0,µ = µ1 − µ2 + 1 ¬ k for all
µ with `(µ) ¬ 2.
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Complexity of the Isotypic-decomposition

Theorem
Let P ∈ R[X1, . . . ,Xk ] be a symmetric polynomial with deg(P) = d . Let
V = Zer(P,Rk). Consider the decomposition

H∗(V ,Q) =
⊕
µ`k

mµS
µ.

Then:

1. mµ 6= 0 implies that µ has at most 2d ‘long rows” and 2d “long
columns”.

2. The number of such partitions is bounded by a polynomial in k.

3. Further,mµ ¬ kO(d2)dd .
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A conjecture on representational stability

Let f ∈ R[X1, . . . ,Xd ] be a symmetric polynomial of degree d . Define

Fk = φd,k(F ) ∈ R[X1, . . . ,Xk ]
Sk ,

with the canonical injection

φd,k : R[X1, . . . ,Xd ]
Sd

¬d ↪→ R[X1, . . . ,Xk ]
Sk ,

and consider Vk := Zer(Fk ,Rk) and a resulting sequence of homology
groups (H∗(Vk ,Q))n. Fix k0 ∈ N, µ = (µ1, . . . , µ`) ` k0 and define for
k ­ k + µ1

{µ}k = (k − k0, µ1, µ2, . . . , µ`) ` k. (1)

Let p ­ 0. Does there exists a polynomial PF ,p,µ(k) such that
mp,µk

(Vk ,F) = PF ,p,µ(k)?!
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Algorithmic consequences

I Aim: Design polynomial-time algorithms which compute the mλ!
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Fine

Merci, thanks and
paljon kiitoksia!
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