Topological complexity of symmetric semi-algebraic sets Ordered Algebraic Structures and Related Topics

> Cordian Riener¹ (joint with Saugata Basu²)

¹Aalto Science Institute/ Fields Institute ²Purdue University

October 13, 2015

イロト イヨト イヨト イヨト 三日

A first slide

Notation

Throughout the talk let

- **R** be a real closed field (whose algebraic closure is **C**).
- ▶ For any finite set $\mathcal{P} \subset \mathbf{R}[X_1, ..., X_k]$ (respectively, $\mathcal{P} \subset \mathbf{C}[X_1, ..., X_k]$), we denote by Zer $(\mathcal{P}, \mathbf{R}^k)$ (respectively Zer $(\mathcal{P}, \mathbf{C}^k)$) the set of common zeros of \mathcal{P} in \mathbf{R}^k (respectively \mathbf{C}^k)
- For a finite set P ⊂ R[X₁,..., X_k] a P -semi-algebraic set is a semi-algebraic subset of R^k defined by a quantifier-free formula with atoms of the form P{<,>,=}0 (resp. with P ∈ P).

A first slide

Notation

Throughout the talk let

- **R** be a real closed field (whose algebraic closure is **C**).
- ▶ For any finite set $\mathcal{P} \subset \mathbf{R}[X_1, ..., X_k]$ (respectively, $\mathcal{P} \subset \mathbf{C}[X_1, ..., X_k]$), we denote by Zer $(\mathcal{P}, \mathbf{R}^k)$ (respectively Zer $(\mathcal{P}, \mathbf{C}^k)$) the set of common zeros of \mathcal{P} in \mathbf{R}^k (respectively \mathbf{C}^k).
- For a finite set P ⊂ R[X₁,..., X_k] a P -semi-algebraic set is a semi-algebraic subset of R^k defined by a quantifier-free formula with atoms of the form P{<,>,=}0 (resp. with P ∈ P).

A first slide

Notation

Throughout the talk let

- **R** be a real closed field (whose algebraic closure is **C**).
- ▶ For any finite set $\mathcal{P} \subset \mathbf{R}[X_1, ..., X_k]$ (respectively, $\mathcal{P} \subset \mathbf{C}[X_1, ..., X_k]$), we denote by Zer $(\mathcal{P}, \mathbf{R}^k)$ (respectively Zer $(\mathcal{P}, \mathbf{C}^k)$) the set of common zeros of \mathcal{P} in \mathbf{R}^k (respectively \mathbf{C}^k).
- For a finite set P ⊂ R[X₁,...,X_k] a P -semi-algebraic set is a semi-algebraic subset of R^k defined by a quantifier-free formula with atoms of the form P{<,>,=}0 (resp. with P ∈ P).

Complexity of semi-algebraic sets

Uniform bounds on the number of connected components, Betti numbers etc. in terms of:

(日) (部) (注) (注) (三)

- The number of polynomials (combinatorial complexity)
- ▶ the degree (d) (algebraic complexity)
- dimension of the ambient space (k)

Complexity of semi-algebraic sets

Uniform bounds on the number of connected components, Betti numbers etc. in terms of:

- The number of polynomials (combinatorial complexity)
- the degree (d) (algebraic complexity)

dimension of the ambient space (k)

Complexity of semi-algebraic sets

Uniform bounds on the number of connected components, Betti numbers etc. in terms of:

- The number of polynomials (combinatorial complexity)
- the degree (d) (algebraic complexity)
- dimension of the ambient space (k)

Dramatis personae

For a semi-algebraic set $S \subset \mathbf{R}^k$, and any field of coefficients \mathbb{F} , we denote for $i \ge 0$:

- $b_i(S, \mathbb{F}) = \dim_{\mathbb{F}} H_i(S, \mathbb{F}),$
- ► $b(S,F) = \sum_{i \ge 0} b_i(S,\mathbb{F}),$

where $H_i(S, \mathbb{F})$ is the i-th homology group of S with coefficients in \mathbb{F} .

Betti numbers

- $b_0(S)$ = the number of connected components.
- $i \ge 1, b_i(S)$ the number of *i*-cycles that do not bound.

In the case of the torus: $b_0 = 1, b_1 = 2, b_2 = 1$.

Betti numbers

- $b_0(S)$ = the number of connected components.
- $i \ge 1, b_i(S)$ the number of *i*-cycles that do not bound.

In the case of the torus: $b_0 = 1, b_1 = 2, b_2 = 1$.

Theorem (Petrovskii, Oleĭnik, Thom, Milnor) $\sum_i b_i(\operatorname{Zer}(\mathcal{P}, \mathbb{R}^k), \mathbb{F}) \leq d(2d-1)^{k-1} = (O(d))^k$

By taking real and imaginary parts one gets

$$\sum_{i} b_i(\operatorname{Zer}(\mathcal{P}, \mathbf{C}^k), \mathbb{F}) \leqslant d(2d-1)^{2k-1} = (O(d))^{2k}$$

Theorem (Basu, Pollack, Roy) Let $s := |\mathcal{P}|$, $d := \max_{p \in \mathcal{P}} \deg p$ and $S \subset \mathbb{R}^k$ be a \mathcal{P} -semi-algebraic set. Then,

$$\sum_{i} b_{i}(S, \mathbb{F}) = \sum_{i=0}^{k} \sum_{j=1}^{k-i} {s \choose j} 6^{j} d(2d-1)^{k-1} = (O(sd))^{k}.$$

Theorem (Petrovskii, Oleinik, Thom, Milnor) $\sum_{i} b_i(\operatorname{Zer}(\mathcal{P}, \mathbb{R}^k), \mathbb{F}) \leq d(2d-1)^{k-1} = (O(d))^k$

By taking real and imaginary parts one gets

$$\sum_{i} b_i(\operatorname{Zer}(\mathcal{P}, \mathbf{C}^k), \mathbb{F}) \leqslant d(2d-1)^{2k-1} = (O(d))^{2k}$$

Theorem (Basu, Pollack, Roy)

Let $s := |\mathcal{P}|$, $d := \max_{p \in \mathcal{P}} \deg p$ and $S \subset \mathbb{R}^k$ be a \mathcal{P} -semi-algebraic set. Then,

$$\sum_{i} b_{i}(S, \mathbb{F}) = \sum_{i=0}^{k} \sum_{j=1}^{k-i} {s \choose j} 6^{j} d(2d-1)^{k-1} = (O(sd))^{k}.$$

<ロト 4 回 ト 4 臣 ト 4 臣 ト 臣 の Q () 6/29

Theorem (Petrovskii, Oleinik, Thom, Milnor) $\sum_{i} b_i(\operatorname{Zer}(\mathcal{P}, \mathbb{R}^k), \mathbb{F}) \leq d(2d-1)^{k-1} = (O(d))^k$

By taking real and imaginary parts one gets

$$\sum_{i} b_i(\operatorname{Zer}(\mathcal{P}, \mathbf{C}^k), \mathbb{F}) \leqslant d(2d-1)^{2k-1} = (O(d))^{2k}$$

Theorem (Basu, Pollack, Roy) Let $s := |\mathcal{P}|$, $d := \max_{p \in \mathcal{P}} \deg p$ and $S \subset \mathbb{R}^k$ be a \mathcal{P} -semi-algebraic set. Then,

$$\sum_{i} b_{i}(S, \mathbb{F}) = \sum_{i=0}^{k} \sum_{j=1}^{k-i} {s \choose j} 6^{j} d(2d-1)^{k-1} = (O(sd))^{k}.$$

6 / 29

イロト イヨト イヨト イヨト 三日

• The bounds are exponential in k, for fixed d.

- ▶ These bounds are tight.
- We will be interested in the case *d* fixed, and $k \to \infty$.

- The bounds are exponential in k, for fixed d.
- These bounds are tight.
- We will be interested in the case *d* fixed, and $k \to \infty$.

- The bounds are exponential in k, for fixed d.
- These bounds are tight.
- We will be interested in the case *d* fixed, and $k \to \infty$.

A Meta-Belief

Belief

The worst case topological complexity of a class of semi-algebraic sets (measured by the Betti numbers for example) can serve as a rough lower bound for the complexity of algorithms for computing topological invariants or deciding topological properties of this class of sets.

Example

- It is NP-hard to decide to decide if a real algebraic variety defined by one polynomial of degree 4 is empty or not - and correspondingly the Betti-numbers of such sets can be exponential.
- For sets defined by a fixed number of quadratic polynomials there are algorithms with polynomial complexity as well as polynomial bounds on the Betti numbers.

A Meta-Belief

Belief

The worst case topological complexity of a class of semi-algebraic sets (measured by the Betti numbers for example) can serve as a rough lower bound for the complexity of algorithms for computing topological invariants or deciding topological properties of this class of sets.

Example

- It is NP-hard to decide to decide if a real algebraic variety defined by one polynomial of degree 4 is empty or not - and correspondingly the Betti-numbers of such sets can be exponential.
- For sets defined by a fixed number of quadratic polynomials there are algorithms with polynomial complexity as well as polynomial bounds on the Betti numbers.

A Meta-Belief

Belief

The worst case topological complexity of a class of semi-algebraic sets (measured by the Betti numbers for example) can serve as a rough lower bound for the complexity of algorithms for computing topological invariants or deciding topological properties of this class of sets.

Example

- It is NP-hard to decide to decide if a real algebraic variety defined by one polynomial of degree 4 is empty or not - and correspondingly the Betti-numbers of such sets can be exponential.
- For sets defined by a fixed number of quadratic polynomials there are algorithms with polynomial complexity as well as polynomial bounds on the Betti numbers.

The symmetry

• Let S_k denote the symmetric group.

- ▶ It acts on **R**^k by permuting coordinates.
- ▶ A polynomial *F* with $F(X) = F(\sigma(X)) \forall \sigma \in S_k$ is called symmetric.

- For m ∈ N take R^{m·k}. Then S_k operates by permuting m-tuples of coordintes.
- ▶ Let $\mathbf{k} = (k_1, \dots, k_{\omega}) \in \mathbb{Z}_{>0}^{\omega}, k = \sum_{i=1}^{\omega} k_i$ and look at the product $S_{\mathbf{k}} = S_{k_1} \times \dots \times S_{k_{\omega}}$ and each S_{k_i} operates on blocks of variables

The symmetry

- Let S_k denote the symmetric group.
- It acts on \mathbf{R}^k by permuting coordinates.
- ▶ A polynomial *F* with $F(X) = F(\sigma(X)) \forall \sigma \in S_k$ is called symmetric.

- For m ∈ N take R^{m·k}. Then S_k operates by permuting m-tuples of coordintes.
- ▶ Let $\mathbf{k} = (k_1, \dots, k_{\omega}) \in \mathbb{Z}_{>0}^{\omega}, k = \sum_{i=1}^{\omega} k_i$ and look at the product $S_{\mathbf{k}} = S_{k_1} \times \dots \times S_{k_{\omega}}$ and each S_{k_i} operates on blocks of variables

The symmetry

- Let S_k denote the symmetric group.
- ▶ It acts on **R**^k by permuting coordinates.
- ▶ A polynomial *F* with $F(X) = F(\sigma(X)) \forall \sigma \in S_k$ is called symmetric.

- For m ∈ N take R^{m·k}. Then S_k operates by permuting m-tuples of coordintes.
- ▶ Let $\mathbf{k} = (k_1, \dots, k_{\omega}) \in \mathbb{Z}_{>0}^{\omega}, k = \sum_{i=1}^{\omega} k_i$ and look at the product $S_{\mathbf{k}} = S_{k_1} \times \cdots \times S_{k_{\omega}}$ and each S_{k_i} operates on blocks of variables

The symmetry

- Let S_k denote the symmetric group.
- ▶ It acts on **R**^k by permuting coordinates.
- ▶ A polynomial *F* with $F(X) = F(\sigma(X)) \forall \sigma \in S_k$ is called symmetric.

- For m ∈ N take R^{m·k}. Then S_k operates by permuting m-tuples of coordintes.
- ▶ Let $\mathbf{k} = (k_1, \dots, k_{\omega}) \in \mathbb{Z}_{>0}^{\omega}, k = \sum_{i=1}^{\omega} k_i$ and look at the product $S_{\mathbf{k}} = S_{k_1} \times \cdots \times S_{k_{\omega}}$ and each S_{k_i} operates on blocks of variables

The symmetry

- Let S_k denote the symmetric group.
- ▶ It acts on **R**^k by permuting coordinates.
- ▶ A polynomial *F* with $F(X) = F(\sigma(X)) \forall \sigma \in S_k$ is called symmetric.

- For m ∈ N take R^{m·k}. Then S_k operates by permuting m-tuples of coordintes.
- ▶ Let $\mathbf{k} = (k_1, \dots, k_{\omega}) \in \mathbb{Z}_{>0}^{\omega}, k = \sum_{i=1}^{\omega} k_i$ and look at the product $S_{\mathbf{k}} = S_{k_1} \times \cdots \times S_{k_{\omega}}$ and each S_{k_i} operates on blocks of variables

The symmetry

- Let S_k denote the symmetric group.
- ▶ It acts on **R**^k by permuting coordinates.
- ▶ A polynomial *F* with $F(X) = F(\sigma(X)) \forall \sigma \in S_k$ is called symmetric.

- For m ∈ N take R^{m⋅k}. Then S_k operates by permuting m-tuples of coordintes.
- ▶ Let $\mathbf{k} = (k_1, \dots, k_{\omega}) \in \mathbf{Z}_{>0}^{\omega}, k = \sum_{i=1}^{\omega} k_i$ and look at the product $S_{\mathbf{k}} = S_{k_1} \times \cdots \times S_{k_{\omega}}$ and each S_{k_i} operates on blocks of variables

A counter example

Let *F* symmetric of degree *d* and consider $V_{\mathbf{R}} = \text{Zer}(\{P\}, R^k)$. Then, one can check $V_{\mathbf{R}} = \emptyset$ in time polynomial in *k*.

Look at

$$P = \sum_{i=1}^{k} \left(\prod_{j=1}^{d} (X_i - j) \right)^2$$

• We find:
$$b_0(V_{\mathbf{R}}, \mathbb{Q}) = d^k$$
.

Question

How to reconcile this example with the "Meta-belief"?

イロト イヨト イヨト イヨト 三日

A counter example

Let *F* symmetric of degree *d* and consider $V_{\mathbf{R}} = \text{Zer}(\{P\}, R^k)$. Then, one can check $V_{\mathbf{R}} = \emptyset$ in time polynomial in *k*.

However:

Look at

$$P = \sum_{i=1}^k \left(\prod_{j=1}^d (X_i - j)\right)^2.$$

• We find: $b_0(V_{\mathbf{R}}, \mathbb{Q}) = d^k$.

Question

How to reconcile this example with the "Meta-belief"?

A counter example

Let *F* symmetric of degree *d* and consider $V_{\mathbf{R}} = \text{Zer}(\{P\}, R^k)$. Then, one can check $V_{\mathbf{R}} = \emptyset$ in time polynomial in *k*.

However:

Look at

$$P = \sum_{i=1}^k \left(\prod_{j=1}^d (X_i - j) \right)^2.$$

• We find: $b_0(V_{\mathbf{R}}, \mathbb{Q}) = d^k$.

Question

How to reconcile this example with the "Meta-belief"?

イロト イヨト イヨト イヨト 三日

Equivariant Betti numbers

- Let X_R ⊂ R^k be a semi algebraic set and X_C be an algebraic subset of C^k, such that S_k operates on X_R resp. X_C (by permuting coordinates).
- ▶ Denote by $X_{\mathbf{C}}/S_k / X_{\mathbf{R}}/S_k$ the *orbit space* of this action.
- If char(𝔅) = 0 then H^{*}(X/S_k,𝔅) is isomorphic to the so called equivariant cohomology H^{*}_{S_k}(X,𝔅) (Borel construction).
- ▶ Hence, it makes sense to call $b_i(X/S_k, \mathbb{Q})$ the equivariant Betti -numbers.

Equivariant Betti numbers

- Let X_R ⊂ R^k be a semi algebraic set and X_C be an algebraic subset of C^k, such that S_k operates on X_R resp. X_C (by permuting coordinates).
- Denote by $X_{\mathbf{C}}/S_k / X_{\mathbf{R}}/S_k$ the orbit space of this action.
- If char(𝔅) = 0 then H^{*}(X/S_k,𝔅) is isomorphic to the so called equivariant cohomology H^{*}_{S_k}(X,𝔅) (Borel construction).
- ▶ Hence, it makes sense to call b_i(X/S_k, Q) the equivariant Betti -numbers.

Equivariant Betti numbers

- Let X_R ⊂ R^k be a semi algebraic set and X_C be an algebraic subset of C^k, such that S_k operates on X_R resp. X_C (by permuting coordinates).
- Denote by $X_{C}/S_{k} / X_{R}/S_{k}$ the orbit space of this action.
- If char(𝔅) = 0 then H^{*}(X/S_k,𝔅) is isomorphic to the so called equivariant cohomology H^{*}_{S_k}(X,𝔅) (Borel construction).
- ► Hence, it makes sense to call b_i(X/S_k, Q) the equivariant Betti -numbers.

Equivariant Betti numbers

Let us look again at the example

$$P = \sum_{i=1}^k \left(\prod_{j=1}^d (X_i - j) \right)^2.$$

▶ We find $b_0(V_{\mathbf{R}}/S_k, \mathbb{Q}) = \sum_{\ell=1}^d p(k, \ell) \leq O(k^d)$, where $p(k, \ell)$ denotes the number of partitions of *n* with exactly ℓ parts.

Question Does this somehow generalize

Equivariant Betti numbers

Let us look again at the example

$$P = \sum_{i=1}^k \left(\prod_{j=1}^d (X_i - j) \right)^2$$

▶ We find $b_0(V_{\mathbf{R}}/S_k, \mathbb{Q}) = \sum_{\ell=1}^d p(k, \ell) \leq O(k^d)$, where $p(k, \ell)$ denotes the number of partitions of *n* with exactly ℓ parts.

Question Does this somehow generalize?

Equivariant Betti numbers

Let us look again at the example

$$P = \sum_{i=1}^k \left(\prod_{j=1}^d (X_i - j) \right)^2$$

• We find $b_0(V_{\mathbb{R}}/S_k, \mathbb{Q}) = \sum_{\ell=1}^d p(k, \ell) \leq O(k^d)$, where $p(k, \ell)$ denotes the number of partitions of *n* with exactly ℓ parts.

Question

Does this somehow generalize?

Bounds on equivariant Betti numbers

Theorem Let $\mathcal{P} \subset \mathbf{R}[X_1, \dots, X_k]^{S_k}$, deg $(P) \leq d$ for all $P \in \mathcal{P}$, $V_{\mathsf{C}} := \operatorname{Zer}\{\mathcal{P}, \mathsf{C}^k\}$ and $V_{\mathsf{R}} := \operatorname{Zer}\{\mathcal{P}, \mathsf{R}^k\}$. Then we have: 1.

 $b(V_{\mathbf{C}}/S_k,\mathbb{F}) \leq d^{O(d)}$

2.

$$b(V_{\mathbf{R}}/S_k,\mathbb{Q}) \leq O(k^{2d-1}).$$

3. In addition we have for all $i \ge \min(2d, k)$

 $b_i(V_{\mathbf{R}}/S_k,\mathbb{F}) = 0$

Bounds on equivariant Betti numbers

Theorem Let $\mathcal{P} \subset \mathbf{R}[X_1, \dots, X_k]^{S_k}$, deg $(P) \leq d$ for all $P \in \mathcal{P}$, $V_{\mathsf{C}} := \operatorname{Zer}\{\mathcal{P}, \mathsf{C}^k\}$ and $V_{\mathsf{R}} := \operatorname{Zer}\{\mathcal{P}, \mathsf{R}^k\}$. Then we have: 1.

$$b(V_{\mathsf{C}}/S_k,\mathbb{F}) \leq d^{O(d)}$$

2.

$$b(V_{\mathbf{R}}/S_k,\mathbb{Q}) \leq O(k^{2d-1}).$$

3. In addition we have for all $i \ge \min(2d, k)$

$$b_i(V_{\mathbf{R}}/S_k,\mathbb{F}) = 0$$

<ロト</br>

<ロト</td>
(日)、

13/20
Topological complexity

Bounds on equivariant Betti numbers

Theorem Let $\mathcal{P} \subset \mathbf{R}[X_1, \dots, X_k]^{S_k}$, deg $(P) \leq d$ for all $P \in \mathcal{P}$, $V_{\mathsf{C}} := \operatorname{Zer}\{\mathcal{P}, \mathsf{C}^k\}$ and $V_{\mathsf{R}} := \operatorname{Zer}\{\mathcal{P}, \mathsf{R}^k\}$. Then we have: 1.

$$b(V_{\mathsf{C}}/S_k,\mathbb{F}) \leq d^{O(d)}$$

2.

$b(V_{\mathbf{R}}/S_k,\mathbb{Q}) \leq O(k^{2d-1}).$

3. In addition we have for all $i \ge \min(2d, k)$

 $b_i(V_{\mathbf{R}}/S_k,\mathbb{F}) = 0$

<ロト<部ト<基ト<基ト 13/29

Topological complexity

Bounds on equivariant Betti numbers

Theorem Let $\mathcal{P} \subset \mathbf{R}[X_1, \dots, X_k]^{S_k}$, deg $(P) \leq d$ for all $P \in \mathcal{P}$, $V_{\mathsf{C}} := \operatorname{Zer}\{\mathcal{P}, \mathsf{C}^k\}$ and $V_{\mathsf{R}} := \operatorname{Zer}\{\mathcal{P}, \mathsf{R}^k\}$. Then we have: 1.

$$b(V_{\mathbf{C}}/S_k,\mathbb{F}) \leq d^{O(d)}$$

2.

$$b(V_{\mathbf{R}}/S_k,\mathbb{Q}) \leq O(k^{2d-1}).$$

3. In addition we have for all $i \ge \min(2d, k)$

$$b_i(V_{\mathbf{R}}/S_k,\mathbb{F}) = 0.$$

13 / 29

イロト イヨト イヨト イヨト 三日

Topological complexity

Bounds on equivariant Betti numbers

Theorem

Further let $S \subset \mathbb{R}^k$ be a semi algebraic set defined with polynomials in \mathcal{P} and let S/S_k denote the quotient space. Then

イロン イロン イヨン イヨン 二日

14 / 29

 $b(S/S_k,\mathbb{Q}) \leq O(s^{5d}k^{4d-1}).$

In addition, $b_i(V_{\mathbb{R}}/S_k, \mathbb{Q}) = 0$ and $b_i(S/S_k, \mathbb{Q}) = 0$ for all $i \ge 5d$.

The proof of the statements relies on two ingredients:

1. Equivariant Morse-Theory

2. Understanding of the stabilizers of critical points of a particular symmetric Morse function

The proof of the statements relies on two ingredients:

- 1. Equivariant Morse-Theory
- 2. Understanding of the stabilizers of critical points of a particular symmetric Morse function

The proof of the statements relies on two ingredients:

- 1. Equivariant Morse-Theory
- 2. Understanding of the stabilizers of critical points of a particular symmetric Morse function

The proof of the statements relies on two ingredients:

- 1. Equivariant Morse-Theory
- 2. Understanding of the stabilizers of critical points of a particular symmetric Morse function

Let $\mathcal{P} \in \mathbf{R}[Y_1, \ldots, Y_m, X_1, \ldots, X_k]$ with deg $(P) \leq d$ and let S be a \mathcal{P} semi algebraic set, which is closed and bound. Denote by $\pi : \mathbf{R}^{m+k} \longrightarrow \mathbf{R}^m$ be the projection map to the first m co-ordinates.

Theorem (Gabrielov, Vorobjov, Zell'08)

With the above notation

$$b(\pi(S), \mathbb{Q}) \leq \sum_{0 \leq p < m} b(\underbrace{S \times_{\pi} \cdots \times_{\pi} S}_{p+1}, \mathbb{Q}),$$

where $\underbrace{S \times_{\pi} \cdots \times_{\pi} S}_{p+1}$ denotes the p-fold fibered product of S.

Corollary

$$b(V,\mathbb{Q}) \leqslant O(d)^{(k+1)m}$$

Let $\mathcal{P} \in \mathbf{R}[Y_1, \ldots, Y_m, X_1, \ldots, X_k]$ with deg $(P) \leq d$ and let S be a \mathcal{P} semi algebraic set, which is closed and bound. Denote by $\pi : \mathbf{R}^{m+k} \longrightarrow \mathbf{R}^m$ be the projection map to the first *m* co-ordinates.

Theorem (Gabrielov, Vorobjov, Zell'08)

With the above notation

$$b(\pi(S),\mathbb{Q}) \leq \sum_{0 \leq p < m} b(\underbrace{S \times_{\pi} \cdots \times_{\pi} S}_{p+1},\mathbb{Q}),$$

where $\underbrace{S \times_{\pi} \cdots \times_{\pi} S}_{p+1}$ denotes the p-fold fibered product of S.

Corollary

$$b(V,\mathbb{Q}) \leqslant O(d)^{(k+1)m}$$

(日) (部) (注) (注) (三)

Let $\mathcal{P} \in \mathbf{R}[Y_1, \ldots, Y_m, X_1, \ldots, X_k]$ with deg $(P) \leq d$ and let S be a \mathcal{P} semi algebraic set, which is closed and bound. Denote by $\pi : \mathbf{R}^{m+k} \longrightarrow \mathbf{R}^m$ be the projection map to the first *m* co-ordinates.

Theorem (Gabrielov, Vorobjov, Zell'08)

With the above notation

$$b(\pi(S),\mathbb{Q}) \leq \sum_{0 \leq p < m} b(\underbrace{S \times_{\pi} \cdots \times_{\pi} S}_{p+1},\mathbb{Q}),$$

where $\underbrace{S \times_{\pi} \cdots \times_{\pi} S}_{p+1}$ denotes the p-fold fibered product of S.

Corollary

$$b(V,\mathbb{Q}) \leq O(d)^{(k+1)m}$$

(日) (部) (注) (注) (三)

Let $\underbrace{X \times_f \cdots \times_f X}_{p+1}$ denote the *p* fold fiber product of *X* with *f*. There is a natural action of S_{p+1} which permutes the factors. For each p > 0 we denote by $\operatorname{Sym}_{f}^{(p)}(X), \mathbb{F}$ the associated quotient $\underbrace{X \times_f \cdots \times_f X}_{p+1}/S_{p+1}$.

Theorem

For any field of coefficients \mathbb{F} , there exists a spectral sequence converging to $H_*(Y,\mathbb{F})$ whose E_1 -term is given by

 $\mathsf{E}^{p,q}_1\simeq \mathsf{H}_q(\mathsf{Sym}^{(p)}_f(X),\mathbb{F}).$

◆□ → ◆□ → ◆三 → ◆三 → 三三

Let $\underbrace{X \times_f \cdots \times_f X}_{p+1}$ denote the *p* fold fiber product of *X* with *f*. There is a natural action of S_{p+1} which permutes the factors. For each p > 0 we denote by $\operatorname{Sym}_f^{(p)}(X), \mathbb{F}$ the associated quotient $\underbrace{X \times_f \cdots \times_f X}_{p+1}/S_{p+1}$.

Theorem

For any field of coefficients \mathbb{F} , there exists a spectral sequence converging to $H_*(Y,\mathbb{F})$ whose E_1 -term is given by

 $E_1^{p,q} \simeq H_q(\operatorname{Sym}_f^{(p)}(X), \mathbb{F})$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣。

Let $\underbrace{X \times_{f} \cdots \times_{f} X}_{p+1}$ denote the *p* fold fiber product of *X* with *f*. There is a natural action of S_{p+1} which permutes the factors. For each p > 0 we denote by $\operatorname{Sym}_{f}^{(p)}(X), \mathbb{F}$ the associated quotient $\underbrace{X \times_{f} \cdots \times_{f} X}_{p+1}/S_{p+1}$.

Theorem

For any field of coefficients \mathbb{F} , there exists a spectral sequence converging to $H_*(Y, \mathbb{F})$ whose E_1 -term is given by

 $E_1^{p,q} \simeq H_q(\operatorname{Sym}_f^{(p)}(X), \mathbb{F}).$

Theorem Let $P \in \mathbf{R}[Y_1, ..., Y_n, X_1, ..., X_m]$ be a non-negative polynomial and with deg $(P) \leq d$. Let $V := \{x \in \mathbf{R}^{n+m} : P(x) = 0\}$ be bounded, and $\pi : \mathbf{R}^m \times \mathbf{R}^k \longrightarrow \mathbf{R}^m$

be the projection map to the first m coordinates. Then,

 $b(\pi(V),\mathbb{F})\leqslant m^{(2d)^k}(O(d))^{m+k(2d)^k+1}.$

イロト イヨト イヨト イヨー うくの

18 / 29

- Let G be a group. Then a homomorphism φ : G → GL(V) for some F vector space V. is called a *representation of G*. Equivalently, V is said to be a G-module.
- ▶ If V contains only trivial G modules, V is called *irreducible*.
- We denote the equivalence classes of irreducible modules of G by Irred(G, 𝔽).
- ▶ Every G-module can be decomposed into irreducibles, i.e.,

$$V\simeq\bigoplus_{W_i\in \mathsf{Irred}(G,\mathbb{F})}m_iW_i,$$

(日) (部) (注) (注) (三)

- Let G be a group. Then a homomorphism φ : G → GL(V) for some F vector space V. is called a *representation of G*. Equivalently, V is said to be a G-module.
- ▶ If V contains only trivial G modules, V is called *irreducible*.
- We denote the equivalence classes of irreducible modules of G by Irred(G, 𝔽).
- ▶ Every G-module can be decomposed into irreducibles, i.e.,

$$V\simeq\bigoplus_{W_i\in \mathsf{Irred}(G,\mathbb{F})}m_iW_i,$$

- Let G be a group. Then a homomorphism φ : G → GL(V) for some F vector space V. is called a *representation of G*. Equivalently, V is said to be a G-module.
- ▶ If V contains only trivial G modules, V is called *irreducible*.
- We denote the equivalence classes of irreducible modules of G by Irred(G, F).
- ▶ Every *G*-module can be decomposed into irreducibles, i.e.,

$$V\simeq\bigoplus_{W_i\in \mathsf{Irred}(G,\mathbb{F})}m_iW_i,$$

- Let G be a group. Then a homomorphism φ : G → GL(V) for some F vector space V. is called a *representation of G*. Equivalently, V is said to be a G-module.
- ▶ If V contains only trivial G modules, V is called *irreducible*.
- We denote the equivalence classes of irreducible modules of G by Irred(G, F).
- Every G-module can be decomposed into irreducibles, i.e.,

$$V\simeq\bigoplus_{W_i\in \mathsf{Irred}(G,\mathbb{F})}m_iW_i,$$

Let X be a topological space and G be a finite group acting on X.

- ► The action of G on X induces an action of G on H^{*}(X, F), which turns H(X, F) into a G-module.
- If $char(\mathbb{F}) = 0$ then

 $\mathrm{H}^*(X/G,\mathbb{F}) \xrightarrow{\sim} \mathrm{H}^*_G(X,\mathbb{F}) \xrightarrow{\sim} (\mathrm{H}^*(X,\mathbb{F}))^G.$

So the bound on the S_k-equivariant Betti numbers is in fact a bound on the multiplicity of the *trivial* representation of S_k.

Let X be a topological space and G be a finite group acting on X.

- ► The action of G on X induces an action of G on H^{*}(X, F), which turns H(X, F) into a G-module.
- ▶ If char(\mathbb{F}) = 0 then

 $\mathrm{H}^*(X/G,\mathbb{F}) \xrightarrow{\sim} \mathrm{H}^*_G(X,\mathbb{F}) \xrightarrow{\sim} (\mathrm{H}^*(X,\mathbb{F}))^G.$

► So the bound on the S_k-equivariant Betti numbers is in fact a bound on the multiplicity of the *trivial* representation of S_k.

Let X be a topological space and G be a finite group acting on X.

- ► The action of G on X induces an action of G on H^{*}(X, F), which turns H(X, F) into a G-module.
- ▶ If char(𝔅) = 0 then

 $\mathrm{H}^*(X/G,\mathbb{F})\xrightarrow{\sim}\mathrm{H}^*_G(X,\mathbb{F})\xrightarrow{\sim}(\mathrm{H}^*(X,\mathbb{F}))^G.$

So the bound on the S_k-equivariant Betti numbers is in fact a bound on the multiplicity of the *trivial* representation of S_k.

Let X be a topological space and G be a finite group acting on X.

- ► The action of G on X induces an action of G on H^{*}(X, F), which turns H(X, F) into a G-module.
- ▶ If char(𝔽) = 0 then

 $\mathrm{H}^*(X/G,\mathbb{F})\xrightarrow{\sim}\mathrm{H}^*_G(X,\mathbb{F})\xrightarrow{\sim}(\mathrm{H}^*(X,\mathbb{F}))^G.$

So the bound on the S_k-equivariant Betti numbers is in fact a bound on the multiplicity of the *trivial* representation of S_k.

Specht-Modules

The irreducible representations of S_k are 1 : 1 with the partitions of k and denoted by ^{Gλ}.

• Let $(\lambda_1, \ldots, \lambda_l) \vdash k$ then so called *Young-module* is

 $M^{\lambda} := \operatorname{Ind}_{S_{\lambda_1} \times \cdots \times S_{\lambda_l}}^{S_k} \mathbf{1}.$

For each $\lambda \vdash k$ Young's rule gives

$$M^{\lambda} = \bigoplus_{\mu \vdash k} K(\lambda, \mu) \mathfrak{S}^{\mu},$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ ・

where $K(\lambda, \mu)$ are the so called Kostka-numbers.

Specht-Modules

- The irreducible representations of S_k are 1 : 1 with the partitions of k and denoted by ^{Gλ}.
- Let $(\lambda_1, \ldots, \lambda_l) \vdash k$ then so called *Young-module* is

$$M^{\lambda} := \operatorname{Ind}_{S_{\lambda_1} \times \cdots \times S_{\lambda_l}}^{S_k} \mathbf{1}.$$

For each
$$\lambda \vdash k$$
 Young's rule gives

$$M^{\lambda} = \bigoplus_{\mu \vdash k} K(\lambda, \mu) \mathfrak{S}^{\mu},$$

イロト イヨト イヨト イヨト ニヨー

where $K(\lambda, \mu)$ are the so called Kostka-numbers.

Specht-Modules

- The irreducible representations of S_k are 1 : 1 with the partitions of k and denoted by G^λ.
- Let $(\lambda_1, \ldots, \lambda_l) \vdash k$ then so called *Young-module* is

$$M^{\lambda} := \operatorname{Ind}_{S_{\lambda_1} \times \cdots \times S_{\lambda_l}}^{S_k} \mathbf{1}.$$

For each
$$\lambda \vdash k$$
 Young's rule gives

$$M^{\lambda} = \bigoplus_{\mu \vdash k} K(\lambda, \mu) \mathfrak{S}^{\mu},$$

where $K(\lambda, \mu)$ are the so called Kostka-numbers.

• Let $F_k := \sum_{i=1}^k (X_i^2 (X_i - 1)^2 - \varepsilon$ and consider

 $V_k := \operatorname{Zer}(F_k, \mathbf{R}^k).$

Then

$\mathrm{H}^{0}(V_{k},\mathbb{F})\ \simeq igoplus_{0\leqslant i\leqslant k}\mathrm{H}^{0}(V_{k,i},\mathbb{F}),$

where for $0 \le i \le k V_{k,i}$ is the S_k -orbit of the connected component of V_k which is infinitesimally close to the point

$$x^i := (\underbrace{0,\ldots,0}_{i},\underbrace{1,\ldots,1}_{k-i}),$$

and $\operatorname{H}^{0}(V_{k,i},\mathbb{F})$ is a S_{k} -submodule of $H^{0}(V_{k},\mathbb{F})$

• Let
$$F_k := \sum_{i=1}^k (X_i^2 (X_i - 1)^2 - \varepsilon$$
 and consider

 $V_k := \operatorname{Zer}(F_k, \mathbf{R}^k).$

Then

$\mathrm{H}^{0}(V_{k},\mathbb{F}) \simeq \bigoplus_{0\leqslant i\leqslant k} \mathrm{H}^{0}(V_{k,i},\mathbb{F}),$

where for $0 \le i \le k V_{k,i}$ is the S_k -orbit of the connected component of V_k which is infinitesimally close to the point

$$x^i := (\underbrace{0,\ldots,0}_{i},\underbrace{1,\ldots,1}_{k-i}),$$

and $\mathrm{H}^{0}(V_{k,i},\mathbb{F})$ is a S_{k} -submodule of $H^{0}(V_{k},\mathbb{F})$.

Observing that $\mathrm{H}^{0}(V_{k,i},\mathbb{F}) \simeq M^{\lambda}$, where $\lambda = (n-i,i)$ (or (i, n-i)) we get

$$\mathrm{H}^{0}(V_{k},\mathbb{F}) \simeq \bigoplus_{\mu\vdash k} m_{0,\mu}\mathfrak{S}^{\mu},$$

with $m_{0,\mu} = 0$ for all μ with $\ell(\mu) > 2$ and $m_{0,\mu} = \mu_1 - \mu_2 + 1 \leqslant k$ for all μ with $\ell(\mu) \leqslant 2$.

Equivariant Poincaré duality

Theorem

Let $V \subset \mathbb{R}^k$ be a bounded smooth compact semi-algebraic oriented hyper surface which is stable under the action of S_k on \mathbb{R}^k . Then, for each $p, 0 \leq p \leq k$ there is a S_k -isomorphism

$$\mathrm{H}^{p}(V,\mathbb{F})\xrightarrow{\sim}\mathrm{H}^{k-p-1}(V,\mathbb{F})\otimes \mathrm{sign}_{k}$$
.

Let $\mu' \vdash k$ denote the transpose of $\mu \vdash k$ then this implies in our example that

$$H^{k-1}(V_k,\mathbb{F})\simeq igoplus_{\mudash k}m_{0,\mu}\mathfrak{S}^{\mu'},$$

with $m_{0,\mu} = 0$ for all μ with $\ell(\mu) > 2$ and $m_{0,\mu} = \mu_1 - \mu_2 + 1 \leqslant k$ for all μ with $\ell(\mu) \leqslant 2$.

Equivariant Poincaré duality

Theorem

Let $V \subset \mathbb{R}^k$ be a bounded smooth compact semi-algebraic oriented hyper surface which is stable under the action of S_k on \mathbb{R}^k . Then, for each $p, 0 \leq p \leq k$ there is a S_k -isomorphism

$$\mathrm{H}^{p}(V,\mathbb{F}) \xrightarrow{\sim} \mathrm{H}^{k-p-1}(V,\mathbb{F}) \otimes \mathrm{sign}_{k}.$$

Let $\mu' \vdash k$ denote the transpose of $\mu \vdash k$ then this implies in our example that

$$H^{k-1}(V_k,\mathbb{F})\simeq igoplus_{\mudash k}m_{0,\mu}\mathfrak{S}^{\mu'},$$

with $m_{0,\mu} = 0$ for all μ with $\ell(\mu) > 2$ and $m_{0,\mu} = \mu_1 - \mu_2 + 1 \le k$ for all μ with $\ell(\mu) \le 2$.

Theorem Let $P \in \mathbf{R}[X_1, ..., X_k]$ be a symmetric polynomial with deg(P) = d. Let $V = \text{Zer}(P, \mathbf{R}^k)$. Consider the decomposition

$$\mathrm{H}^*(V,\mathbb{Q}) = \bigoplus_{\mu \vdash k} m_\mu \mathfrak{S}^\mu.$$

- 1. $m_{\mu} \neq 0$ implies that μ has at most 2d 'long rows" and 2d 'long columns".
- 2. The number of such partitions is bounded by a polynomial in k.
- 3. Further, $m_{\mu} \leq k^{O(d^2)} d^d$.

Theorem Let $P \in \mathbb{R}[X_1, ..., X_k]$ be a symmetric polynomial with deg(P) = d. Let $V = \text{Zer}(P, \mathbb{R}^k)$. Consider the decomposition

$$\mathrm{H}^*(V,\mathbb{Q}) = \bigoplus_{\mu \vdash k} m_\mu \mathfrak{S}^\mu.$$

- 1. $m_{\mu} \neq 0$ implies that μ has at most 2d 'long rows" and 2d "long columns".
- 2. The number of such partitions is bounded by a polynomial in k.
- 3. Further, $m_{\mu} \leq k^{O(d^2)} d^d$.

Theorem Let $P \in \mathbb{R}[X_1, ..., X_k]$ be a symmetric polynomial with deg(P) = d. Let $V = \text{Zer}(P, \mathbb{R}^k)$. Consider the decomposition

$$\mathrm{H}^*(V,\mathbb{Q}) = \bigoplus_{\mu \vdash k} m_\mu \mathfrak{S}^\mu.$$

- 1. $m_{\mu} \neq 0$ implies that μ has at most 2d 'long rows" and 2d ''long columns".
- 2. The number of such partitions is bounded by a polynomial in k.
- 3. Further, $m_{\mu} \leq k^{O(d^2)} d^d$.

Theorem Let $P \in \mathbb{R}[X_1, ..., X_k]$ be a symmetric polynomial with deg(P) = d. Let $V = \text{Zer}(P, \mathbb{R}^k)$. Consider the decomposition

$$\mathrm{H}^*(V,\mathbb{Q}) = \bigoplus_{\mu \vdash k} m_\mu \mathfrak{S}^\mu.$$

- 1. $m_{\mu} \neq 0$ implies that μ has at most 2d 'long rows" and 2d ''long columns".
- 2. The number of such partitions is bounded by a polynomial in k.
- 3. Further, $m_{\mu} \leq k^{O(d^2)} d^d$.

A conjecture on representational stability

Let $f \in \mathbf{R}[X_1, \ldots, X_d]$ be a symmetric polynomial of degree d. Define

$$F_k = \phi_{d,k}(F) \in \mathbf{R}[X_1,\ldots,X_k]^{\mathfrak{S}_k},$$

with the canonical injection

$$\phi_{d,k}: \mathbf{R}[X_1,\ldots,X_d]_{\leqslant d}^{\mathfrak{S}_d} \hookrightarrow \mathbf{R}[X_1,\ldots,X_k]^{\mathfrak{S}_k},$$

and consider $V_k := \operatorname{Zer}(F_k, \mathbb{R}^k)$ and a resulting sequence of homology groups $(\operatorname{H}^*(V_k, \mathbb{Q}))_n$. Fix $k_0 \in \mathbb{N}$, $\mu = (\mu_1, \dots, \mu_\ell) \vdash k_0$ and define for $k \ge k + \mu_1$

$$\{\mu\}_k = (k - k_0, \mu_1, \mu_2, \dots, \mu_\ell) \vdash k.$$
 (1)

Let $p \ge 0$. Does there exists a polynomial $P_{F,p,\mu}(k)$ such that $m_{p,\mu_k}(V_k,\mathbb{F}) = P_{F,p,\mu}(k)$?!

<ロト < 部ト < 言ト < 言ト 差 の < や 26/29

A conjecture on representational stability

Let $f \in \mathbf{R}[X_1, \ldots, X_d]$ be a symmetric polynomial of degree d. Define

$$F_k = \phi_{d,k}(F) \in \mathbf{R}[X_1,\ldots,X_k]^{\mathfrak{S}_k},$$

with the canonical injection

$$\phi_{d,k}: \mathbf{R}[X_1,\ldots,X_d]_{\leq d}^{\mathfrak{S}_d} \hookrightarrow \mathbf{R}[X_1,\ldots,X_k]^{\mathfrak{S}_k},$$

and consider $V_k := \operatorname{Zer}(F_k, \mathbb{R}^k)$ and a resulting sequence of homology groups $(\operatorname{H}^*(V_k, \mathbb{Q}))_n$. Fix $k_0 \in \mathbb{N}$, $\mu = (\mu_1, \ldots, \mu_\ell) \vdash k_0$ and define for $k \ge k + \mu_1$

$$\{\mu\}_k = (k - k_0, \mu_1, \mu_2, \dots, \mu_\ell) \vdash k.$$
 (1)

Let $p \ge 0$. Does there exists a polynomial $P_{F,p,\mu}(k)$ such that $m_{p,\mu_k}(V_k,\mathbb{F}) = P_{F,p,\mu}(k)$?!

<ロト < 部ト < 言ト < 言ト 差 の < や 26/29
A conjecture on representational stability

Let $f \in \mathbf{R}[X_1, \ldots, X_d]$ be a symmetric polynomial of degree d. Define

$$F_k = \phi_{d,k}(F) \in \mathbf{R}[X_1,\ldots,X_k]^{\mathfrak{S}_k},$$

with the canonical injection

$$\phi_{d,k}: \mathbf{R}[X_1,\ldots,X_d]_{\leq d}^{\mathfrak{S}_d} \hookrightarrow \mathbf{R}[X_1,\ldots,X_k]^{\mathfrak{S}_k},$$

and consider $V_k := \operatorname{Zer}(F_k, \mathbb{R}^k)$ and a resulting sequence of homology groups $(\operatorname{H}^*(V_k, \mathbb{Q}))_n$. Fix $k_0 \in \mathbb{N}$, $\mu = (\mu_1, \ldots, \mu_\ell) \vdash k_0$ and define for $k \ge k + \mu_1$

$$\{\mu\}_k = (k - k_0, \mu_1, \mu_2, \dots, \mu_\ell) \vdash k.$$
 (1)

Let $p \ge 0$. Does there exists a polynomial $P_{F,p,\mu}(k)$ such that $m_{p,\mu_k}(V_k, \mathbb{F}) = P_{F,p,\mu}(k)$?!

Algorithmic consequences

• Aim: Design polynomial-time algorithms which compute the m_{λ} !

Fine

Merci, thanks and paljon kiitoksia!

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つへで 28/29

ArXiv

- Bounding the equivariant Betti numbers and computing the generalized Euler-Poincaré characteristic of symmetric semi-algebraic sets. (with S. Basu): arXiv:1312.6582.
- 2. On the isotypic decomposition of homology modules of symmetric semi-algebraic sets. (with S. Basu) :*arXiv:1503.00138.*