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A first slide

Notation

Throughout the talk let

> R be a real closed field (whose algebraic closure is C ).
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Zer (P, CK)) the set of common zeros of P in R*(respectively C*).

D¢

2/29



A first slide

Notation

Throughout the talk let

> R be a real closed field (whose algebraic closure is C ).

» For any finite set P C R[X1,..., Xk] (respectively,
P C C[Xi,...,X]), we denote by Zer (P, R) (respectively
Zer (P, CK)) the set of common zeros of P in R*(respectively C*).

» For a finite set P C R[Xy,..., Xk] a P -semi-algebraic set is a
semi-algebraic subset of R defined by a quantifier-free formula with
atoms of the form P{<,>,=}0 (resp. with P € P).
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Complexity of semi-algebraic sets

etc. in terms of:

Uniform bounds on the number of connected components, Betti numbers

» The number of polynomials ( combinatorial complexity)

1PN G4
3/29



Complexity of semi-algebraic sets

etc. in terms of:

Uniform bounds on the number of connected components, Betti numbers

» The number of polynomials ( combinatorial complexity)
> the degree (d) (algebraic complexity)

1PN G4
3/29



Complexity of semi-algebraic sets

Uniform bounds on the number of connected components, Betti
etc. in terms of:

» The number of polynomials ( combinatorial complexity)
> the degree (d) (algebraic complexity)
» dimension of the ambient space (k)

numbers

D¢

3/29



Dramatis personae

denote for i > 0:

> b,(S,F) = dimp H;(S,F),
> B(S,F) = Y120 bi(S, F),

where H;(S,F) is the i-th homology group of S with coefficients in F.

For a semi-algebraic set S C R¥, and any field of coefficients I, we
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Betti numbers

> by(S) = the number of connected components.

> i > 1, b;(S) the number of i-cycles that do not bound.
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Betti numbers

> by(S) = the number of connected components.

> i > 1, b;(S) the number of i-cycles that do not bound.

In the case of the torus: bg = 1,b; = 2,b, = 1.
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Bounds for Betti numbers

Theorem (Petrovskii, Oleinik, Thom, Milnor)
> bi(Zer(P,R¥),F) < d(2d — 1)*~ = (O(d))*
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Bounds for Betti numbers

Theorem (Petrovskii, Oleinik, Thom, Milnor)
zi b;i(Zer(P, Rk), F) < d(2d

1)}t = (0(d))"

By taking real and imaginary parts one gets

> bi(Zer(P.C*) ) < d(2d — 1)~ = (O(d))*
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Bounds for Betti numbers

Theorem (Petrovskii, Oleinik, Thom, Milnor)
>, bi(Zer(P,RY),F) < d(2d — 1)1 = (O(d))*

By taking real and imaginary parts one gets

Z bi(Zer(P, Ck) )

<d(2d -1 = (0(d))*
Theorem (Basu, Pollack, Roy)
Let s := |P|, d := max,cpdegp and S C R be a P-semi-algebraic set
Then,
k  k—i
S b(SF) =) ( )61d (2d — 1)k~
i i=0 j=1

= (O(sd))*.
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Bounds for Betti numbers

» The bounds are exponential in k, for fixed d.
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Bounds for Betti numbers

» The bounds are exponential in k, for fixed d.
» These bounds are tight.
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Bounds for Betti numbers

» The bounds are exponential in k, for fixed d.
» These bounds are tight.

» We will be interested in the case d fixed, and k — co.
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A Meta-Belief

Belief

The worst case topological complexity of a class of semi-algebraic sets
(measured by the Betti numbers for example) can serve as a rough lower
bound for the complexity of algorithms for computing topological
invariants or deciding topological properties of this class of sets.
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Example

» [t is NP-hard to decide to decide if a real algebraic variety defined by
one polynomial of degree 4 is empty or not - and correspondingly
the Betti-numbers of such sets can be exponential.



A Meta-Belief

Belief

The worst case topological complexity of a class of semi-algebraic sets
(measured by the Betti numbers for example) can serve as a rough lower
bound for the complexity of algorithms for computing topological
invariants or deciding topological properties of this class of sets.

Example

» [t is NP-hard to decide to decide if a real algebraic variety defined by
one polynomial of degree 4 is empty or not - and correspondingly
the Betti-numbers of such sets can be exponential.

> For sets defined by a fixed number of quadratic polynomials there
are algorithms with polynomial complexity as well as polynomial
bounds on the Betti numbers.
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Notational setup

The symmetry

» Let S, denote the symmetric group.
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Notational setup

The symmetry

» Let S, denote the symmetric group.
» It acts on R¥ by permuting coordinates.

» A polynomial F with F(X) = F(o(X))Vo € S is called symmetric.
More general setup:
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Notational setup

The symmetry

» Let S, denote the symmetric group.
» It acts on R¥ by permuting coordinates.

» A polynomial F with F(X) = F(o(X))Vo € S is called symmetric.
More general setup:

coordintes.

» For m € N take R™¥. Then S, operates by permuting m-tuples of
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Notational setup

The symmetry

» Let S, denote the symmetric group.
» It acts on R¥ by permuting coordinates.

More general setup:

coordintes.

> Let k = (ki,...,ky) € Z%y, k = > i, ki and look at the product

Sk = Sk, X -+ x Sk, and each Sy, operates on blocks of variables

» A polynomial F with F(X) = F(o(X))Vo € Sk is called symmetric

» For m € N take R™¥. Then S, operates by permuting m-tuples of

%
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A counter example

Topological complexity

Let F symmetric of degree d and consider Vg = Zer ({P}, R¥).
Then, one can check Vg = () in time polynomial in k.
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A counter example

Topological complexity

Let F symmetric of degree d and consider Vg = Zer ({P}, R¥)
Then, one can check Vg = () in time polynomial in k
However:

» Look at

Il
|M»

H(X —J)

» We find: by( Vg, Q)
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A counter example

Topological complexity

Let F symmetric of degree d and consider Vg = Zer ({P}, R¥)
Then, one can check Vg = () in time polynomial in k
However:

» Look at

> We find: bo(Vk, Q) = d*
Question

How to reconcile this example with the " Meta-belief”
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Topological complexity

Equivariant Betti numbers

> Let Xg C R¥ be a semi algebraic set and Xc be an algebraic subset
of CK, such that Sy operates on Xg resp. Xc (by permuting
coordinates).
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Topological complexity

Equivariant Betti numbers

> Let Xg C R¥ be a semi algebraic set and Xc be an algebraic subset
of CK, such that Sy operates on X resp. Xc (by permuting
coordinates).

» Denote by Xc/Sk / Xr/Sk the orbit space of this action.
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Topological complexity

Equivariant Betti numbers

> Let Xg C R¥ be a semi algebraic set and Xc be an algebraic subset
of CK, such that Sy operates on X resp. Xc (by permuting
coordinates).

» Denote by Xc/Sk / Xr/Sk the orbit space of this action.

» If char(F) = 0 then H*(X/Sk,F) is isomorphic to the so called
equivariant cohomology Hs (X, ) ( Borel construction).

-numbers.

» Hence, it makes sense to call b;j(X/Sk, Q) the equivariant Betti
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Topological complexity

Equivariant Betti numbers

> Let us look again at the example

2
d
P = Z H(Xi—j)
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Topological complexity

Equivariant Betti numbers

> Let us look again at the example

k [ d 2
P = > (Xi —J)
i—1 \j=1

> We find by (Vk/Sk, Q) = 30_, p(k, £) < O(k?), where p(k, )
denotes the number of partitions of n with exactly ¢ parts.
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Topological complexity

Equivariant Betti numbers

> Let us look again at the example

k

2

d
Po= > |T[X-7
i=1 \j=1

> We find by (Vk/Sk, Q) = 30_, p(k, £) < O(k?), where p(k, )
denotes the number of partitions of n with exactly ¢ parts.
Question

Does this somehow generalize?
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Topological complexity

Bounds on equivariant Betti numbers

Theorem

Let P C R[Xq,...,Xk]> , deg(P) < d for all P € P, V¢ := Zer{P, Ck}
and Vg := Zer{P,R¥}.
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Topological complexity

Bounds on equivariant Betti numbers

Theorem

Let P C R[Xl,

L X%, deg(P) < d for all P € P, V¢ := Zer{P,Ck}
and Vg := Zer{P,R¥}. Then we have:
1.

b(Vc/S,F) < do@
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Topological complexity

Bounds on equivariant Betti numbers

Theorem

Let P C R[Xy,..., Xk]> , deg(P) < d for all P € P, V¢ := Zer{P,Ck}
and Vg := Zer{P,R¥}. Then we have:
1.

b(Vc/S,F) < do@

b(Vr/Sk,Q) < O(k*~1).
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Topological complexity

Bounds on equivariant Betti numbers

Theorem

Let P C R[Xl,

L X%, deg(P) < d for all P € P, V¢ := Zer{P,Ck}
and Vg := Zer{P,R*}. Then we have:
1.

b(Ve/Sk.F) < d°¢)
2.
b(Vr/Sk,Q) < O(k*@-1).
3. In addition we have for all i > min(2d, k)

bi(Vr/Sk,F) =

= 0.
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Topological complexity

Bounds on equivariant Betti numbers

Theorem
Further let S C R* be a semi algebraic set defined with polynomials in P
and let S/Sk denote the quotient space. Then
b(5/Sk, Q) < O(s>¥k*—1).

In addition, b;(Vr/Sk,Q) =0 and b;(5/5«, Q) =0 for all i > 5d.

D¢

14/29



|deas behind the proof

The proof of the statements relies on two ingredients
1. Equivariant Morse-Theory
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1PN G4
15/29



|deas behind the proof

The proof of the statements relies on two ingredients:
1. Equivariant Morse-Theory

2. Understanding of the stabilizers of critical points of a particular
symmetric Morse function

As a consequence of our methods we obtain new algorithms for

computing the generalized Euler-Poincaré characteristic of semi-algebraic
sets defined in terms of symmetric polynomials.
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|deas behind the proof

The proof of the statements relies on two ingredients:
1. Equivariant Morse-Theory

2. Understanding of the stabilizers of critical points of a particular
symmetric Morse function

As a consequence of our methods we obtain new algorithms for
computing the generalized Euler-Poincaré characteristic of semi-algebraic
sets defined in terms of symmetric polynomials. These algorithms have
complexity which is polynomial (for fixed degrees and the number of
blocks) in the number of symmetric variables.
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An application
Let P € R[Y1,

(K Ym7X17

., Xi] with deg(P) < d and let S be a P
semi algebraic set, which is closed and bound. Denote by

7 : R™K — R™ be the projection map to the first m co-ordinates.
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An application

Let P € R[Y1,..., Ym, X1,..., Xk] with deg(P) < d and let S be a P
semi algebraic set, which is closed and bound. Denote by
7 : R™K — R™ be the projection map to the first m co-ordinates.

Theorem (Gabrielov, Vorobjov, Zell'08)
With the above notation

b(n(5),Q) < > b(Sxr-x:S,Q),

0<p<m p+1

where S X -+ X, S denotes the p-fold fibered product of S.
~—_———

p+1
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An application

Let P € R[Y1,..., Ym, X1,..., Xk] with deg(P) < d and let S be a P
semi algebraic set, which is closed and bound. Denote by
7 : R™K — R™ be the projection map to the first m co-ordinates.

Theorem (Gabrielov, Vorobjov, Zell'08)
With the above notation

b(n(5),Q) < > b(Sxr-x:S,Q),

0<p<m p+1

where S X -+ X, S denotes the p-fold fibered product of S.
~—_———

p+1

Corollary

b(V,Q) < O(d)+m.
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An application

Let X xr--- x¢ X denote the p fold fiber product of X with f. There is
p+1

a natural action of 5,1 which permutes the factors.
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An application

Let X xr--- x¢ X denote the p fold fiber product of X with f. There is
p+1

a natural action of 5,41 which permutes the factors. For each p > 0 we
denote by Sym&p)(X),IF) the associated quotient X x¢--- x¢ X /Spy1.

p+1
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An application

Let X xr--- x¢ X denote the p fold fiber product of X with f. There is
p+1

a natural action of 5,41 which permutes the factors. For each p > 0 we
Theorem

denote by Sym(fp)(X),IF) the associated quotient X x¢--- x¢ X /Spy1.

p+1
For any field of coefficients F, there exists a spectral sequence converging
to H.(Y,F) whose E;-term is given by

EP9 ~ H,(Sym'P(X),F)

DA C
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An application

Theorem
Let P € R[Y4,

Y X,
with deg(P) < d. Let V := {x € R™"™

, Xm] be a non-negative polynomial and
: P(x) = 0} be bounded, and
7:R™x RK — R™

be the projection map to the first m coordinates. Then,

b(r(V).F) < mD" (O(d))m @I,

D¢

18/29



Group-Representation

> Let G be a group. Then a homomorphism ¢ : G — GL(V) for some
F vector space V. is called a representation of G. Equivalently, V is
said to be a G-module.
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Group-Representation

> Let G be a group. Then a homomorphism ¢ : G — GL(V) for some
F vector space V. is called a representation of G. Equivalently, V is
said to be a G-module.

» If V contains only trivial G modules, V is called irreducible.
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Group-Representation

> Let G be a group. Then a homomorphism ¢ : G — GL(V) for some
F vector space V. is called a representation of G. Equivalently, V is
said to be a G-module.

» If V contains only trivial G modules, V is called irreducible.

» We denote the equivalence classes of irreducible modules of G by
Irred(G, ).
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Group-Representation

> Let G be a group. Then a homomorphism ¢ : G — GL(V) for some
F vector space V. is called a representation of G. Equivalently, V is
said to be a G-module.

» If V contains only trivial G modules, V is called irreducible.

» We denote the equivalence classes of irreducible modules of G by
Irred(G, ).

» Every G-module can be decomposed into irreducibles, i.e.,

V ~ @ m; W;,

Wi €Elrred(G,F)

where the number m; denoted the multiplicity.

u}
o)
I
i
it

19 /29



Action on a space

Let X be a topological space and G be a finite group acting on X.
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Action on a space

Let X be a topological space and G be a finite group acting on X.

» The action of G on X induces an action of G on H*(X,F), which
turns H(X, F) into a G-module.
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Action on a space

Let X be a topological space and G be a finite group acting on X.

» The action of G on X induces an action of G on H*(X,F), which
turns H(X, F) into a G-module.
» If char(F) = 0 then

H*(X/G,F) = H(X,F) = (H*(X,F))C.
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Action on a space

Let X be a topological space and G be a finite group acting on X.

» The action of G on X induces an action of G on H*(X,F), which
turns H(X, F) into a G-module.
» If char(F) = 0 then

H*(X/G,F) = H(X,F) = (H*(X,F))C.

» So the bound on the Si-equivariant Betti numbers is in fact a bound
on the multiplicity of the trivial representation of Sy.
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Specht-Modules

» The irreducible representations of Sy are 1: 1 with the partitions of
k and denoted by G*.
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Specht-Modules

» The irreducible representations of Sy are 1: 1 with the partitions of
k and denoted by G*.
> Let ()\1,

, A1) F k then so called Young-module is

AL Sk
MY =1ndg ., 1.
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Specht-Modules

» The irreducible representations of Sy are 1: 1 with the partitions of
k and denoted by G*.
> Let ()\1,

, A1) F k then so called Young-module is
A S
M? = I”dSkAIX~~~><SA, 1.

» For each A+ k Young's rule gives

M = P K\, w)e”,
pk

where K(\, i) are the so called Kostka-numbers.
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Example

> Let £ = > (X2(X; — 1)? — ¢ and consider

Vi := Zer(F, R¥)
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Example

> Let F o= > (X2(X; — 1)2 — = and consider

Vi := Zer(F, R¥)
» Then

0<i<k

H(Vi,F) ~ € HO(Vii,F)

where for 0 < i < k Vj; is the Si-orbit of the connected component
of V) which is infinitesimally close to the point
x':=(0,...,0,1,...,1),
—— ——
i k—i
and H(V,;,F) is a Sk-submodule of HO(Vj, ).

m]

=
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Example

Observing that H(V, ;, ) ~ M*, where )
get

(n—1i,i) (or (i,n—1)) we
Vk, @mou

pkk
with mg , = 0 for all p with ¢(p) > 2 and mg,
w with £(p) < 2.

=1 — 2+ 1< k for all
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Example

Equivariant Poincaré duality

Theorem

Let V C Rk be a bounded smooth compact semi-algebraic oriented hyper
surface which is stable under the action of S on RX. Then, for each
p,0 < p < k there is a Sy—isomorphism

HP(V,F) = H* P71V, F) @ sign, .
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Example

Equivariant Poincaré duality

Theorem

Let V C Rk be a bounded smooth compact semi-algebraic oriented hyper
surface which is stable under the action of Sy on RX. Then, for each

p,0 < p < k there is a Sy—isomorphism

HP(V,F) = H* P71V, F) @ sign, .

Let u’ - k denote the transpose of u - k then this implies in our example
that
H* (Vi F) ~ €D mo,,&",
pEk

with mg ,, = 0 for all p with £() > 2 and mg , = pi1 — pro + 1 < k for all
u with £(p) <2
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Complexity of the Isotypic-decomposition

Theorem

Let P € R[X,

., Xx] be a symmetric polynomial with deg(P) = d. Let
V = Zer(P, R¥). Consider the decomposition

H*(V,Q) = @ m,.&".

pkk
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Complexity of the Isotypic-decomposition

Theorem

Let P € R[X,

., Xx] be a symmetric polynomial with deg(P) = d. Let
V = Zer(P, R¥). Consider the decomposition

H*(V,Q) = @ m,.&".
Then:

pkk

columns”

1. m, # 0 implies that ;1 has at most 2d ‘long rows” and 2d “long
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Complexity of the Isotypic-decomposition

Theorem

Let P € R[X,

., Xx] be a symmetric polynomial with deg(P) = d. Let
V = Zer(P, R¥). Consider the decomposition

H*(V,Q) = @ m,.&".
Then:

pkk

columns”

1. m, # 0 implies that ;1 has at most 2d ‘long rows” and 2d “long

2. The number of such partitions is bounded by a polynomial in k.
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Complexity of the Isotypic-decomposition

Theorem

Let P € R[Xy,...,Xk] be a symmetric polynomial with deg(P) = d. Let
V = Zer(P, R¥). Consider the decomposition

H*(V,Q) = @ m,.&".
pkk
Then:

1. m, # 0 implies that ;1 has at most 2d ‘long rows” and 2d “long

columns”.

2. The number of such partitions is bounded by a polynomial in k.
3. Further,m, < k@) q?.
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Let f € R[Xy,

A conjecture on representational stability

., Xy| be a symmetric polynomial of degree d. Define
Fi = ¢pax(F) € R[Xq,..., Xk]®¥,
with the canonical injection

¢dk : R[X1, --de]SZ — R[X1,. .., X%,

and consider Vj := Zer(Fy, R¥) and a resulting sequence of homology
groups (H"(Vi, Q))n.
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Let f € R[Xy,

A conjecture on representational stability

., Xy| be a symmetric polynomial of degree d. Define
Fi = ¢pax(F) € R[Xq,..., Xk]®¥,
with the canonical injection

¢dk : R[X1, --de]SZ — R[X1,. .., X%,

and consider Vj := Zer(Fy, R¥) and a resulting sequence of homology
groups (H"(Vi, Q))n. Fix ko € N, p = (pu1,
k> k+

ar

,ie) ko and define for
(k_k07/1’17/1’27"')uf)|_ k.
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A conjecture on representational stability

Let f € R[Xy, ..., Xy] be a symmetric polynomial of degree d. Define
Fi = ¢pax(F) € R[Xq,..., Xk]®¥,
with the canonical injection

Gak: RIXy, ..., XalS4 — R[Xy, ..., Xi]®¥,

and consider Vj := Zer(Fy, R¥) and a resulting sequence of homology
groups (H*(Vi,Q))n. Fix ko € N, = (1, ..., pe) F ko and define for
k> k+

{uhe = (k—ko,pa,p2,. .., o) = k. (1)

Let p > 0. Does there exists a polynomial Pg (k) such that
Mp (Vi F) = Prp,u(k)?!
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Algorithmic consequences

» Aim: Design polynomial-time algorithms which compute the my!
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Fine

Merci, thanks and
paljon kiitoksia!




ArXiv

Bounding the equivariant Betti numbers and computing the

generalized Euler-Poincaré characteristic of symmetric semi-algebraic

sets. (with S. Basu): arXiv:1312.6582.

On the isotypic decomposition of homology modules of symmetric

semi-algebraic sets. (with S. Basu) :arXiv:1503.00138.
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