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Proof. For (1), apply Lemma 4.3, viewing f as a polynomial in x°r and y. For (2),
apply Lemma 4.3, viewing f as a polynomial in
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i=1 g

i1gi2 = 0. The proof of (3) is similar to
the proof of (2). §
Proposition 4.5. Suppose ¡,√ : [0, 1] ! R are continuous functions, ¡(x) ∑ √(x)
for all x 2 [0, 1], and ¡(x) < √(x) for all but finitely many x 2 [0, 1]. If ¡ and √ are

analytic at each point a 2 [0, 1] where ¡(a) = √(a) then 9 a polynomial p(x) 2 R[x]
such that ¡(x) ∑ p(x) ∑ √(x) holds for all x 2 [0, 1].

Proof.

2 Induct on the number of points a 2 [0, 1] satisfying ¡(a) = √(a). If there
are no such points, existence of p(x) follows from the Weierstrass Approximation
Theorem. Suppose a 2 [0, 1] is such that ¡(a) = √(a). Let k be the vanishing order
of √°¡ at a. If a 2 (0, 1) then k is even. In this case, ¡(x) = f(x)+ (x°a)k

¡1(x),
√(x) = f(x) + (x ° a)k

√1(x), where f(x) 2 R[x], ¡1(x),√1(x) are analytic at a,
and ¡1(a) < √1(a). Extend ¡1,√1 to continuous functions ¡1, √1 : [0, 1] ! R by
defining ¡1(x) = ¡(x)°f(x)

(x°a)k , √1(x) = √(x)°f(x)
(x°a)k for x 6= a. Then ¡1(x) ∑ √1(x)

for all x 2 [0, 1], and, 8 b 2 [0, 1], ¡1(b) = √1(b) iÆ ¡(b) = √(b) and b 6= a. By
induction we have p1(x) 2 R[x] such that ¡1(x) ∑ p1(x) ∑ √1(x) on [0, 1]. Take
p(x) = f(x) + (x ° a)k

p1(x). The case where a = 0 and the case where a = 1 are
dealt with in a similar fashion. §

5. The end of the proof

Let f(x, y) =
P2d

i=0 a
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(x)yi, d ∏ 1. By lemmas 2.1 and 2.2 we can assume
a2d

(x) > 0 on the interval and f(x, y) has only finitely many zeros in [0, 1] £ R.
By Lemma 4.2, 9 a polynomial ≤(x) 2 R[x] such that f(x, y) ∏ ≤(x)(1 + y

2)d on
the strip, ≤(x) ∏ 0 on [0, 1], and ≤(x) = 0 iÆ 9 y 2 R with f(x, y) = 0. Let
f1(x, y) := f(x, y)° ≤(x)(1 + y

2)d. Then f1 is ∏ 0 on the strip. Replacing ≤(x) by
≤(x)
N

, N > 1, if necessary, we can assume f1 has degree 2d (as a polynomial in y)
and the leading coe±cient of f1 is positive on [0, 1].

By Lemma 4.4, for each r 2 [0, 1], there exists an open neighborhood U(r) of r

in R such that f1 decomposes as

f1 =
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(r)2x +
2X

j=1

g2j

(r)2(1° x)

on U(r)£R, where the g

ij

(r) are polynomials in y (of degree ∑ d) whose coe±cients
are analytic functions of x, for x 2 U(r).3 By compactness of [0, 1], finitely many of
the U(r) cover [0, 1], say U(r1), · · · , U(r

`

) cover [0, 1]. Choose a continuous partition
of unity 1 = ∫1 + · · · + ∫

`

on [0, 1], with 0 ∑ ∫

k

∑ 1 on [0, 1] and supp(∫
k

) µ U(r
k

)
for k = 1, · · · , `, having the additional property that, for each root r of ≤(x) in

2Proposition 4.5 is probably well-known. The author only became aware of Proposition 4.5
and its simple proof through reading an unpublished manuscript of V. Powers.

3Applying Lemma 4.4, we can choose the gij(r) so that g2j(r) = 0, j = 1, 2, if r = 0; g1j(r) = 0,
j = 1, 2, if r = 1; and g1j(r) = g2j(r) = 0, j = 1, 2, if 0 < r < 1.

Murray's magic to finish the proof

6 M. MARSHALL

Proof. For (1), apply Lemma 4.3, viewing f as a polynomial in x°r and y. For (2),
apply Lemma 4.3, viewing f as a polynomial in

p
x and y, to obtain f = g

2
1+g

2
2 with

g

i

a polynomial in y with coe±cients analytic in
p

x, i = 1, 2. Decomposing each of
the coe±cients, using

P
k

a

k

x

k
2 =

P
`

a2`

x

`+
P

`

a2`+1x
`

p
x, yields g

i

= g

i1+g

i2
p

x,
where the g

ij

are polynomials in y with coe±cients analytic functions of x near x =
0. Expanding g

2
i

, i = 1, 2 then yields f =
P2

i=1 g

2
i1 +

P2
i=1 g

2
i2x + 2

P2
i=1 g

i1gi2
p

x,
so f =

P2
i=1 g

2
i1 +

P2
i=1 g

2
i2x and

P2
i=1 g

i1gi2 = 0. The proof of (3) is similar to
the proof of (2). §
Proposition 4.5. Suppose ¡,√ : [0, 1] ! R are continuous functions, ¡(x) ∑ √(x)
for all x 2 [0, 1], and ¡(x) < √(x) for all but finitely many x 2 [0, 1]. If ¡ and √ are

analytic at each point a 2 [0, 1] where ¡(a) = √(a) then 9 a polynomial p(x) 2 R[x]
such that ¡(x) ∑ p(x) ∑ √(x) holds for all x 2 [0, 1].

Proof.

2 Induct on the number of points a 2 [0, 1] satisfying ¡(a) = √(a). If there
are no such points, existence of p(x) follows from the Weierstrass Approximation
Theorem. Suppose a 2 [0, 1] is such that ¡(a) = √(a). Let k be the vanishing order
of √°¡ at a. If a 2 (0, 1) then k is even. In this case, ¡(x) = f(x)+ (x°a)k

¡1(x),
√(x) = f(x) + (x ° a)k

√1(x), where f(x) 2 R[x], ¡1(x),√1(x) are analytic at a,
and ¡1(a) < √1(a). Extend ¡1,√1 to continuous functions ¡1, √1 : [0, 1] ! R by
defining ¡1(x) = ¡(x)°f(x)

(x°a)k , √1(x) = √(x)°f(x)
(x°a)k for x 6= a. Then ¡1(x) ∑ √1(x)

for all x 2 [0, 1], and, 8 b 2 [0, 1], ¡1(b) = √1(b) iÆ ¡(b) = √(b) and b 6= a. By
induction we have p1(x) 2 R[x] such that ¡1(x) ∑ p1(x) ∑ √1(x) on [0, 1]. Take
p(x) = f(x) + (x ° a)k

p1(x). The case where a = 0 and the case where a = 1 are
dealt with in a similar fashion. §

5. The end of the proof

Let f(x, y) =
P2d

i=0 a

i

(x)yi, d ∏ 1. By lemmas 2.1 and 2.2 we can assume
a2d

(x) > 0 on the interval and f(x, y) has only finitely many zeros in [0, 1] £ R.
By Lemma 4.2, 9 a polynomial ≤(x) 2 R[x] such that f(x, y) ∏ ≤(x)(1 + y

2)d on
the strip, ≤(x) ∏ 0 on [0, 1], and ≤(x) = 0 iÆ 9 y 2 R with f(x, y) = 0. Let
f1(x, y) := f(x, y)° ≤(x)(1 + y

2)d. Then f1 is ∏ 0 on the strip. Replacing ≤(x) by
≤(x)
N

, N > 1, if necessary, we can assume f1 has degree 2d (as a polynomial in y)
and the leading coe±cient of f1 is positive on [0, 1].

By Lemma 4.4, for each r 2 [0, 1], there exists an open neighborhood U(r) of r

in R such that f1 decomposes as

f1 =
2X

j=1

g0j

(r)2 +
2X

j=1

g1j

(r)2x +
2X

j=1

g2j

(r)2(1° x)

on U(r)£R, where the g

ij

(r) are polynomials in y (of degree ∑ d) whose coe±cients
are analytic functions of x, for x 2 U(r).3 By compactness of [0, 1], finitely many of
the U(r) cover [0, 1], say U(r1), · · · , U(r

`

) cover [0, 1]. Choose a continuous partition
of unity 1 = ∫1 + · · · + ∫

`

on [0, 1], with 0 ∑ ∫

k

∑ 1 on [0, 1] and supp(∫
k

) µ U(r
k

)
for k = 1, · · · , `, having the additional property that, for each root r of ≤(x) in

2Proposition 4.5 is probably well-known. The author only became aware of Proposition 4.5
and its simple proof through reading an unpublished manuscript of V. Powers.

3Applying Lemma 4.4, we can choose the gij(r) so that g2j(r) = 0, j = 1, 2, if r = 0; g1j(r) = 0,
j = 1, 2, if r = 1; and g1j(r) = g2j(r) = 0, j = 1, 2, if 0 < r < 1.

POLYNOMIALS NON-NEGATIVE ON A STRIP 7

[0, 1], there is just one k such that ∫

k

(x) 6= 0 close to r (so ∫

k

(x) = 1 for x close to
r). One way to ensure the last property is to shrink the covering sets U(r

k

) ahead
of time so that each root r of ≤(x) in [0, 1] lies in some unique U(r

k

). Then f1
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ijk

denotes the polynomial of degree ∑ d in y whose coe±cients
are the functions from [0, 1] to R obtained by extending the corresponding coe±-
cients of

p
∫
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k

) by zero oÆ U(r
k

). The coe±cients of the ¡

ijk

are continuous
on [0, 1] and analytic at each of the roots of ≤(x) in [0, 1] (since ∫

k

is constantly 0
or 1 in a neighborhood of each of these roots).

By Proposition 4.5, for each real N > 0, and each triple i, j, k, 9 a polynomial
h

ijk

of degree ∑ d in y with coe±cients in R[x], such that, for each coe±cient u of
¡

ijk

, the corresponding coe±cient w of h

ijk

satisfies

u(x)° ≤(x)
N

∑ w(x) ∑ u(x) +
≤(x)
N

, for each x 2 [0, 1].

At this point we proceed as in the proof of [3, Th. 5.1], approximating the
coe±cients of the ¡

ijk

closely by polynomials (by taking N su±ciently large), to
obtain polynomials h

ijk

of degree ∑ d in y with coe±cients in R[x] such that
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b
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(x) 2 R[x], |b
i

(x)| ∑ 2
5≤(x) on [0, 1], i = 0, · · · , 2d. Combining this with f(x, y) =

f1(x, y) + ≤(x)(1 + y

2)d yields f(x, y) = s1(x, y) + s2(x, y) + s3(x, y), where
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5
(2 + y + 3y

2 + y
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4 + · · · + y

2d°1 + 2y

2d)].

Let T denote the preordering of R[x, y] generated by x(1 ° x). As pointed out
earlier, x, 1°x 2 T . Clearly s1(x, y) 2 T . The argument in [3, Th. 5.1] shows that
s2(x, y) 2 T . In more detail, since |b

i

(x)| ∑ 2
5≤(x) on [0, 1], 2

5≤(x) ± b

i

(x) 2 T , by
[3, Th. 2.2] or [4, Prop. 2.7.3], for i = 0, · · · , 2d. This yields

(5.1)
2
5
≤(x)yi + b

i

(x)yi 2 T, for i even.

For i odd, say i = 2m + 1, use the identity y

2m+1 = 1
2y

2m((y + 1)2 ° y

2 ° 1) plus
the fact that 2

5≤(x)y2m(y + 1)2 + b

i

(x)y2m(y + 1)2, 2
5≤(x)y2m

y

2 ° b

i

(x)y2m

y

2 and
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2
5≤(x)y2m ° b

i

(x)y2m all belong to T to obtain
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2
5
≤(x)(yi+1 + y

i + y

i°1) + b

i

(x)yi 2 T, for i odd.

Adding together the various terms of type (5.1) and (5.2), for i = 0, · · · , 2d, we see
that s2(x, y) 2 T . The fact that s3(x, y) belongs to T follows from the identity
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5
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4 + · · · + y

2d°1 + 2y

2d)

= (1 + y
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5
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4 + · · · + y
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2d)
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1
5
(1 + y

2 + · · · + y

2d°2)(1° y)2 +
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i=1

(
µ

d

i

∂
° 8

5
)y2i

.

This means, finally, that f(x, y) = s1(x, y) + s2(x, y) + s3(x, y) 2 T . §
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Summer School in Tame Geometry

University of Konstanz, July 18-23 2016

Tutorials on topics in real geometry, o-minimal geometry and tame
geometry, given by Philipp Hieronymi (University of Illinois,
Urbana-Champaign), Tobias Kaiser (University of Passau),
Margarita Otero (Universidad Autónoma de Madrid), Ya’acov
Peterzil (University of Haifa), Daniel Plaumann (University of
Konstanz), Margaret Thomas (University of Konstanz), as well as
survey lectures on surrounding topics.

Organisers: Pantelis Eleftheriou (Konstanz), Salma Kuhlmann
(Konstanz), Daniel Plaumann (Konstanz), Jonathan Pila (Oxford),
Margaret Thomas (Konstanz)
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