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A countable group G has Kazhdan’s Property (T), if

I the trivial unitary representation of G is an isolated point in the
set of all irreducible unitary representations, with respect to the
Fell topology

I or, if any unitary representation that has almost invariant vectors,
has an invariant vector.

David Kazhdan introduced this notion in the 1960’s, to show that
certain lattices are finitely generated. In fact, each countable group
with Property (T) is finitely generated.The notions plays an important
role in many context, as it turned out.

Finite groups have property (T). Non-finite examples are SLn(Z) for
n ≥ 3. Amenable groups have Property (T) only if they are finite, so
Zn does not have Property (T).
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Let G be finitely generated by S ⊆ G (assume S−1 = S , n := |S |). Let
R[G ] be the real group algebra of G .

Then

ρ :=
1
n
·
∑
s∈S

s ∈ R[G ]

is called the Random Walk Operator associated with S .

In fact the multiplication with ρ on R[G ] (or `2(G )) models the
random walk on the Cayley graph of (G ,S).

I G has Property (T), if in any unitary representation π of G , the
operator π(ρ) has a spectral gap at 1.

If you apply this to ρ operating on `2(G ), it yields:

The random walk on G converges much faster than expected to a
normal distribution.
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The product replacement algorithm is a method for producing random
elements in a finitely generated group.

For abelian groups, there is
random walk on some SLn(Z) in the background. Since these groups
have Property (T), this random walk converges fast. This explains why
the product replacement algorithm for abelian groups works so well.

Conclusion:
I Property (T) is a rather abstract property that a group may have.
I It has interesting consequences, and appears in several contexts.
I Proving Property (T) for a group is notoriously hard.

Our new approach uses a sums-of-squares approach and semidefinite
programming.
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Let A be an R-algebra with involution.

An element of the form

a = a∗1a1 + · · ·+ a∗nan

with ai ∈ A is called a sum of (hermitian) squares.

Fix elements b1, . . . , br ∈ A. Checking whether some element a ∈ A is
a sum of squares of elements from spanR{b1, . . . , br} means finding a
positive semidefinite matrix M ∈ Symr (R) with

a = (b∗1, . . . , b
∗
r )M

 b1
...
br

 .

Finding a positive semidefinite matrix with linear constaints on the
entries is a semidefinite program. Such programs admit quite efficient
numerical algorithms.
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Back to property (T):

For a group G are equivalent:
I Property (T)
I ρ has a spectral gap at 1 in each representation
I ∆ := 1− ρ has a spectral gap at 0 in each representation
I ∆2 − ε∆ is positive semidefinite in each representation (for some
ε > 0)

I ∆2 − ε∆ is a sum of squares in R[G ], for some ε > 0

The last formulation is due to Ozawa, 2014.

It can be checked with semidefinite programming!
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Theorem (N. & Thom, to appear in Experimental Mathematics)
For G = SL3(Z) the element

∆2 − 1
72
·∆

is a sum of squares in R[G ].

I new and easy proof of Property (T) for SL3(Z), based on
semidefinite programming

I proof is exact; the numerically computed sums-of-squares
representation is rounded to rational coefficients, the error is
removed with a theoretical argument

I ε = 1
72 improves upon the former results on the spectral gap by a

factor of about 2000. Can probably still be impoved a lot
I shows that numerical methods can attack the abstract group

theoretic question
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Future:

I Property (T) for G = Aut(F4)? Unknown, experiments with the
product replacement algorithm for non-abelian groups suggest yes.
Numerically intractable for us, so far.

I Other groups of course....
I Other spectral-gap problems via sums of squares.
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Thank you for your attention!


