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Part 1: Approaches to the Abstract Theory of
Quadratic Forms
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A full-fledged approach to an abstract algebraic theory of
quadratic forms, having that of fields as a model, was first
developed by Murray Marshall in his work Abstract Witt
Rings ([M1]).

This was followed by Murray’s development of the theory of

Abstract Order Spaces; a rather complete exposition of this

theory can be found in [M2].

[M1] M. Marshall, Abstract Witt Rings, Queens Papers In Pure
and Applied Math. 57, Queen’s University, Ontario, Canada.

[M2] M. Marshall, Spaces of Orderings and Abstract Real
Spectra, Lecture Notes in Mathematics 1636, Springer-Verlag,
Berlin, 1996.
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We should also mention:

• Quaternionic Structures, also presented in [M1];

• Quaternionic schemes, studied in studied by Kula,
Szczepanik and Szymiczek in [KSS];

• Linked quaternionic maps, presented in [MY].

• Higher level form schemes, introduced in [MP]

[KSS] M.Kula, L.Szczepanik, K.Szymiczek, Quadratic form
schemes and quaternionic schemes, Fund. Math., 130 (1988),
181-190.

[MY] M. Marshall, J. Yucas, Linked Quaternionic Maps and Their
Associated Witt Rings, Pacific Jour. of Math. 95 (1981), 411-425.

[MP] M.Marshall, V.Powers, Higher level form schemes, Comm.
Algebra, 21 (1993), 4083-4102.
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The notion of Special Group occurred to M. Dickmann in
1991, in order to construct a 1st-order theory sufficient to
develop an abstract algebraic version of the theory of
quadratic forms from first principles.

An exposition of the fundamentals of the ensuing theory can
be found in [DM1].

Special Groups, Abstract Witt Rings, Abstract Order Spaces

and the theories of quaternionic schemes mentioned above are

actually equivalent, in the sense that models of any one

system can be canonically and functorially constructed from

models of the other.

[DM1] M. Dickmann, F. Miraglia, Special Groups : Boolean-
Theoretic Methods in the Theory of Quadratic Forms, Mem-
oirs Amer. Math. Soc. 689, Providence, R.I., 2000.
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As a final thought on the matter (time is short!), it
should be registered that the interaction between
abstract spaces of orderings and special groups has
proven fruitful; an example − among others −, are
the results in [DMM].

[DMM] M. Dickmann, M. Marshall, F. Miraglia, Lattice ordered
reduced special groups, Annals of Pure and Applied Logic 132,
27–49 (2005).
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Part 2: Faithfully Quadratic Rings

Joint work with M. Dickmann

To appear in Memoirs of the AMS
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Objective :

To lay the groundwork for a theory of quadratic
forms over several significant and extensive classes
of rings and preordered rings.

“Ring” stands for a commutative unitary ring where
2 is a unit;

“Quadratic forms” stands for diagonal quadratic
forms with unit coefficients;

To this end we shall employ our theory of special
groups, giving a unified treatment for both squares
and proper preorders.
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Proto-, Pre- and Special Groups

To work in the context of rings, it is convenient to
split the axioms of Special Groups into certain
subsets
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Proto-Special Groups
A proto-special group (π-SG) is a triple

G = 〈G , ≡G , −1 〉,
such that

∗ G is a group of exponent two, (written multiplicatively; 1 is its

identity), with a distinguished element − 1 . Set −x = − 1 · x ;

∗ A binary relation (isometry) ≡G on G × G , such that

[SG 0] : ≡G is an equivalence relation on G × G ;

[SG 1] : 〈 a, b 〉 ≡G 〈 b, a 〉; [SG 2] : 〈 a,−a 〉 ≡G 〈 1,−1 〉;

[SG 3] : 〈 a, b 〉 ≡G 〈 c , d 〉 ⇒ ab = cd ;

[SG 5] : 〈 a, b 〉 ≡G 〈 c , d 〉 ⇒ 〈 xa, xb 〉 ≡G 〈 xc , xd 〉;

10 / 57



G is reduced (π-RSG) if 1 6= − 1 and

[red] : 〈 a, a 〉 ≡G 〈 1, 1 〉 ⇒ a = 1.

A π-SG, G , is a pre-special group (p-SG) if, in
addition, it satisfies,

[SG 4] : 〈 a, b 〉 ≡G 〈 c , d 〉 ⇒ 〈 a,−c 〉 ≡G 〈−b, d 〉.

ϕ = 〈 a1, . . . , an 〉 ∈ G n is called a n-form over G .
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Let G be a π-SG. Binary isometry in G can be
extended to n-forms, n ≥ 1, still written ≡G , as
follows:

∗ 〈 a 〉 ≡G 〈 b 〉 ⇔ a = b;

∗ for n = 2, ≡G is the primitive relation on G ;

∗ for n ≥ 3, 〈 a1, . . . , an 〉 ≡G 〈 b1, . . . , bn 〉 iff
there are x , y , z3, . . . , zn ∈ G such that

(1) 〈 a1, x 〉 ≡G 〈 b1, y 〉;
(2) 〈 a2, . . . , an 〉 ≡G 〈 x , z3, . . . , zn 〉;
(3) 〈 b2, . . . , bn 〉 ≡G 〈 y , z3, . . . , zn 〉.
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A p-SG is a special group (SG) if it verifies

[SG 6] : The isometry of forms of dimension 3 is
transitive.

∗ If G , H are π-SGs, a map f : G −→ H is a
morphism if f is a group morphism, such that
f (−1) = −1 and

〈 a, b 〉 ≡G 〈 c , d 〉 ⇒ 〈 fa, fb 〉 ≡H 〈 fc , fd 〉.
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Preordered rings and Proto-SGs

Forthwith, all preorders are assumed to be
proper; in particular, rings will be assumed to
be semi-real (i.e., −1 6∈ ΣR2).
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Preordered Rings

A preordered ring (p-ring) is a pair 〈A,T 〉 such that A is a
ring and T is a preorder of A.

∗ The language of p-rings is L = 〈=,+, ·, 0, 1,− 1 ,T 〉, i.e.,
the 1st-order language of rings , with a unary predicate, T ,
interpreted as a preorder.

∗ A morphism of p-rings, f : 〈A,T 〉 −→ 〈A′,T ′ 〉, is a ring
morphism, f : A −→ A′, such that f (T ) ⊆ T ′.

∗ p-Ring is the category of p-rings and their morphisms.
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p-Rings and π-SGs

To a p-ring 〈A,T 〉, we associate:

∗ A group of exponent two

GT (A) = A×/T× = {aT : a ∈ A×},
writing 1 for 1T and −1 for (−1)T ;

∗ For a, b ∈ A×,

D v
T

(a, b) = {x ∈ A× : ∃ s, t ∈ T s.t. x = sa + tb},

is the set of units value represented by 〈 a, b 〉.
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∗ Now, define

〈 aT , bT 〉 ≡T 〈 cT , dT 〉 ⇔


aTbT = cTdT

and

D v
T

(a, b) = D v
T

(c , d).

∗ If h : 〈A1,T1 〉 −→ 〈A2,T2 〉 is a p-ring morphism, let

hπ : GT1(A1) −→ GT2(A2) be given by hπ(aT1) = h(a)T2 .
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We have

Theorem 1

a) If 〈A,T 〉 is a p-ring, then GT (A) is a π-SG,
which is reduced iff T is proper.

b) If h is a p-ring morphism, hπ is morphism of
π-SGs, yielding a covariant functor from p-Ring to
π-SG.

c) This functor preserves arbitrary non-empty
products and all right-filtered inductive limits. �
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∗ The preceding construction also holds with A2 in
place of T .

In this case, write G (A) = A×/A2× for the
associated π-SG.

∗ If T = ΣA2, write Gred (A) for the associated
π-SG.
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Fact 2

Let A be a ring and let T = A2 or a preorder of A.
If A satisfies 2-transversality with respect to T ,
i.e.,

For all a, b ∈ A×

D v
T

(a, b) =

= {c ∈ A× : ∃ s, t ∈ T× s.t. c = sa + tb},

then GT (A) is a pre-special group, i.e.,

〈 aT , bT 〉 ≡T 〈 cT , dT 〉 ⇒ 〈 aT ,−cT 〉 ≡T 〈−bT , dT 〉.
�
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These constructions hold for T -subgroups of 〈A,T 〉, i.e.,

subgroups S ⊆ A×, such that T× ⊆ S and −1 ∈ S .

If T = A2, these are called q-subgroups of A.

Here, we treat only the case S = A×.

21 / 57



Our next task is to describe axioms, such that if
〈A,T 〉 is a p-ring then GT (A) is a special group,
satisfying the following requirements:

∗ The axioms are “elementary” and closely
connected to fundamental concepts of the algebraic
theory of quadratic forms;

∗ Ring-theoretic representation and isometry of
forms of arbitrary dimension are faithfully coded by
representation and isometry in GT (A);

∗ In the case T = A2, the mod 2 algebraic K -theory
of A is naturally isomorphic to that of G (A).
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Diagonal A×-quadratic forms

Let n ≥ 1 be an integer and A be a ring.

a) To an n-form over A×, ϕ = 〈 a1, . . . , an 〉, we associate a
diagonal matrix in GLn(R), M (ϕ), whose non-zero entries are
a1, . . . , an.

b) If ϕ, ψ are n-forms over A×, ϕ ≈ ψ iff

∃ M ∈ GLn(R) s.t. MM (ϕ)M t = M (ψ).

The relation ≈ , matrix isometry, is an equivalence relation.

It has the usual properties, e.g., preserves orthogonal sums and

tensor products of forms.
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In the case of preorders, we needed to obtain an
intrinsic characterization of T -isometry, i.e.,
depending only on T , the ring operations and the
ring’s general linear group.
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A smooth theory is forthcoming if T-isometry of
n-forms over A× is defined by:

ϕ ≈ T ψ

m
∃ ϕ0, ϕ1, . . . , ϕk , n-dimensional forms s.t.

(i) ϕ0 = ϕ and ϕk = ψ;

(ii) ∀ 1 ≤ i ≤ k , either ϕi ≈ ϕi−1, or

ϕi = 〈 t1x1, . . . , tnxn 〉, with t1, . . . , tn ∈ T× and
ϕi−1 = 〈 x1, . . . , xn 〉.
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In the setting of π-SG associated to rings there are
several notions of representation that must be
distinguished. In the field case all these notions coincide.

Definition 3

Let T = A2 or a proper preorder on a ring A. Let
ϕ = 〈 b1, . . . , bn 〉 and ϕT = 〈 bT

1 , . . . , b
T
n 〉 be a

A×-form and its correspondent in GT (A).

a) DT (ϕ) = {a ∈ A× : ∃ a2, . . . , an ∈ A× s. t.

ϕT ≡T 〈 aT , aT
2 , . . . , a

T
n 〉}

are the elements isometry-represented by ϕT in
GT (A). ♦
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b) D v
T

(ϕ) = {a ∈ A× : ∃ x1, . . . , xn ∈ T s. t.

a =
∑n

i=1 xi bi},

is the set of elements value-represented mod T
by ϕ.

c) D t
T

(ϕ) = {a ∈ A× : ∃ z1, . . . , zn ∈ T× s.t.

a =
∑n

i=1 zi bi}

is the set of elements transversally represented
mod T by ϕ.

Clearly, D t
T

(ϕ) ⊆ D v
T

(ϕ).

27 / 57



d) Define DT (ϕ) as follows:

∗ If n = 2, DT (ϕ) = D v
T

(b1, b2);

∗ If n ≥ 3,

DT (ϕ) =
⋂n

k=1

⋃
{D v

T
(bk , u) :

u ∈ D v
T

(b1, . . . ,
∨

bk , . . . , bn)}.

“inductive value representation”
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The Axioms

Let T be a preorder of a ring A or T = A2.

[T-FQ 1] : (2-transversality) For all a, b ∈ S ,

D v
T

(a, b) = D t
T

(a, b).

[T-FQ 2] : For all n ≥ 2 and all n-forms ϕ over S ,

D v
T

(ϕ) = DT (ϕ).

[T-FQ 3] : (1-Witt-cancellation) For all integers n ≥ 1,
all a ∈ A× and all n-forms ϕ, ψ over A×,

〈 a 〉 ⊕ ϕ ≈ T 〈 a 〉 ⊕ ψ ⇒ ϕ ≈ T ψ.
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We then have

Theorem 4

Let A be a ring and let T be A2 or a preorder of A.

If A |= [T-FQ 1], [T-FQ 2] and [T-FQ 3], then

GT (A) = 〈GT (A),≡T ,−1 〉 is a special group,
faithfully coding T -isometry and value represen-
tation of diagonal quadratic forms over A×. �

I.e., if ϕ, ψ are n-forms over A× and a ∈ A×:
• DT (ϕ) = D v

T
(ϕ), i.e., a ∈ A× is value represented iff it is

isometry represented in GT (A);

• ϕ ≈ T ψ ⇔ ϕT ≡T ψT
. (in GT (A))
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The preceding result has a partial converse:

Theorem 5

Let A be a ring and let T be a preorder of A, or
T = A2.

If A |= [T-FQ 1], the following are equivalent:

(1) GT (A) is a SG such that for all A×-forms of the
same dimension, ϕ, ψ,

(∗) ϕ ≈ T ψ ⇔ ϕT ≡T ψT
;

(∗∗) D v
T

(ϕ) = DT (ϕT ).

(2) A |= [T-FQ 2] and A |= [T-FQ 3]. �
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With respect to K -theory we obtain the following
general result:

Theorem 6

If A is a ring verifying 2-transversality for A2, there
is a natural graded ring isomorphism between
Milnor’s mod 2 K -theory of A and that of the
pre-special group G (A). �

[Gu] D. Guin, Homologie du groupe linéaire et K -theorie de Milnor
des anneaux, J. of Algebra, 123 (1989), 27-89.

[DM3] M. Dickmann, F. Miraglia, Algebraic K -theory of Special
Groups, Journal of Pure and Applied Algebra 204 (2006), 195-234.
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The preceding results justify the following

Definition 7

Let A be a ring and T be A2 or a preorder of A.

A is T-faithfully quadratic if it satisfies axioms
[T-FQ 1], [T-FQ 2] and [T-FQ 3].

If T = A2 write [FQ i ] for [T-FQ i ] (i = 1, 2, 3),
and call A faithfully quadratic. ♦

33 / 57



T -isometry and Signatures

Let 〈A,T 〉 be a p-ring. Following [KRW]

a) A T-signature on A is a group morphism, τ : A× −→ Z2

= {±1}, such that τ(− 1 ) = − 1 and for all a ∈ A×,
a ∈ ker τ ⇒ D v

T
(1, a) ⊆ ker τ .

b) If ϕ = 〈 a1, . . . , an 〉 is a form and τ is a signature,

sgnτ (ϕ) =
∑n

i=1 τ(ai) is the signature of ϕ at τ .

Proposition 8 (Pfister’s local global principle)

If 〈A,T 〉 is a T -faithfully quadratic ring and ϕ, ψ are forms
of the same dimension over A×, then ϕ ≈ T ψ iff their total
signatures are the same. �

[KRW] M. Knebusch, A. Rosenberg, R. Ware, Signatures on
Semilocal Rings, Bulletin of the AMS 78 (1972), 62-64.
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Remark: A 1st-order formula is

∗ geometric if it is the negation of an atomic formula or of the
form ∀v(∃yϕ1(y , v ; z) → ∃wϕ2(w , v ; z)), with ϕ1, ϕ2 are positive
and quantifier free;

∗ Horn-geometric if it is the negation of an atomic formula or of

the form ∀v(ϕ1(z) → ϕ2(z)), where ϕ1 and ϕ2 are pp-formulas.

We have obtained:

• An explicit Horn-geometric axiomatization for the
theory of faithfully quadratic rings in the language
of unitary rings;

• An explicit geometric axiomatization for the
theory of T -faithfully quadratic rings in the
language of unitary p-rings.
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We also have:

Theorem 9

The class of T -faithfully quadratic rings (T a
proper preorder) is closed under arbitrary non-empty
products and right-directed inductive limits. In
particular, it is closed under arbitrary reduced
products. �

By a deep result of Kiesler, Galvin and Shelah, the
theory of T -faithfully quadratic rings (T a preorder)
has a Horn axiomatization.
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Classes of T-faithfully Quadratic Rings
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Rings with Many Units

Definition 10

Let R be a ring.

a) A polynomial f ∈ R[X1, . . . ,Xn] has local unit
values if for every maximal ideal m of R, there are
u1, . . . , un in R such that f (u1, . . . , un) 6∈ m.

b) R is a ring with many units if for all n ≥ 1,
and all f ∈ R[X1, . . . ,Xn], if f has local unit values,
there is r ∈ Rn such that f (r) ∈ R×. ♦
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We have shown

Theorem 11

a) Rings with many units are Horn-geometric
axiomatizable in the first-order language of rings.

b) The ring of formal power series in any number of
variables and with coefficients in a ring with many
units is again a ring with many units. �
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Examples of Rings with Many Units

∗ Fields; ∗ semi-local rings;

∗ Commutative von Neumann regular rings;

∗ C(X ) = C(X ,R), where X is a Boolean space.

∗ Theorem 11.(a) yields:

• Arbitrary non-empty reduced products and
inductive limits over right-directed posets of rings
with many units are rings with many units.
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We now have

Theorem 12

If A is a ring with many units such that every
residue field of A has at least 7 elements, then A is
completely faithfully quadratic, i.e., it is
faithfully quadratic (T = A2) and T -faithfully
quadratic for any preorder T of A. �
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Reduced f-rings

A partially ordered ring (po-ring), 〈A,≤〉, is
lattice-ordered (lo) if for all a, b ∈ A,

a ∨ b = sup{a, b} and a ∧ b = inf{a, b}

exist in A (join and meet with respect to ≤).

A lo-ring is an f-ring if it is isomorphic to a
subdirect product of linearly ordered rings.
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For a lo-ring A, the following are equivalent:

(1) A is a reduced f-ring;

(2) A is a subdirect product of linearly
ordered domains.

Definition 13

An f -ring, A, comes equipped with a partial order,
written T A

] , with respect to which it is lattice
ordered.

If A is clear from context, write T] in place of T A
] . ♦
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We then obtain, where B(R) stands for the BA of
idempotents of a ring R :

Theorem 14

If A is reduced f-ring and T is a preorder of A
containing T], then A is T -faithfully quadratic.

Moreover, GT (A) is isomorphic to B(A)/I, where I
is the ideal of B(A), given by

I = {e ∈ B(A) : H(e) ∩ Sper(A,T ) = ∅},

with H(e) = {α ∈ Sper(A,T]): e 6∈ supp(α)}. In
particular, GT](A) = B(A). �
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Some Applications

a) If X is a topological space:

(1) The ring C(X ) is completely faithfully quadratic.

(2) If S ⊆ C(X ) is a multiplicative set consisting of non
zero-divisors, then the ring of fractions, C(X )S−1, is
completely faithfully quadratic.

b) All real closed rings are completely faithfully quadratic.

By results in [KZ], item (a.2) applies to arbitrary reduced

f-rings.

[KZ] M. Knebusch, D. Zhang, Convexity, Valuations and Prüfer
Extensions in Real Algebra, Documenta Math. 10 (2005), 1-109.
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Archimedean Rings with bounded inversion

Let A be a ring and let T be a preorder of A.

• T has bounded inversion if 1 + T ⊆ A×. We say that
〈A,T 〉 is a BIR. A has weak bounded inversion (WBIR)
if 1 + Σ A2 ⊆ A×.

• T is Archimedean if for all a ∈ A there is n ∈ N such that
n − a ∈ T .

• A is Pythagorean if A2 = ΣA2. ♦

∗ Real holomorphy rings of formally real fields are
Archimedean WBIRs;

∗ C(X ) is a Pythagorean BIR; it is Archimedean (with its

natural po) iff X is pseudo-compact.
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We have

Theorem 15

If 〈A,T 〉 is an Archimedean BIR and P is a
preorder containing T , then A is P-faithfully
quadratic.

Moreover, GP(A) = B(Y ∗P ), the BA of clopens of
the compact Hausdorff space of closed points of
Sper(A,P). �

An important ingredient of the proof is the Becker-Schwartz

version of the Kadison-Dubois Theorem.

[BS] E. Becker, N. Schwartz, Zum Darstellungssatz von Kadison-
Dubois, Arch. Math. 40 (1983), 421-428.
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Some Applications to Quadratic Form Theory
over Rings and to the K-theory of Rings
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Milnor’s Witt Ring Conjecture

If 〈A,T 〉 is a T -faithfully quadratic ring, both the Witt ring
and the graded Witt ring of 〈A,T 〉,

WT (A) and WT
g (A),

can be constructed as usual, being naturally isomorphic to the
Witt ring and graded Witt ring of the special group GT (A). In
particular:

• IT (A) = I (GT (A)) is the fundamental ideal of WT (A),
consisting of the classes of even dimensional forms;

• For n ≥ 1, I n
T

(A) = I n(GT (A)) is the nth-power of IT (A);

• W T
g (A) = 〈F2, . . . , I

n
T

(A), . . . 〉 is the graded Witt ring

of A, where for n ≥ 1, I n
T

(A) = I n
T

(A)/I n+1
T

(A).

If T = A2, we omit T from the notation.
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Theorem 16

Let A be a Pythagorean ring, let Y ∗ be the subspace of closed
points of Sper(A). Let B(A) and B(Y ∗) be, respectively, the
BAs of idempotents of A and of clopens in Y ∗.

a) If A is an f-ring, then for all n ≥ 1,

knA ' I n(A) ' B(A).

b) If A is as Archimedean BIR, then for all n ≥ 1,

knA ' I n(A) ' B(Y ∗).

In particular, both these classes of rings satisfy Milnor’s mod 2
Witt ring conjecture. �
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The Arason-Pfister Hauptsatz

Theorem 17

Let 〈A,T 〉 be a T -faithfully quadratic p-ring.

If ϕ is a form over A× such that

dim ϕ < 2n and ϕ ∈ I n(A),

then, ϕ is T -hyperbolic.

In particular,
⋂

n≥1 I n(A) = {0}. �
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Marshall’s Signature Conjecture

If 〈A,T 〉 is a p-ring, write Y ∗T for the compact Hausdorff

space of closed points in Sper(A,T ).

Theorem 18

a) Let 〈A,P 〉 be an Archimedean BIR and let T be
a preorder containing P. Let ϕ be a form over A×.
If for some dense subset D ⊆ Y ∗T , we have

For all β ∈ D, sgnτβ(ϕ) ≡ 0 mod 2n,

then ϕ ∈ I n
T (A).

b) An analogous statement holds for an f -ring,
〈A,T] 〉, and a preorder T on A so that T] ⊆ T . �
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A Local-global Sylvester’s Inertia Law for f-rings

Theorem 19

Let A be an f -ring and let T] be its natural partial
order. For n-forms ϕ = 〈 a1, . . . , an 〉 and ψ =
〈 b1, . . . , bn 〉 over A×, the following are equivalent:

(1) ϕ ≈ T]
ψ;

(2) There is an orthogonal decomposition of A into
idempotents, {e1, . . . , em}, such that for every
1 ≤ j ≤ m, the following conditions are satisfied:
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(i) Each entry in ϕ and ψ is either in T]
×ej (strictly

positive in Aej), or in −(T]
×ej) (strictly negative in

Aej);

(ii) The number of entries of ϕ and ψ that are
strictly negative in Aej is the same, i.e.

# ({k ∈ n : akej <T]
0})} = # ({` ∈ n : b`ej <T]

0}). �

n = {1, 2, . . . , n}
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That’s all folks ! Many thanks for your attention !
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